
Psychological Test and Assessment Modeling, Volume 59, 2017 (3), 359-371 

Optimal design of surveys and experiments 

Dieter Rasch1 & Jürgen Pilz2 

Abstract 

After a general discussion about designing experiments and surveys it is shown how the program 
package OPDOE can be used to determine minimal sample sizes for confidence estimation and 
hypotheses testing for means in the one- and two-sample problem. OPDOE is demonstrated by 
some examples. 
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1 Introduction 

The main tools of experimental research in sociology and psychology is the theory of 
surveys and experiments as parts of Mathematical Statistics. Mathematical Statistics 
developed on the fundament of Probability Theory from the end of 19th century on. At 
the beginning of the 20th century, Karl Pearson and Sir Ronald Aylmer Fisher were nota-
ble pioneers of this new discipline. Fisher’s book (1925) was a milestone providing 
experimenters such basic concepts as his well-known maximum likelihood method and 
analysis of variance as well as notions of sufficiency and efficiency. 

When we, in the sequel, speak about experiments, we understand this in the broader 
sense including also surveys – but see for the fundamental differences of experiments 
and surveys from the theory of science’ point of view for instance Rasch, Kubinger, and 
Yanagida (2011). In concrete applications, the experiment first has to be planned, and 
after the experiment is finished, the analysis has to be carried out. We deal in this paper 
with the pre-experimental phase, i.e. the optimal planning of an experiment. 

Experimental designs originated in the early years of the 20-th century mainly in agricul-
tural field experimentation. A centre was Rothamsted Experimental Station near London, 
where Sir Ronald Aylmer Fisher was head of the statistical department (since 1919).  
There he wrote one of the first books about statistical design of experiments (Fisher, 
1935); a book which was fundamental, and promoted statistical technique and applica-
tion. 

Everything presented in the following is, however, also very important and applicable in 
psychological research. The mathematical justification of the methods is not stressed, 
here, and proofs will be often barely sketched, rather omitted. Readers interested in this 
are referred to Rasch and Schott (2018). 

Fisher (1935) also outlined the problem of  “Lady tasting tea”, now a famous design of a 
statistical randomized experiment which uses Fisher's exact test and is the original expo-
sition of Fisher's notion of a null hypothesis. 

We refer in the following first to Fisher’s problem, that deals with soil fertility. Because 
soil fertility in fields varies enormously, a field is partitioned into so-called blocks (or 
strata in surveys) and each block subdivided into plots. It is expected that the soil within 
the blocks is relatively homogeneous so that the differences in the yield of the varieties 
planted at the plots of one block are suggested to be only due to the varieties but not due 
to soil differences. To ensure homogeneity of soil within blocks, the blocks must not be 
too large. On the other hand, the plots must be large enough so that harvesting (mainly 
with machines) is possible. Consequently, only a limited number of plots within the 
blocks is possible and only a limited number of varieties within the blocks can be tested. 
If all varieties can be tested in each block, we speak of a complete block design. The 
number of varieties is often larger than the number of plots in a block. Therefore incom-
plete block designs were developed, chiefly among them completely balanced incom-
plete block designs, ensuring that all yield differences of varieties can be estimated with 
equal variance using models of the analysis of variance.  How all this is applicable in 
psychological research is shown in Rasch, Kubinger, and Yanagida (2011 ). 
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The Experimental Designs originally developed in agriculture soon were used in medi-
cine, in psychology and in engineering or more general in all empirical sciences. Varie-
ties were generalized to treatments, and plots to experimental units. But even today the 
number v of treatments or the letter y (from yield) in the models of the analysis of vari-
ance recall us to the agricultural origin.  

Experimental designs are an important part in the planning (designing) of experiments. 
The main principles are (the three R-s):  

1. Replication,  
2. Randomisation  
3. Reduction of the influence of noisy factors (blocking, stratification). 

 

Statements in the empirical sciences can almost never be derived based on an experiment 
with only one measurement. As we often use the variance as a measure of variability of 
the observed character and then we need at least two observations (replications) to esti-
mate it (in statistics the term replication mainly means one measurement, thus two 
measurements are two replications and not one measurement and one replication). There-
fore, two replications are the lower bound for the number of replications. The sample 
size (the number of replications) has to be chosen.   

