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The c-bifactor model as a tool for the
construction of semi-homogeneous upper-
level measures
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Abstract

The paper addresses problems resulting from the application of methods, which emphasize homo-
geneity, in the construction of measures that are expected to represent general upper-level con-
structs. It distinguishes between homogeneous and semi-homogeneous measures. Whereas ho-
mogenous measures allow for one underlying dimension only, semi-homogeneous measures are
characterized by the presence of one general and dominating dimension in combination with re-
stricted subordinate dimensions. It is the congeneric model of measurement that tends to create
homogeneous measures whereas the c-bifactor model enables the construction of semi-
homogeneous measures where the prefix "c" indicates that it is a confirmatory bifactor model. It is
made obvious that the successful construction of measures representing upper-level constructs
requires the c-bifactor model. The congeneric and c-bifactor models were applied to the social
optimism scale since social optimism was known to show a hierarchical structure. As expected,
only the c-bifactor model indicated a good model fit.
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Confirmatory factor analysis (CFA) in the framework of test construction usually aims at
the investigation of the homogeneity of the items of a measure. Such an investigation is
usually performed on the basis of the congeneric model of measurement (Joreskog, 1971)
that means the consideration of one latent variable in combination with several items
serving as manifest variables. The latent variable is assumed to represent the true source
of responding to the items. The congeneric model even gave rise to an advanced test
theory called congeneric test theory (Lucke, 2005; McDonald, 1999; Raykov, 1997,
2001). However, despite the favorable characteristics and advantages of the congeneric
model, an increasing number of deviations from this model can be observed. These de-
viations can be characterized as bifactor models, a denotation that was introduced quite a
time ago (Holzinger & Swineford, 1937) for models that allow items to load on two
latent variables. Since the original bifactor model was developed in the context of ex-
ploratory factor analysis, it is addressed as c-bifactor model in the context of confirma-
tory factor analysis. There is an accumulation of cases where it is reasonable to assume
that more than one latent source influence responding to an item. First, there is the case
of a measure imbedded into a multitrait-multimethod design (Campbell and Fiske, 1959).
This design gives reason for assuming that traits or abilities in combination with observa-
tional methods determine the responses to items. As a consequence, various CFA models
allowing each item to load on two latent variables were proposed (e.g., Kenney & Kashy,
1992; Marsh & Bailey, 1991). Second, the effect of different item wordings was repeat-
edly shown to cause model misfit. The integration of an additional latent variables into
the basic scheme provided by the congeneric model of measurement for representing one
observational method proved instrumental for achieving good model fit (DiStefano, &
Motl, 2006; Rauch, Schweizer, & Moosbrugger, 2007; Vautier, Raufaste, & Cariou,
2003). This provision means the transformation of the standard model of confirmatory
factor analysis into a bifactor model. The additional dimension is not apparent in an IRT
investigation (Rauch, Schweizer, & Moosbrugger, 2008). Third, the items may show a
position effect that is usually the cause of model misfit (Hartig, Holzel, & Moosbrugger,
2007). In this case there is also the possibility to eliminate model misfit by considering a
model of measurement with a second latent variable that accounts for variance due to the
position effect (Schweizer, Schreiner, & Gold, 2009). What results is a c-bifactor model.

Finally, it needs to be indicated that the c-bifactor model is not only important for confirma-
tory factor analysis. It can also replace the congeneric model of measurement as part of a
full structural equation model. So the assumption that the responses to items are due to more
than one latent source may also be transferred from confirmatory factor analysis to struc-
tural equation modeling by integrating the c-bifactor model of measurement.

