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Rasch and pseudo-Rasch models: suitableness for practical test applications1 

HARTMANN H. SCHEIBLECHNER2 

Abstract 
The Rasch model has been suggested for psychological test data (subjects× items) for various 

scales of measurement. It is defined to be specifically objective. If the data are dichotomous, the use of 
the dichotomous model of Rasch for psychological test construction is almost inevitable. The two- and 
three-parameter logistic models of Birnbaum and further models with additional parameters are not 
always identifiable. The linear logistic model is useful for the construction of item pools. For polyto-
mous graded response data, there are useful models (Samejima, 1969; Tutz, 1990; and again by Rasch, 
cf. Fischer, 1974, or Kubinger, 1989) which, however, are not specifically objective. The partial credit 
model (Masters, 1982) is not meaningful in a measurement theory sense. For polytomous nominal data, 
the multicategorical Rasch model is much too rarely applied. There are limited possibilities for locally 
dependent data. The mixed Rasch model is not a true Rasch model, but useful for model controls and 
heuristic purposes. The models for frequency data and continuous data are not discussed here. The 
nonparametric ISOP-models are "sample independent" (ordinally specifically objective) models for (up 
to 3 dependent) graded responses providing ordinal scales or interval scales for subject-, item- and 
response-scale-parameters. The true achievement of sample-independent Rasch models is an extraordi-
nary generalizeability of psychological assessment procedures. 
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1. Basic concepts  
 
Any kind of measurement requires comparison. There are no directly available observ-

able outcomes of the contact of the 'intelligences' of two subjects (or of the 'difficulties' of 
two items). We can only observe the reactions of subjects to items which do depend on both 
simultaneously. We need instruments to compare latent dimensions. The items are the in-
struments used for the comparison of subjects and vice versa. The difficulty in (psychologi-
cal) measurement is to achieve comparisons on a set of subjects (or a set of items) in regard 
to a specific latent dimension which do not depend on the choice of instruments used for the 
comparison.  

 
Definition: Let <A×Q, P> be a 'frame of reference' (Rasch, 1961) or a '(probabilistic) in-

strumental paired comparison system' (Irtel, 1987) where { }, , ,A a b c= …  is a set of subjects 

and { }, , ,Q x y z= …  is a set of items and ( ); , ,P t a x P T t a x⎡ ⎤= ≤⎣ ⎦  is a family of cumulative 

distribution functions (c.d.f.s) defined on the set { }, ', '',T t t t= … indexed by A Q× . 
 
Definition: An instrumental paired comparison system is a Rasch model if it is specifi-

cally objective, i.e. if there exist comparison functions on the sets A A×  and Q Q×  which 
do not depend on the parameters of the respective other set, i.e. 

 
( ),v a b  independent of { }, , ,x y z …   and 

( ),w x y  independent of { }, , ,a b c…  
 
Pseudo-Rasch models are models which call themselves Rasch models without being 

specifically objective. 
The present section defines the basic problem. The subsections of Section 2 are organ-

ized along the lines of Fischer's (1974) proof of the uniqueness of the specific objectivity of 
the dichotomous Rasch model among dichotomous models. Each assumption will be exam-
ined with respect to usefulness and necessity. Fischer's list of necessary and sufficient condi-
tions ensures that no important aspect is overlooked. Section 3 illustrates the true advantages 
of Rasch models for theory and practice. Section 4 presents nonparametric Rasch models 
together with an empirical application. The discussion in Section 5 summarizes the results. 

 
 

2. Dichotomous indicators 
 
Qualitative dichotomous observations are the most elementary outcomes of instrumental 

comparisons. Is Birnbaum's two-parameter logistic model (2PL) an improvement over the 
dichotomous Rasch model? The response function of Birnbaum's model is given by 
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x x α=∑  1,2, ,i k= … , for the item difficulty parameter). 

 
First, the sufficient statistic is not really a statistic because it depends on the unknown 

discrimination parameters iα . Second, if the item discrimination parameters iα are continu-
ous real numbers, then the probability that two discriminations are equal is zero: 

 
( ), 0 ,i j i jp i j a bα α α α= ≠ = < < . 