Initially we consider the situation where the nuisance factors are not known or not grasp-
able. In this case, we try to solve the problem by randomisation: this is here thought of as 
the unrestricted  random assignment of the experimental units to the treatments (not vice 
versa!). Randomisation  is also understood as the random selection of experimental units 
from a universe. Randomisation is used to keep the probability of some bias by some 
unknown nuisance factors as small as possible. That is, randomisation shall ensure that 
statistical models (as base for planning and analysing) are justified. We distinguish be-
tween pure and restricted forms of randomisation in experimental designs. 

At first, we assume that the experimental material is unstructured which means there is 
no blocking. This is the simplest case of an experimental design. If in an experimental, 
design exactly ni experimental units are randomly allocated to the i-th of v treatments 
(Σni = n) we call this a complete or unrestricted randomisation and we call the experi-
mental design a simple or a completely randomised experimental design. An experiment 
is always meant as the combination of an experimental design and some rule of randomi-
sation.  

Designing an experiment often needs some computational effort. Therefore we recom-
mend to use program packages. 

In Rasch, Herrendörfer, Bock, Victor, and Guiard  (2008) on more than 2000 pages 
procedures and methods for nearly all practical statistical problems are given, containing 
numerical examples with calculations done by SAS-programs (see for instance Dembe, 
Partridge, and  Geist (2011). 

In Rasch, Kubinger, and Yanagida (2011) it was demonstrated how the package IBM 
SPSS Statistics can be used for the analysis of experiments and survey, respectively, and 
the package OPDOE of   was used for designing them.  
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Rasch, Pilz, Verdooren, and Gebhardt (2011) described the theory of experimental de-
sign and the practical application using examples calculated with the package OPDOE 
implemented in . We describe this package in the next paragraph together with a short 
introduction to . 

2 The computer package OPDOE 

R is a free software environment for statistical computing and graphics. It compiles and 
runs on a wide variety of UNIX platforms, Windows and MacOS systems.  

The homepage of the “R Project for Statistical Computing” can be found at 

https://www.r-project.org 

The latest R-version (as of June 30, 2017) is R 3.4.1. A useful source for finding latest 
developments and packages as well as an archive of journal issues from the past describ-
ing basic packages and extensions is “The R Journal” at  

https://journal.r-project.org 

The Comprehensive R Archive Network (CRAN), which can be accessed from the above 
R homepage, is the host of many packages; one of them is OPDOE (Optimal Design of 
Experiments) which we describe in the sequel. To download R, we first have to choose 
our preferred CRAN mirror. An overview of CRAN mirrors can be obtained by access-
ing  

https://cran.r-project.org 

We recommend to use the URL  

https://cran.wu.ac.at  

located at the University of Business Administration Vienna. Vienna is still considered to 
be the “Capital of the Kingdom R”, because several active members and R developers 
from Vienna belong to the R core group. The base system and contributed packages of R 
can be downloaded from the above URL, Windows and Mac users most likely want one 
of these versions of R: 

– Download R for Linux 

– Download R for (Mac) OS X 

– Download R for Windows. 

 

For Linux, users should check with their Linux package management system in addition 
to the link to CRAN indicated above. 

After having R installed, you can load the OPDOE package directly from the task bar 
under the menu “Packages (Pakete in the German version)” by just clicking on “Install 
Packages (Installieren Pakete)”. A full overview of available (contributed) packages in R 
can be obtained by clicking on “Packages” and then on “Table of available packages, 
sorted by name”. 
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When installing OPDOE, the following depending packages are downloaded as well 
(automatically): “AlgDesign”, “gtools”, “gmp”, “mvtnorm”, “orthopolynom”, 
“crossdes”, “polynom”. Now, to start working with the R package OPDOE, simply type 
in  

library (OPDOE)  

after the prompt sign (“>”) at the command line interface (alternatively, you can also use 
a graphical user interface as provided by “R commander” or “R Studio”, respectively). 

Our point of view is that the size of an experiment (or of a survey) should be determined 
following precision requirements fixed in advance by the researcher. 

Let us assume the experimenter takes a random sample. An exact unrestricted random 
sample of size n (without replacement) is defined as a sample obtained by a unrestricted 
random sampling procedure, which is defined as a procedure where each element of the 
N elements of the universe has the same probability to become an element of the sample 

with the additional property that each of the 
N

n

 
 
 

 possible subsets has the same proba-

bility to become the sample.  