The c-bifactor model for representing a hierarchical structure

In this paper another case of deviation from the congeneric model of measurement as the
standard model of confirmatory factor analysis is presented and investigated. It is the
construction of a measure for an upper-level construct that is part of a hierarchical struc-
ture. Various hierarchical structures of personality and ability can be found in psychol-
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ogy literature. Well-known examples are the structures of personality with neuroticism
and extraversion-introversion as top-level constructs proposed by Eysenck (1967) and
the three-stratum model of cognitive abilities by Carroll (1993). It is a characteristic of
such hierarchies that constructs can be found at various levels. In Carroll’s model general
ability respectively general intelligence is a third-level construct, fluid intelligence a
second-level construct and figural reasoning a first-level construct. For an illustration
Figure 1 gives a simple two-level hierarchy as CFA model with latent variables for rep-
resenting constructs and items as manifest variables.

There is the possibility to represent such a hierarchy by means of a corresponding con-
firmatory factor model (Schweizer, Moosbrugger, & Schermelleh-Engel, 2003). How-
ever, in test construction the focus is usually not on the whole but on a specific part of
the hierarchy. The constructs assigned to the various levels show different degrees of
complexity and, as a consequence, differ according to homogeneity. Lower-level con-
structs can be expected to be very homogeneous whereas top-level constructs may show
an impaired degree of homogeneity. Therefore, confirmatory factor analysis of measure
representing one of the low-level constructs can be expected to lead to very favorable
results whereas there is no guarantee for success with respect to measures designed for
upper-level constructs.

The problem with the homogeneity of measures representing upper-level constructs is
that these measures may include items that originate from the same lower-level construct.
As a consequence, some items may show considerably higher correlations among each
other than with items originating from other lower-level constructs. Figure 2 presents an
attempt to make the problem obvious, which results from the latent presence of a lower-
level structure.

Upper-level
construct

Lower-level
construct 2

Lower-level
construct 3

Lower-level
construct 1

Item 5 Item 9

[N N

Figure 1:
Hierarchical structure with constructs assigned to two latent levels
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Figure 2:

Hierarchical structure presented as general construct with an indication of underlying
complementary sources (dashed lines)

In this illustration the presence of lower-level constructs is ignored in that the congeneric
model of measurement is assumed. Implicitly the upper-level construct is transformed
into a first-order construct denoted general construct, which is to be represented by the
measure. The original lower-level constructs are neglected by the model although they
are only partly represented by the new first-order construct. However, there are addi-
tional components of the original first-order constructs as remainders. These remainders
are not automatically integrated into the new first-order construct and can be suspected to
be still effective as situational, event-specific or method sources of responding. In order
to make the special nature of these additional systematic sources of responding obvious,
they are addressed as complementary constructs. These additional sources that are ne-
glected are identified by dashed lines. These complementary constructs take the role of
disturbances that prevent the achievement of a good model fit in confirmatory factor
analysis. In order to avoid confusion at this point, it must be emphasized that there is no
exact correspondence between the first-order constructs of Figure 1 and the complemen-
tary constructs of Figure 2. There may be some overlap but no correspondence according
to the psychological meaning. A similar splitting up into different sources can be found
in latent state-trait models (Steyer, Schmitt, & Eid, 1999). Such models require the sub-
division of first-order latent variables as seemingly unique sources into state and trait
latent variables that are associated with different sources of responding.

The problem resulting from the underlying structure can be solved by selecting an ap-
proach similar to the multitrait-multimethod approach (Campbell and Fiske, 1959). This
approach demands that systematic sources of responding that can be assumed to be effec-
tive as disturbances should be integrated into the research design and the corresponding
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model of measurement. In the multitrait-multimethod approach the disturbances are
mainly observational methods. In the investigation of hierarchical structures the addi-
tional constructs play a role that is similar to the role played by observational methods
since the additional constructs are sources of a special degree of homogeneity among
items. Therefore, it is very reasonable to get the problem into grip by representing the
additional constructs in a similar way by corresponding latent variables. Additional con-
structs as latent variables take the role of method latent variables. As a result of these
considerations, a c-bifactor model (cf. Holzinger & Swineford, 1937) is achieved. The
illustration of this model is included in Figure 3.