 
If k is a third item i j k≠ ≠  then the probability that two of the discriminations are equal 

or that a parameter is equal to the sum of the two others is zero; and so on for finite numbers 
k of items. Therefore, for 2k different response vectors there are 2k different sums and differ-
ent values of the subject parameter. A unique sufficient statistic corresponds to each re-
sponse vector and vice versa; the statistic is trivially sufficient. The probability of the only 
possible response vector given a marginal sum is 1. There are 2k-2 item parameters and 2k 
subject parameters in the model and 2k-1 degrees of freedom in the data. The parameters are 
not identified. To make them identifiable, additional assumptions must be added to the 
model, e.g. about the distribution of subject parameters in the marginal maximum likelihood 
method – which, however, is diametrically opposed to specific objectivity. The problem 
persists even if the discrimination parameters are assumed to be known. 

The three-parameter logistic model (3PL), with an additional guessing parameter, and 
further models (Fischer & Molenaar, 1995; van der Linden & Hambleton, 1997) with addi-
tional parameters – intended as improvements of the dichotomous Rasch model – make the 
models more flexible and may increase the descriptive power of the models but are not de-
sirable as measurement models. Psychometrics – the development of new measurement 
procedures for latent dimensions – is primarily a normative attempt and test constructors 
must try to develop procedures which satisfy strict, logically necessary, and sufficient meas-
urement structures. 

The linear logistic model (Scheiblechner, 1972; Fischer, 1973) is a true Rasch model; it 
presupposes the validity of the dichotomous model and postulates an additional regression 
on the item parameters. It is very useful for the construction of item universes or item pools 
(Hornke & Habon, 1986; Kubinger, 2003; Wilson & de Boeck, 2004; Kubinger, 2009). 

To summarize, if the data are dichotomous, the dichotomous Rasch model is almost in-
evitable for test construction. But do the data have to be dichotomous? 
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2.1 Polytomous rating data 
 
We now assume that the subject/observer is able to give graded responses on an ordinal 

scale (rating scale). There are meaningful polytomous graded response models such as the 
graded response model (GRM) by Samejima (1969) and the sequential model (SM) by Tutz 
(1990). 

 
Let ( )xψ  be the logistic function 
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These models are meaningful measurement models; the response variable j is used as an 

ordinal variable (unique except for positive monotone transformations). They are no Rasch 
models in the present sense, because they are not specifically objective, but they are applied 
unjustifiably rarely in view of the alternative models. 

The generalized partial credit model (GPCM) by Muraki (1992), with its special cases of 
the partial credit model (PCM) by Masters (1982) and rating scale model (RSM) by Andrich 
(1978) are as follows 

 
GPCM (Muraki, 1992): 
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(according Masters' model: 1iα = ; and according to Andrich's model ij iβ β= ) is not a 
meaningful measurement model. If the response variable j is an ordinal variable or nominal, 
as it should be for measurement, then the addition of a constant c > 0 (an admissible trans-
formation for an ordinal variable) adds a term icα ξ  in the exponent which cannot be com-
pensated by an additive constant of β  independently of ξ . Therefore the probability of j 
changes. A model which is not invariant under admissible transformations cannot be a mean-
ingful measurement model. If j is a rational scale (unique except for multiplication with a 
constant c > 0), then the expression is meaningful and might correctly describe the empirical 
distribution of some variable which can be measured on at least a rational scale level to 
begin with (in which case we need no measurement model). 

To sum up, there are no meaningful Rasch models for rating scale data (see also below), 
but there are models which are used nonsensically (GPCM) and there are other models 
which are unjustifiably neglected (GRM, SM). 

 
 

2.2 Unidimensionality 
 
The assumption is that the complete parameter space is unidimensional. 
The parameter space ξ  (intelligence, for example) is complete if the distribution of x 

given ξ  and arbitrary further variables y (sex, for example) is identical to the distribution of 
x given ξ  alone (then y does not contribute to the knowledge of x given ξ , and ξ  is suffi-
cient): 

 
( , ) ( )f x y f xξ ξ=  for arbitrary y 

 
(knowledge of the word 'hangar', given vocabulary of subjects, is not independent of sex; the 
vocabulary test is not unidimensional, because for example boys more often know 'hangar' 
and girls more often know 'lily'). 

Let us drop the assumption of unidimensionality for a moment and consider the polyto-
mous (multicategorical) multidimensional Rasch model with the response function: 
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with minimal sufficient statistics 
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This is a specifically objective model which is used much too rarely in practice. 

If the parameters ξ and σ are linear functions of unidimensional parameters, we get the 
unidimensional special case with response function 
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 ( )lφ  structure function 
 

and sufficient statistics : 
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vi

v i
x∑∑  for all l. 

 
According to Rasch, the scoring and the structure functions cannot be estimated specifi-

cally objectively, and therefore this is not a Rasch model in the present sense. We may not 
simply set ( ) ( )l l lϕ ψ= =  and ( )lφ = 0, and may not consider the sufficient statistic equal to 
the raw score (and thus get a "rating scale model"), because these values just constitute the 
measurement problem. 