The base R function sample allows us to draw a random sample. For this, we assume 
that the elements of the universe are numbered from 1 to N and that we will randomly 
draw a sample of size n (here, we set N=49, n=6):  

> set.seed(123) 

> sample(49,6) 

[1] 15 38 20 41 43 3 

 

How OPDOE is used for sample size determination is shown in the following para-
graphs. Although we restrict its application field to the case of course OPDOE can de-
termine experimental sizes and optimal allocation as well for  Analysis of Variance, 
Regression Analysis, and Correlation, Multiple Decisions, and also for Sequential Exper-
imentation.  

If we like to determine the sample size before an experiment begins, we have to formu-
late the precision needed for the analysis. We call this the precision requirement of an 
experiment and it contains, apart from the risks of incorrect conclusions, always the 
effect size δ  as the difference of minimum which is of interest to be detected. 

3 Estimating and testing means of normal distributions – 
one sample problem 

In the present paper, we only discuss sample size determination via OPDOE but of 
course R also contains programs for a broad range of statistical analyses.  
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3.1 Confidence estimation 

In confidence estimation, we define a random region, which covers the expectation 
(mean) μ with probability 1-α. 

We only discuss the case that σ ² is unknown. Then the interval is – by writing t(f; P) for 
the P-quantile of the central t-distribution with f degrees of freedom – given by 

 [ t(n-1;1 ) ;  t(n 1;1 ) ]
2 2n n

y y
α α− − + − −s s

 (1)3 

Here y  is the sample mean, n is the sample size and s the sample standard deviation.  

 

The half-expected length of (1) is: 

 ( ) ( ) 2( 1;1 )
22( 1;1 )
12

1
2

n
t nE

E t n
nn n n

α
α σ

 Γ ⋅− −  
 = − − =
− Γ − 

 

s
H  (2), 

Γ(x) is the Gamma function 

Our precision requirement ( )E δ≤H leads to the approximate equation for n:   

 
2

2
2n t (n 1;1 )

2

α σ
δ

 
= − − 
 

 (3) 

We calculate the sample size needed to construct a two-sided confidence interval for α = 
0.05 and δ = 0.25σ.  Because n occurs on both sides of (3) a calculation by hand must be 
done iteratively. In the iteration we use 1 2, ,n n … for n  and stop when in  and 1in +  and 

this is just our n  

We find for n0 = ∞:  t (∞; 0.975) = 1.96, and from (2) we obtain 

 
2

1 2

1.96
61.47 62

0.25
n

 
= = =    
 

.  

Next we look up t(61; 0.975) = 1.9996, and this gives  

 
2

2 2

1.9996
63.97 64

0.25
n

 
= = =    
 

  

 

                                                                                                                         
3
 Random variables are bold print throughout this paper. 
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Finally with t(63; 0.975) = 1.9983 n3 becomes 

 
2

3 2

1.9983
63.89 64

0.25
n

 
= = =    
 

  

and thus n = 64 is the solution. The ceiling operator     accelerates the convergence of 

the iteration algorithm. OPDOE gives this result more easily: 

 

> size.t.test(power=0.5, alpha=0.01, delta=0.4, sigma=1, 
+type=”two-sample”) 
[1] 64 
 

In confidence estimation  we have no type II risk. But if we, in the R-program for testing, 
put for power 0.05 we can formally use the R-program for testing also for the confidence 
estimation. 

This can easily be seen if we compare (3) with the formula for the test (6). Because the t-
distribution is symmetric at 0, we have ( )1;1t n β− − =0 if  1 β−  = 0.5 and for this equa-

tions (3) and (6) for n are identical. 

3.2 Hypothesis testing 

A random sample y1, y2, ..., yn of size n will be drawn from a normally distributed popu-
lation with mean μ  and variance σ2, with the purpose of testing the null hypothesis: 

 H0 : μ  = μ 0 (μ 0 is a given constant) 

against one of the following alternative hypotheses: 

a) HA : μ  > μ 0 (one-sided alternative) 

b) HA : μ  < μ 0 (one-sided alternative) 

c) HA : μ  ≠  μ 0 (two-sided alternative 

 

The test statistic is 

 0  
 = n

μ−yt
s

 (4) 

which is non-central t-distributed with n –1 degrees of freedom (df) and non-centrality 
parameter 

 0  
= n

μ μλ
σ
−

.  

