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Abstract 
We examine the extension of the invariance alignment (IA) method originally proposed by As-
parouhov and Muthén (2014). The generalized form of a loss function for the IA is discussed, and 
different forms of the loss function are evaluated using Monte Carlo studies and an empirical ex-
ample using European Social Survey Data. We compare results obtained by the Mplus software 
(Muthén & Muthén, 1998-2017) with the R package sirt (Robitzsch, 2019). It is shown that differ-
ent forms of loss functions that are implemented in the sirt package differ in their performance 
according to the recovery of group means. This suggests that the performance of IA heavily de-
pends on the form of the loss functions, type of the data (mostly sample size), and type of invari-
ance that could be encountered. The results show that the loss function proposed by Asparouhov 
and Muthén (2014) might not be optimal in all situations. 
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Introduction 

In recent years, the concept of approximate measurement invariance (AMI) gained con-
siderable attention from statisticians and aroused high expectations among the applied 
researchers working with data from many populations (see, e.g., Cieciuch, Davidov, & 
Schmidt, 2018; Munck 2018; Byrne & van de Vijver, 2017). The AMI postulates that the 
estimation of reliable and comparable parameters for the groups in multiple group mod-
els is possible despite the fact that there exist small “natural” differences between item 
parameters from different groups or a few completely non-invariant item parameters.  
One of the proposed methods to handle AMI was invariance alignment (IA) introduced 
for confirmatory factor models (CFA) by Asparouhov and Muthén (2014) and subse-
quently for item response theory (IRT) models (Muthén & Asparouhov, 2014). This 
procedure replaces the requirement of cross-country equality constraints of parameters 
by the alignment procedure that minimizes the amount of non-invariance using a particu-
lar simplicity function for the identification of the multiple group model. The IA proce-
dure estimates a solution that minimizes overall differences between group-specific 
parameters using a loss function that is optimized at a few large non-invariant item pa-
rameters and many approximately invariant item parameters.  
The IA method is available both in the commercial Mplus statistical software (Muthén & 
Muthén, 1998-2017) and open-source software environment of R (R Core Team, 2019) 
through the sirt package (Robitzsch, 2019). The advantages of the approach lay in the 
flexibility of handling various data constellations and very large datasets and the fact that 
it is computationally not very demanding (compared to alternative AMI methods like 
Bayesian structural equation modeling or multilevel modeling).  
The main aim of this article is to discuss the generalized form of the loss function for IA 
proposed by Robitzsch (2019) and evaluate different forms of the generalized loss func-
tion under different types of non-invariance situations using a Monte Carlo study and an 
empirical example.  

Invariance alignment 

Asparouhov and Muthén (2014) describe the IA approach as a procedure that aligns item 
parameters from group-specific configural CFA or IRT models (Muthén & Asparouhov, 
2014) into a most optimal invariance pattern that allows estimating group-specific factor 
means and variances without requiring exact measurement invariance. In this article, for 
simplicity, we will focus on CFA models, although our results might be easily translated 
into the IRT framework (see Muthén & Asparouhov, 2014).  
The starting point is a multiple group CFA model:  

   ipg ig ig pg ipgy      ,  2N ,pg g g    ,   (1) 
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where i = 1,…,I denotes the item index, p the person index and g = 1,…,G the group 
index, ipgy  is a response to the item, ig  and ig  are the item parameters, factor inter-

cept, and loading respectively, ipg  is a normally distributed residual variable with 

 2N 0,ipg ig , pg  is the latent factor variable and it is assumed to be normally dis-

tributed in each group. Note that this multiple group CFA model is not identified because 
not all item loadings and item intercepts can be simultaneously estimated along with 
group means  1, ,   G α  and standard deviations  1, ,  G ψ  . The IA proce-
dure solves the identification issue by determining α  and ψ  in such a way that the 
amount of measurement non-invariance is minimized. This is achieved by utilizing an 
appropriate alignment function, which optimally aligns group-specific item parameters. 
The alignment procedure consists of two steps. In the first step, configural measurement 
models are estimated for each group. Those models might be CFA models for continuous 
indicators or IRT models for categorical indicators. The configural model for each group 
is identified by setting the mean to zero and the standard deviations to one while all item 
parameters are estimated freely in each group. This results in group-wise estimated item 
loadings ,0

ˆ  ig  and item intercepts ,0îg . For each group, the CFA model defined in 
Equation 1 can be equivalently written as 

 
,0,0

*



   


igig

ipg ig ig g ig g pg ipgy


        ,   * N 0,1pg  ,   (2) 

In Equation 2, it can be seen that the estimated item parameters ,0 ,0( , )ig ig   are functions 

of the group-specific parameters ( , )ig ig  , group means g  and standard deviations g . 