This Figure differs from Figure 2 by the transformation of the dashed lines into solid
lines and the change of labels. Since the additional constructs do not fully correspond to
the first-order constructs of Figure 1, they are denoted semi-constructs. Still it can be
assumed that the measure including the first to ninth items represents the general con-
struct if an appropriate degree of model fit is achieved and the sizes of the loadings are
acceptable. It does not represent the semi-constructs since these semi-constructs are
perceived as sources, which are not common to all of them. No one of them can dominate
the responses to all the items. The only way of eliminating the semi-constructs com-
pletely would be the elimination of items. If only one item per semi-construct remains,
the semi-constructs as underlying constructs are no longer present as a disturbance.
However, as a consequence of this provision, the measure may no longer be appropriate
because of the low number of items.

The considerations of this section should give the reader an idea of the research problems
that may demand the application of the c-bifactor model in order to achieve a reasonable

General
construct

Figure 3:
c-bifactor model for a measure representing a general (upper-level) construct in combination
with additional semi-constructs
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result. But there are also many other research problems that demand the selection of the
congeneric model of measurement. So the c-bifactor model simply enlarges the assort-
ment of models, which can be applied for test construction but there is no replacement.

Formal representation of an upper-level measure

Confirmatory factor analysis usually means selecting the congeneric model (Joreskog,
1971) for investigating the items of a scale, and the response to an item is considered as
the result of contributions of an ability or trait on one hand and error on the other hand.
Accordingly, equation (1) defines the response y; of the ith participant to the jth item

(=1,....J) as
Yy =v,tAmnte; , @)

where v characterizes the jth item, A, is the loading of the jth item on the latent ran-
dom variable, 1 the person-specific true score latent random variable and €; the error
score random variable associated with the ith participant and the jth item. The constant
v, of the regression model was considered as item easiness (Carmines & Mclver, 1981;
Ferrando & Lorenzo-Seva, 2005; Joreskog, 1971; McDonald, 1999) and is usually omit-

ted in the CFA context.

Equation (1) serves well if there is only one source giving rise to the true score. Other-
wise it may be necessary to distinguish between parts of the true score due to two or even
more sources. However, such a distinction is only reasonable if the sources apply to
different sets of items. It is reasonable to assume that one source applies to all the items
and, therefore, may be considered as source of a general true score random variable
TNeneraly Whereas the other ones give rise to a specific true score random variable 7specificy
(k=1,...,K). These latent variables must accompany non-overlapping subsets of items.
Their integration into equation (1) gives

y,.j=vj+7»( +€

general)jn(general) +)\'(speciﬁc)jn(speciﬁc)k [/ (2)
A rather similar extension of the congeneric model was developed for the item factor
analysis model (e.g., Bock & Aitkin, 1981; Ferrando, 2005; Gibbons, Bock, Hedeker,
Weiss, Segawa, Bhaumik, Kupfer, Frank, Grochocinski, & Stover, 2007). Of course,
equation (2) only makes sense if the manifest variables associated with the jth specific
latent variables are a subset of the manifest variables associated with the general latent
variable.

The construction of a measure for representing the upper-level construct of a hierarchy
requires the concentration on 7generany Whereas #pecific) is to be considered as a nuisance
that eventually must be controlled. Since the effect of #pecificy On model fit depends on
the types of available items, it is useful to discuss alternative cases. The first case is
characterized by the following feature: all the items refer to different subsets. In this case
a variant of equation (1) is very suitable for investigating the items:
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yij = Vj +}\'(general)jn(genera[) + 8ij (3)
since 7pecificy 18 only of importance if there are at least two items, which are influenced
by the same source represented by 7pecific)- The second case is characterized by a mixture
of underlying constructs. Some of them are represented by one item whereas others by
two or more items. Therefore, the applicability of equation (3) is restricted. Instead a
mixture of models of measurement needs to be considered. In some items a model ac-
cording to equation (2) should serve well whereas in the other items a model according to
equation (3) must be preferred. Finally, there is the case that each sub-concept is repre-
sented by at least two items. In this alternative the model of measurement according to
equation (3) is necessary for all the items. In order to have a general case, it is reasonable
to integrate the Kronecker’s delta into equation (2) such that

Yy =vith ) O +e 4)

genera/)jn(general speciﬁc)jn(speciﬁc)k i

and to define & in such a way that

Skz{l if g(C,)>1 )

0 else

where C, is the kth subset of items referring to kth underlying specific construct and g the
function that returns the number of items included in C;. Two items as minimum for a
homogeneous subset of items may be a good lower limit. However, there may also be
reasons for selecting three items as minimum.