Under the null hypothesis, the distribution is central t. 
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Given a type I risk α, H0 is rejected if: 

in case a), t > t(n-1;1-α), 

in case b), t < -t(n-1;1-α), 

in case c),|t|> t(n-1;1-α/2). 

Our precision requirement is given by α and the type II risk β given μ-μ0 = δ. 

From this, we have the requirement 

 t(n-1;1-α/2) = t(n-1;λ;β) (5) 

where t(n-1;λ;β)  is the β-quantile of the non-central t- distribution with df = n – 1 and 
the non-centrality parameter is 

 n
δλ
σ

= .  

Using the approximation t(n-1;λ;β) = t(n-1, β) + λ leads to the approximate formula 

 ( )
2

 1;1 1;1
2

n t n t n
α σβ

δ

     ≈ − − + − −         
 (6) 

From the requirement (4), the minimum sample size is calculated iteratively from the 
solution of 

 ( 1;11 ) ( 1; ; )
2

t n t n n
α δ β

σ
− − = −  (7). 

Our R program always gives the exact solution based on (6). 

Let us calculate the minimal sample size for testing the null hypothesis: 

 H0 : μ  = μ 0   against   HA : μ  ≠  μ 0 (two-sided alternative). 

Assume for example the precision requirement is 0.8δ σ= , α = 0.05, and β = 0.01. In 
the OPDOE program we have to use power that is 1-β and sig.level that is α. 

Our R-program gives the solution n = 53. 

 

> size.t.test(power=0.99,delta =0.8, sd=1, sig.level=0.01, 
+alternative="two-sided”) 
[1] 53 
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4 Estimating and testing means of normal distributions – 
two sample problem 

4.1 Confidence estimation 

If in the two-sample case the two variances are equal, then usually a pooled estimator 

( ) ( )2 2
2

1 1

2

x x y y

x y

n n

n n

− + −
=

+ −

s s
s of the common variance 2σ  is calculated from the two sam-

ples ( )1 2, ,..., n xx xx  and ( )1 2, ,...,
yny yy  with sample means ;x y  and sample variances 

2 2;x yss . 

The two-sided confidence interval is: 

 2;1 ; 2;1
2 2

x y x y
x y x y

x y x y

n n n n
t n n t n n

n n n n

α α + +    − − + − − − + + − −   
     

x y s x y s  (8) 

In this case  it can be shown that optimal plans require the two sample sizes nx and ny to 
be equal. Thus nx = ny  = n, and in the case where the expected half-width must be less 
than δ, we find n iteratively from 

 ( ) ( )

22

2
22

2 1
2(2 2;1- ) 222

2 2 1

n
nt

n = 
n n

α

σ
δ

 − Γ−  
  

− Γ − 
  

 (9) 

We want to find the minimum size of an experiment to construct a two-sided 99% confi-
dence interval for the difference of the expectations of two normal distributions.  We 
assume equal variances and take independent samples from each population and define 
the precision by 0.4δ σ= . Again we use the program for tests which means that the 
power is 0.5. 

The R-program is as follows: 

 
> size.t.test(power=0.5, alpha=0.01, delta=0.4, sigma=1, 
+type=”two-sample”) 
[1] 55 
 
If one is not absolutely sure that the two variances are equal, one should use the confi-
dence interval for unequal variances described below, as it was recommended by Rasch, 
Kubinger, and Yanagida (2011).  
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For the analysis never use the confidence interval (8) but (10) which is based on the 
estimators 2

xs  and 2
ys  of 2

xσ and 2
yσ  respectively. The confidence interval (2.21) is only 

approximately a (1-α)-confidence interval (see Welch, 1947). It is given by  

 
2 22 2

*;1 ; *;1
2 2

y yx x

x y x y

t f t f
n n n n

α α     − − − + − + − +        

s ss s
x y x y   (10) 

with 

 

( ) ( )

222

44

2 21 1

yx

x y

yx

x x y y

ss

n n
f

ss

n n n n

∗

  
 +    =  
 + − −  

  (11) 

To determine the necessary sample sizes nx and ny, apart from an upper bound for the 
half expected width δ, we need information about the two variances. Suppose that esti-
mates 2

xs  and 2
ys  are available.  For a two-sided confidence interval, we can calculate nx 

and ny approximately and iteratively:  

 
( ) 2 *

2 ;1
2

x x y
xn t f

σ σ σ α
δ

 +   = −    
  (12) 

and 

 y
y x

x

n n
σ
σ
 

=  
 

  (13). 