Remark: I doubt whether there are true multimensional measurements in physics which 
are more than a collection of isotropic measurements (e.g. the three space coordinates). 
However, the perceived colour space may be an intrinsic multidimensional space. 

 
 

2.3 Continuity 
 
Rasch assumes that the item characteristic of the dichotomous model has the properties 

of a strictly increasing continuous c.d.f. 
 
( ) ( ) 0p x p x ifξ ε ξ ε+ > >  
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Then he assumes that the item characteristic is twice continuously differentiable or 

smooth.  
Remark: I doubt that there are continuous biological or psychological features (e.g. for 

the seemingly continuous skin complexion there are a finite number of alleles and discrete 
genes, and 'intelligence' may be the availability of discrete bits of information). 
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2.4 Local stochastic independence 
 

The responses are independent given parameters: 
 
( ) ( ),vi

i
p p x v i response vector=∏ …x x v,T , Τ …  { }1 2, , , kI I I…  Test. 

 
The d-aspect or d-dimensional ISOP models (presented below) allow for sets of 3d ≤  

locally dependent items. 
Jannarone (1986) allows for configural scoring (e.g. the response vectors [1,1,1], [1,0,2], 

[0,0,3], … may have different meaning in spite of the same raw score). 
The dynamic model of Kempf (1972) allows for temporal dependencies on the answers 

of the preceding response vector: 
 

1 2 1( 1 , , )vi v v vip x x x x −= …  logistic function of subject and item parameters and of previ-
ous answers. 

 
They are presumably applicable predominantly in uniformly repeated experimental situa-

tions. Their use in differential psychology models for "testlets", as used for reading compre-
hension, would be of interest. 

 
 

2.5 Specific objectivity 
 
Andersen (1973) and Fischer (1974) restricted specific objectivity to models with (mini-

mal) sufficient statistics and conditional inference. Irtel (1987) suggested ordinal specific 
objectivity. The core of specific objectivity is that the expectations of the estimates of the 
subject parameters do not depend on the sample of items involved in the estimation and vice 
versa (the variance of the estimates may depend on the sample). The formal technique (suffi-
cient statistics, conditional inference) of how this sample independence or to say "sample 
freeness" is achieved is considered less important in the following. 

 
Definition: An instrumental paired comparison system is called 'sample free' or 'sample 

independent' if the expectations of comparisons on A A×  do not depend on the elements 
selected from Q and the expectations of comparisons on Q Q×  do not depend on the ele-
ments selected from A.  

 
The mixed Rasch model of Rost (1996) is not a Rasch model in the present sense, be-

cause the existence of several subpopulations (or classes) of subjects with distinct item pa-
rameters is in diametric opposition to specific objectivity.  
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His computer program MIRA can still be used, first in order to statistically test whether a 
two-or-more-class model fits the data better than the Rasch model (model control) and sec-
ond in order to perhaps find two or more manifest subpopulations where different Rasch 
models apply (heuristic definition of populations). 

 
 

3. Advantages of Rasch models for theory and practice 
 
Traditional measures of validity and reliability are sample-dependent and not appropriate 

concepts to describe the quality of tests constructed by Rasch models. These tests are neither 
more nor less reliable or valid than traditional tests. The concept of statistical information 
outperforms by far the concept of these measures. The concept of a measurement structure 
makes the fundamental problems of psychological measurement much clearer than "(test 
theoretic) validity": What is a subject population? What is an item universe? What is a latent 
dimension? 

An example of an item universe is the set of logical assertions that can be formed by 
"and," "or," "not," "implies" and the like, and can be translated into a non-technical form 
suited for psychological presentation (e.g. a graphical form, Scheiblechner, 1972). A subject 
population is all beings (human or not) that use assertions for communication. A latent abil-
ity is the ability to correctly use this aspect of logic. All beings using assertions must neces-
sarily use this logic. Analphabetic nomadic children in Afghanistan as well as school chil-
dren in Afghanistan and in Germany could be tested using the same Rasch-model-fitting 
matrices test (cf. Stori, 1985). Turkish school children in Turkey or in Germany and German 
school children could be measured on the same scale (cf. Sümbül, 1978). The concept of 
sample independence allows for the assessment of much broader subject populations and 
item universes than the classical sample-dependent test criteria. This gain in the precision of 
concepts of latent dimensions and of generalizeability of psychological assessment proce-
dures is the true achievement of Rasch models. 