The model of measurement characterized by the equations (4) and (5) suggest that the
model of measurement may change from one item to the next item. Such a model of
measurement considerably increases the flexibility in investigating the items of meas-
ures. The c-bifactor model illustrated by Figure 3 can be represented by this model quite
well.

A Comparison of c-bifactor model and hierarchical model concerning test
construction

In test construction it is important to have information concerning the appropriateness of
items with respect to the construct of interest. Such information is provided by the c-
bifactor model, as it is obvious from equation (4). The loadings on the general latent
random variable Agenerany (=1,...,J) provide information concerning the usefulness of the
items for representing the general construct.

In contrast, in the hierarchical model only the loadings on the first-order latent variables,
which are specific true score random variables, are available since the second-order
latent variable is not directly related to the items. This means that equation (1) must be
rewritten in the following way:
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+€ (6)

yij = vj + }\'(ﬁrstiorder)jn(ﬁrstiorder)k ij

where y;; denotes the response of the ith participant to the jth item, v characterizes the
Jthiitem, A is the loading of the jth item on the corresponding first-order latent random
variable, 7rsiorderye the kth true score first-order latent random variable and €; the error
score random variable associated with the ith participant and the jth item. Since the first-
order latent random variable is actually a composite of the second-order latent random
variable & which is associated with the construct of interest and is accompanied by ¥ as
weight, and an additional specific latent random variable ¢, equation (6) needs to be
rewritten as

yij = vj + )\'(ﬁrstiurder)j (’Yj&-'- Ck ) + Eij : (7)

The revised equation also illustrates that the loadings on the first-order latent variable
cannot be used for the evaluation of the items.

Furthermore, it makes apparent that the subdivision is really necessary in order to
achieve information concerning the appropriateness of an item with respect to the con-
struct of interest. In sum, the c-bifactor model enables the direct estimation of the load-
ings on the general latent random variable associated with the upper-level construct of
interest whereas the hierarchical model makes an indirect estimation necessary.

Homogeneity and semi-homogeneity and how to keep them separated

Homogeneity is a concept that is closely associated with factor analysis. In the spatial
notation that presents factors as axes of a high-dimensional space homogeneity means
that data can basically be represented by one dimension. So the presence of only one
underlying dimension for a set of items characterizes homogeneity. Consequently, it
characterizes measures that originate from a factor-analytic investigation in following the
basic ideas of factor analysis (Spearman, 1904). In a homogeneous measure all the ob-
servations can be best described by this one dimension, and the corresponding responses
can be assumed to be due to the same source. Obviously, homogeneity excludes the
presence of other dimensions in a set of data obtained by the items of a homogeneous
measure. Furthermore, it is quite obvious that homogeneity can easily be achieved in
measures representing lower-level constructs whereas it may be difficult to be achieved
in upper-level constructs.

The obvious difficulty in achieving homogeneity for upper-level constructs gives reason
for proposing another concept, semi-homogeneity, since it is not really reasonable to
demand homogeneity for corresponding measures. Semi-homogeneity suggests that there
is one dominating dimension and does not exclude the restricted presence of other di-
mensions. There must be one construct giving rise to one dimension that characterizes all
the items of a measure and is underlying the responses to all these items. This does not
preclude the existence of other constructs that may apply to subsets of items of the meas-
ure. So the influence of the other constructs must be restricted to subsets of items so that
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additional non-dominating dimensions show a clear restriction. A very good example is
provided by the specific dimensions resulting from positively and negatively worded
items (DiStefano, & Motl, 2006; Rauch, Schweizer, & Moosbrugger, 2007; Vautier,
Raufaste, & Cariou, 2003). In this example additional non-dominating dimensions are
restricted to the items with positive respectively negative wording.