Given the minimum size of an experiment, we like to find a two-sided 99% confidence 
interval for the difference of the expectations of two normal distributions with unequal 
variances using independent samples from each population and define the precision by 

0.4 xδ σ=  using (12) for xn . If we know that
2

2 4x

y

σ
σ

= , we receive 
1

2y xn n
 =   

. 

The R output shows that we need 33 observations – 22 from the first distribution and 11 
from the second distribution: 

 

> size.t.test(power=0.5, alpha=0.01, delta=0.4, sigma=1,  
+ sigmas.ratio=2, type=”two.sample”) 
[1] 22 11 

 

 



Optimal design of surveys and experiments 369

4.2 Hypothesis testing 

Let us now turn to hypothesis testing. 

We have two normally distributed populations with means µx, µy and variances 2
xσ , 2

yσ , 
respectively. Our purpose is to take two independent random samples (x11,…,x1nx) and 
(y21, ..., y2ny) of sizes nx and ny from the two populations in order to test the null hypothe-
sis  

 H0 : µx = µy 

against one of the following one- or two-sided alternative hypotheses 

a) HA : µx > µy 

b) HA : µx < µy 

c) HA : µx ≠  µy 

The sample sizes nx and ny should be determined in such a way that for a given type I 
risk α type II risk β does not exceed a predetermined upper bound delta as long as the  
alternative hypothesis holds; for the  case c) we have 

x yμ μ δ− ≥ . 

If in the two-sample case the two variances are equal, then usually a pooled estimator 

( ) ( )2 2
2

1 1

2

x x y y

x y

n n

n n

− + −
=

+ −

s s
s of the common variance 2σ  is calculated from the two sam-

ples ( )1 2, ,..., n xx xx  and ( )1 2, ,...,
yny yy  with sample means ;x y  and sample variances 

2 2;x yss . 

But we never know before experimentation whether the variances are equal or not. In the 
analysis we therefore have always to use the Welch test as  described in Rasch, 
Kubinger, and Yanagida (2011).   

 

For the minimum sample size we compute an integer solution iteratively from 

 0(2 2;1 ) (2 2; ; )t n P t n λ β− = −  (14) 

with P = 1- α in the one-sided cases and P = 1- α/2 in the two-sided case and 

2
x y nμ μ

λ
σ
−

= . 

Using the approximation t(n-1;λ;β) = t(n-1,β) + λ leads to the approximate formula 

( ) ( ){ }
2

 2 1; 1;1n t n P t n
σβ
δ

  ≈ − + − −     
 



D. Rasch & J. Pilz 370

We use here for σ the conjectured larger one of the two standard deviations, just in  order 
to be on the safe side. 

We like to know the minimal sample sizes x yn n n= =  to be drawn independently from 

two normal distributions for testing the null hypothesis given above. The  two-sided 
alternative hypothesis is of interest and  the precision requirements are δ = |μx- μy| = 
0.9σ; α = 0.05; β = 0.1. Our R-program shows the result n = 27: 

 
> size.t.test(power=0.9,delta=0.9,type="two.sample") 
[1] 27 

 
(Note that alpha=0.05 is the default value and need not be indicated extra).  

For the analysis the t –test always has to be replaced by the Welch test, the reason is 
given in Rasch, Kubinger, and Yanagida (2011). 

5 Discussion 

The paper shows by some simple cases how useful the program package OPDOE is 
when an experiment or a survey has to be planned.  But there are many other fields of 
experimentation as regression analysis  or analysis of variance and covariance and others 
where OPDOE is applicable. Those interested in further application of OPDOE may look 
at Rasch, Pilz, Verdooren, and Gebhardt (2011) as well as at Rasch, Kubinger, and Yan-
agida (2011). In multivariate analysis we determine the sample size for that character for 
which we expect the largest variance. 

Be aware that processing in another manner than planning an experiment or survey could 
mean that either much more effort is used than needed for a reasonable precision or the 
power of a test comes close to 0.5 so that it is much cheaper to abdicate any study but 
throw a die and accept the null hypothesis for even and reject it for odd numbers – or 
vice-versa. 
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