 
 

4. Nonparametric models (ISOP) 
 
I omit Rasch models for quantitative variables like the Poisson model for frequencies and 

exponential models for continuous variables and instead drop the assumptions of dichoto-
mous indicators, of continuity, and of exponential families and retain unidimensionality, 
isotonicity (monotonicity) and local independence to obtain the isotonic psychometric mod-
els (ISOP-models, Scheiblechner, 1995, 1999, 2007; Irtel & Schmalhofer, 1982). 

The axioms of the ordinal ISOP-models are: 
 
Definition. A probabilistic paired comparison system ,A Q< × F > , where F is a family 

of d-dimensional c.d.f.s indexed by ( )A Q× , is weakly instrumentally independently or-
dered, or a d-ISOP, if and only if the following axioms are satisfied: 

 
W1. if (.) (.)vi wiF F≺ for some i Q∈ , then 
 (.) (.)vj wjF F≺  for all j Q∈  
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 (weak subject independence). 
W2. if (.) (.)vi vjF F≺ for some v A∈ , then 

 (.) (.)wi wjF F≺  for all w A∈  

 (weak item independence). 
LI. The joint c.d.f. of responses of subject v to items i,j,k,… is given by: 
 Fv(x,y,z,…|i,j,k,…) = Fvi(x). Fvj(y) . Fvk(z)… 
 (local independence). 
(where (.) (.)F G≺  and (.) (.)F G≺ is strict and weak stochastic dominance of distribu-

tions) 
 
Theorem 1. A finite system ,A Q< × F> satisfies the axioms of a weakly instrumentally 

independently ordered system if and only if there exist real functions ,A Qϕ ϕ  such that for all 
,v w A∈  and all ,i j Q∈  

 
a. ( ) ( ) (.) (.)A A vi wiv w F Fϕ ϕ< ⇔ ≺  for some i and 
b. ( ) ( ) (.) (.)Q Q vi vji j F Fϕ ϕ< ⇔ ≺  for some v . 

,A Qϕ ϕ  are unique up to monotone increasing transformations. 
 
The scale Aϕ  is usually called subject parameter and often denoted by θ  or ξ  and the 

negative scale Qϕ  is called item parameter and often denoted by δ  or σ  in IRT. The scales 
are ordinal scales. 

A d-ISOP or d-aspect model allows for up to 3d ≤  ordinal reactions or ratings per item, 
e.g. the speed and the correctness of a reaction. Adjacent items may be locally dependent on 
each other. The optimal scoring function for a d-ISOP is no longer the raw score and the sum 
of raw scores but the (modified) percentile scores. They are defined for single items or for d-
dimensional response vectors as 

 

(modified) percentile scores = n n
n n
+ −

+ −

−
+

 

 
where n+  is the number of responses or response vectors which are inferior to (smaller than) 
the given response or vector and n−  is the number of superior responses. The modified per-
centile scores are maximum likelihood estimates of the ordinal positions of subjects or items 
and their order is sample independent. 

If interval scales for subjects and items are desired, then a further axiom (Co, cancella-
tion of order o) is needed. 

 
Definition. A d-ISOP is a d-ADISOP, a d component additive conjoint, isotonic, prob-

abilistic model, if and only if in addition to the axioms of d-ISOP the following axiom is 
satisfied (Scheiblechner, 1999): 
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(Co): validity of the additively implied inequalities on the c.d.f.s indexed by A Q×  
The order relations on the c.d.f.s, indexed by A Q×  implied by an additive representa-

tion of the response variables in all sets of 2 to o = { }min , 1n k −  stochastic dominance rela-
tions (antecedents), must be valid. 

(cancellation of order o = { }min , 1n k − ) 
 
If an interval scale for the rating response is desired, then the cancellation of the subject 

parameter and the rating scale and the cancellation of the item parameter and the rating scale 
is additionally needed.  

 
Definition. A d-ADISOP is a complete d-ADISOP or d-CADISOP if and only if (Co) is 

dropped in favour of (W4) and (RS): 
 
(W4): the probabilities of the d-dimensional c.d.f.s indexed by A Q× are isotonically or-

dered: 
if 1 2 1 2( , , , ) ( ', ', , ')vi d vi dF x x x F x x x≤… …  for some v and some i, 
then 1 2 1 2( , , , ) ( ', ', , ')wj d wj dF x x x F x x x≤… … for every w and j.  
 (weak instrumental variable independence) 
(RS): (restricted solvability) 
 
The usual scoring function by the raw score presupposes a very implausible special case 

of a d-CADISOP where all measurement units (across ratings, across items, across subjects 
resulting in the same raw score – e.g. the response vectors (1,1,1), (1,0,2), (0,0,3) - defined 
to correspond to the same interval scale value of the latent dimension) are assumed to be 
equal in addition to the above axioms. 