Measures constructed according to the original version of the congeneric model of meas-
urement can be expected to show a high degree of homogeneity. The emphasis given to
one-dimensionality in confirmatory factor analysis becomes especially obvious in con-
sidering the model of the covariance matrix and the fit statistics. According to Bollen
(1989, p. 35) the model of the covariance matrix is given by

IZ=AYA,'+0, (8)

where Z is the p X p covariance matrix of manifest item random variables, A, the p X ¢
matrix of loadings, ¥ the ¢ X ¢ covariance matrix of the latent random variables, and
O, the p X p diagonal matrix of error variances of latent error variables €. This model of
the covariance matrix is closely linked to the congeneric model so that every change of
the congeneric model leads to a corresponding change of the model of the covariance
matrix. Actually, the congeneric model is transformed into the other model; it is implicit
in the model of the covariance matrix. For example, the inclusion of a specific true-score
component into a model of measurement changes the model of the covariance matrix
accordingly.

The model of the covariance matrix plays an important role in investigating model fit in
confirmatory factor analysis. The majority of major statistics of model fit (SMF) are
defined as a function f'of the difference between the model of the p X p covariance matrix
2 and the p X p matrix of observed variances and covariances S:

SMF = fo\r (S, Z) )

(for an overview see Kline, 2005) It is obvious that a bad fit is indicated whenever Z is
constructed for representing one dimension whereas the variances and covariances of S
are due to several dimensions. Therefore, the application of confirmatory factor analysis
on the basis of the congeneric model can be expected to produce homogeneity.

Next, the conventional methods of test construction are considered. There is the concept
of internal consistency that comes closest to homogeneity. Statistics of internal consis-
tency are applied for evaluating the quality of a measure as a whole. The most well-
known and most often applied statistic of internal consistency is Cronbach’s (1951)
Alpha coefficient. This statistic is usually reported when a measure is constructed ac-
cording to classical test theory (Gulliksen, 1959; Lord & Novick, 1968). This statistic &
reflects all types of covariation among the items:

[, X

P-1 o’

total

o=

(10)
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where o] is the variance of the ith item (i=1,...,P), o, the variance of the item sum
and P the number of items. In this formula o, takes a crucial role since its size to a
considerable degree reflects the correlations among the items. Furthermore, the size of
total variance can be large or low independently of whether the correlations are due to
one source or several different sources. Consequently, o7, and also & can be large

because of the contribution of two or even more underlying dimensions.

Because of the dependence on the correlations it can indicate a high degree of consis-
tency although homogeneity is not given. Therefore, an impairment of homogeneity may
not be obvious in Cronbach’s Alpha coefficient. Such a lack of sensitivity can be found
in methods that concentrate on the investigation of consistency in responding.

An example

This section reports the investigation of the items of a measure, which is expected to
represent an upper-level construct. The measure that serves as an example is taken from
optimism research. In 1997 a scale for measuring social optimism was published
(Schweizer & Schneider, 1997). The exploratory investigation of the items of this scale
revealed a hierarchical structure. Besides the general factor there were lower-level fac-
tors that were denoted optimism concerning economic affairs, optimism concerning
predicted disasters and optimism concerning the future controllability of violence. Struc-
tural investigations revealed a rather complex structure because there were also effects of
different item wordings (Schweizer & Rauch, 2008). However, Alpha consistencies and
part-whole correlations of an acceptable size were observed for the general social opti-
mism scale and also for each subscale. In order to reduce the complexity, recently a
revised scale composed of bipolar items was presented (Schweizer & Schreiner, in
press). In constructing this scale pairs of items were merged in order to avoid the effect
of item wording. In this process the number of items was reduced from 24 to 12. Because
of the hierarchical structure the items of the bipolar measure of social optimism could be
assumed to be semi-homogeneous.