The ISOP-models were applied to the MR SOC test (sense of coherence; Scheiblechner 
& Lutz, 2009; n = 1156 subjects, 10 items of positive and 10 items of negative feelings). The 
weak independence axioms W1 and W2 could not be rejected (by generalized isotonic re-
gressions). The cancellation of order o, Co, of subjects and items is rejected by a heuristic 
likelihood ratio test but seems acceptable by a Schwarz-Bayes information criterion for 
model fit. The weak instrumental variable independence W4 is definitely rejected. The rating 
scale of the response (1 never, 2 rarely, 3 rather frequently, 4 frequently) interacts with the 
subject parameter; emotionally stable subjects use the frequency terms of emotional states 
differently than insecure subjects. The rating scale of the response also interacts with the 
item content. The frequencies of strong emotions are judged differently than the frequencies 
of more commonplace feelings. The usual raw score or simple sum score of test scoring is 
not acceptable. The modified percentile scores, however, give sample independent estimates 
of ordinal positions. 

This increasing degradation of models can be grasped by a sequence of conditional 
graphical model tests, where the fit of a higher model (an additional axiom) is plotted against 
the preceding weaker model. If the additional axiom is valid, the graph must be smooth and 
isotonically increasing. The ordinates of the graphs are estimated relative frequencies. The 
deviations of the W1W2Test in Figure 1 (model ISOP) are small compared to the random 
fluctuations of relative frequencies. The deviations of the CoTEST are more pronounced,  
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ISOP ADISOP 

  
 
CADISOP 

 
 

Figure 1:  
Graphical model controls. Tests of axioms conditional on the validity of the subordinate model. 
The ordinates are estimated relative frequencies showing the easiness of passing from a lower 
response category to the next. If the axioms are perfectly valid, all graphs should be smooth 

isotonically increasing functions. The ISOP graph tests W1 and W2. The ADISOP graph tests Co 
conditional on ISOP. The CADISOP graph tests W4 conditional on ADISOP 

 
 

especially at the left end (low) of the never/rarely step function and the right end (high) of 
the rather frequently/frequently step function (model ADISOP). The graph of the 
SR_IR_TEST has a disturbing gap at approximately 0.6 and a wide vertical spread of the 3 
step functions. The model CADISOP is definitely rejected. This rejects all parametric IRT 
models with additive subject and item parameters and the simple sum score of test evalua-
tion. 
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Figure 2 shows the item step response functions ISRF (threshold functions for passing 
frequency response categories) and the category characteristic curves CCC (probabilities of 
response categories) of the ISOP model for the total MR-SOC test of 20 items. They look 
similar to the corresponding curves of parametric models. 

 
 

ALL 20 ITEMS 

     
Figure 2: 

ISRFs, item step response functions (threshold functions between adjacent categories) and CCCs, 
category characteristic curves (probabilities of response categories as functions of the ordinal 

parameter of the subject-item pair) for the ISOP model 
 
 

5. Summary 
 

The following models have been discussed: 
 

The dichotomous logistic model of Rasch: 
the ideal prototype of a fully specifically objective model, measurement independent of 
instruments used (sample independent) 
 

2PL model: 
with item discrimination parameters; not identified (more free parameters than degrees of 
freedom in the data) 
 

3 PL and extensions: 
additional guessing parameter and further parameters; see Birnbaum 
 

LLTM: 
dichotomous Rasch model plus explanatory linear model for item parameters;  

 
GRM, SM: 

meaningful polytomous measurement models (rating scale as ordinal scale), not specifi-
cally objective 
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GPCM, PCM, RSM: 
not meaningful polytomous (rating scale) measurement models, distribution models for 
rating scale data 
 

Polytomous Rasch model: 
nominal model, multidimensional, fully specifically objective; unidimensional special 
cases not specifically objective 
 

Kempf, Jannarone dynamic models: 
(restricted) local dependencies admissible, experimental settings 
 

Mixed Rasch model: 
not a Rasch model, heuristic tool 
 

ISOP: 
non parametric, sample independent; ordinal, interval extensions 
 

Rasch has stimulated the production of many models which do not always conform to his 
postulates and whose applications are not by far fully explored. 
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