This scale was applied to an internet sample of 769 participants. The mean age of the
sample was 24.6 years of age (SD=4.59). It included 572 females and 197 males. Since
mailing lists of various psychological institutes were used for addressing people, it can
be assumed that the majority of participants were psychology students. An e-mail with an
invitation to participate in the study was sent to the members of these lists. Only com-
plete data sets were included in the investigations reported in the following paragraphs.

In the first step the data were investigated by conventional methods of item analysis. This
investigation required the computation of part-whole correlations and Cronbach’s Alpha.
In the second step there was confirmatory factor analysis according to the standard
model, which means on the basis of the congeneric model assuming one dimension.
Finally, the bifactor model was applied. In applying the bifactor model specific latent
variables were considered additionally for representing optimism concerning economic
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affairs (5 items), optimism concerning predicted disasters (3 items) and optimism con-
cerning the future controllability of violence (4 items).

Conventional item analysis

The idea of the part-whole correlations is that there is one general source of responding
to items. Therefore, part-whole correlations can provide some kind of comparison level
for the loading on a general latent random variable. The part-whole correlations are pre-
sented in the first column of Table 1.

Apparently, the part-whole correlations vary between .37 and .62. Cronbach’s Alpha for
the 12 items was .84 which is quite good. Furthermore, the investigation of the contribu-
tions of the individual items showed that the removal of no one of the items would lead
to an increase of Cronbach’s Alpha. Consequently, according to the conventional meth-
ods of item analysis there was no real reason for removing one of the items.

Table 1:
Part-whole Correlations, Completely Standardized Factor Loadings According to Congeneric
and c-bifactor Models for the 12 Social Optimism Items

Item Part-whole Loadings for congeneric  Loadings for c-bifactor
correlation model model
1 47 .54 49
2 .50 .56 .54
3 .38 45 42
4 45 .52 43
5 .50 .60 43
6 .56 .65 .69
7 .54 .64 49
8 .63 74 .64
9 37 41 43
10 .62 71 .76
11 .59 .66 .65
12 .50 .56 .61

" Only the loadings on the general social optimism latent variable are given.

Confirmatory factor analysis according to the standard model

Confirmatory factor analysis was performed by means of the maximum likelihood esti-
mation method in using LISREL (Jéreskog & Sorbom, 2001). The completely standard-
ized loadings are given in the second column of Table 1. These loadings vary between
.41 and .71. Each one of them reaches the level of significance. Although the results for
the individual items are favorable, the model shows a degree of fit that is not really good:
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x’(54)= 1,041.60 (p<.01), RMSEA=.154, SRMR=.081, GFI=.96, CFI=.95, NNFI=.93
(for interpreting the fit statistics see Schweizer, 2010). Especially, the x* and REMSEA
results are far out of the acceptable ranges. As a consequence, the model must be re-
jected. It does not represent the data well although the loadings show a reasonable size.

Confirmatory factor analysis according to the c-bifactor model

In order to conduct confirmatory factor analysis according to the c-bifactor model, three
specific latent variables were considered. These latent variables represented optimism
concerning economic affairs, optimism concerning predicted disasters and optimism
concerning the future controllability of violence and received loadings from the corre-
sponding items. The third column of Table 1 includes the completely standardized load-
ings on the general social optimism latent variable. The sizes of these loadings vary
between .42 and .76. Each one reaches the level of significance. Furthermore, the inves-
tigation of the bifactor model reveals a good model fit: x*(43)= 123.73 (p<.0l),
RMSEA=.049, SRMR=.032, GFI=.99, CFI=1.00, NNFI=1.00. Only the y falls in the
range between acceptable and good results whereas all the other fit statistics are within
the range of good results. However, the large x” is probably due to the large sample size
since ¢’ is sensitive to sample size.

Comparing the results achieved for the standard model and the c-bifactor model clearly
indicates an improvement in model fit due to the consideration of additional latent vari-
ables according to the lower-level structure. This improvement is also obvious from
comparing the AIC statistics. The AIC of the standard model is 1,089.60 and of the c-
bifactor model 193.73. There is a really considerable improvement.

Discussion

After over 100 years of psychological research in some subject areas a quite advanced
stage has been reached that is characterized by complex structures, as for example the
subject areas of ability and personality. These structures integrate various constructs and
specify the relationships among these constructs. Many structures are hierarchical struc-
tures including several levels. The constructs assigned to these levels show various de-
grees of generality and, as a consequence, can be assumed to be characterized by differ-
ent degrees of homogeneity. Lower-level constructs can be assumed to show higher
degrees of homogeneity than upper-level constructs. The constructs of the lowest level
should show the highest degree of homogeneity.

The hierarchical structure can cause a problem in test construction if the methods for
constructing measures concentrate on the maximization of homogeneity. Such methods
preferably lead to favorable results for measures that represent lower-level constructs. In
contrast, in measures representing higher-level constructs the probability of failure is
high. Actually, success can only be expected in the case that such a measure is composed
of items referring to different lower-level constructs. If there is no overlap between the
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items, it should also be possible to end up with a homogeneous measure. However, this
possibility is quite restricted since in assuming that there should be at least 10 to 12 items
a corresponding number of lower-level constructs must be available. Therefore, this
situation is not really a realistic possibility.

The difference that is obvious from the description of the consequence of having hierar-
chies led to the proposal of the distinction of homogeneous and semi-homogeneous
measures. Homogeneous measures are basically one-dimensional. Such measures mainly
represent lower-level constructs. In contrast, semi-homogenous measures are character-
ized by one general and dominating dimension besides indications of other dimensions.
Furthermore, there is the restriction that the other dimensions may only apply to subsets
of the items. However, the dominating dimension must clearly be superior to the other
dimensions.

The methods available for the construction of measures have different properties and, as
a consequence, are appropriate for generating either homogeneous or semi-homogeneous
measures. The theoretical reasoning showed that confirmatory factor analysis according
to the congeneric model of measurement is most appropriate for the construction of ho-
mogeneous measures. This is no surprise since the congeneric model of measurement
clearly states that there should be one latent variable only. For constructing a semi-
homogeneous measure a basic modification of this model is necessary. This modification
transforms the congeneric model into a c-bifactor model. In applied research there are
already some examples of corresponding modifications of the congeneric model (e. g.,
Chen, West, & Sousa, 2006; Gignac, 2008; Schweizer & Rauch, 2008). The comparison
of results achieved by means of the two models even enables the investigation of the
question whether a given measure is either homogeneous or truly semi-homogeneous. In
contrast, the conventional methods of test construction do not allow the distinction of the
two types of homogeneity.

The results of investigating social optimism data confirm the results of comparing the
models and methods according to their theoretical properties. Social optimism shows a
known hierarchical structure. The congeneric model ignores this structure and assumed
that the data can be represented by one latent variable. This model failed. The transfor-
mation into a c-bifactor model provided the opportunity to consider the lower-level struc-
ture. As expected, this model was successful. It showed a good model fit and yielded
loading with an acceptable size for the general latent variable. Furthermore, the compari-
son of the models made obvious that the measure is actually semi-homogeneous. The
results for the conventional models indicated a good quality of the measure.

It remains to consider the consequences for assessment. If the loadings on the additional
latent variables are minor, there is a situation comparable to the situation after having
conducted exploratory factor analysis. In exploratory factor analysis the items load on all
the factors, and there is no problem as long as the pattern of loadings shows simple
structure. Therefore, if the loadings on the general latent variable surmount the other
loadings, the usual scoring function may be applied. In another case it would be advisible
to select the factor scores for scoring.
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