In the second step, the alignment algorithm determines aligned means α  and standard 
deviations ψ  by minimizing an alignment optimization function F. More specifically, 

the alignment function F minimizes deviations ,0 ,0  ig ih
ig ih

g h
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, and is defined as4,5: 

                                                                                                                         
4 It should be noted that 𝜶 and 𝝍 can be estimated by only using estimated intercepts 𝝂ො , i.e., by only 
considering the second term 𝑓ఔ in Equation 3. However, in a preliminary simulation it turned out that this 
approach is less efficient than the approach using both terms, 𝑓ఒ and 𝑓ఔ. 
5 The optimization function in Equation 3 can be rewritten as two optimization problems that involve 
only the 𝑓ఒ and 𝑓ఔ terms, respectively. To this end, reparameterized parameters ሺ𝜶, 𝝍ሻ are defined, where 
𝛼 ൌ 𝛼/𝜓. The optimization of 𝐹ሺ𝜶, 𝝍ሻ can then be independently conducted for 𝜶 and 𝝍. 
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where f  and f  are loss functions for item slopes and intercepts, respectively. The 

weights ighw  are often chosen as  igh g hw N N (Asparouhov & Muthén, 2014; but see 

also Mansolf et al., 2020, for using different weights) to take uncertainty in item parame-
ter estimates into account. However, it is also plausible to choose equal weights so that 
all groups contribute equally in the alignment optimization. For identification reasons, 

the product of standard deviations of all groups is set to one (i.e., 
1

1



G

g
g
 ) and the 

mean g  of the first group is set to zero (or the average of group means is set to zero, 

i.e., 
1

0



G

g
g
 ). Therefore, IA penalizes differences in item intercepts and item slopes 

between groups and, hence, minimizes the extent of measurement non-invariance. Given 
estimates of group means g  and standard deviations g , aligned item 

ters îg  and îg  can be calculated as: 
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Muthén and Asparouhov (2014) proposed the same loss function for slopes and inter-
cepts: 

     1/2  f x f x x x    

The loss functions can be generalized to be different for slopes and intercepts 

    pf x x 
    and      pf x x 

 , (4) 

where powers pλ and pν are nonnegative and define the shape of the loss function. This 
general form of the loss function was introduced in the R package sirt (Robitzsch, 2019). 
The default loss function used by Muthén and Asparouhov (2014) and implemented in 
the Mplus software (Muthén & Muthén, 1998-2017) is obtained with pλ = pν = 0.5, but 
optionally allows for the power value pλ = pν = 0.25. Note that the power values pλ and pν 
govern the amount of admitted non-invariant item parameters in the alignment optimiza-
tion. For low values of p like p = 0.1 or p = 0.5, the alignment function is optimized at a 
few large non-invariant item parameters and many approximately invariant parameters. 
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Hence, it mimics a situation of estimating a CFA model assuming partial invariant item 
parameters. In the limiting case of p = 06, the number of non-invariant item parameters is 
minimized (see Oelker, Pößnecker, & Tutz, 2015). A power of p = 2 corresponds to a 
least-squares estimation in which all parameter deviations equally contribute to the esti-
mation of aligned means and standard deviations. Therefore, it will be more suitable for 
IA without large biases7 and should provide results similar to the Bayesian structural 
equation modeling (BSEM) approach for invariance modeling (Muthén & Asparouhov, 
2013). 

Relationship of invariance alignment to IRT linking approaches 

It is worth to mention that the ideas behind IA are not a completely novel contribution to 
the literature. The idea that a linear transformation of the ability scale could be used to 
link a number of test administrations (groups) using differences between item parameters 
from a measurement model (i.e., an item response model) has been established in the 
literature of linking or equating (Kolen & Brennan, 2014). Several methods were devel-
oped to estimate transformation parameters: the mean-sigma method (Marco, 1977), the 
mean-mean method (Loyd & Hoover, 1980), the Haebara (1980), and the Stocking-Lord 
(Stocking & Lord, 1983) approach. These approaches use the same principles of aligning 
item parameters for scale transformation, although they were originally designed for two 
groups only. Generalizations to multiple groups for linking scales were proposed (Arai & 
Mayekawa, 2011; Battauz, 2017; Haberman, 2009), which closely relate linking methods 
to IA.  
Haberman linking (HL; Haberman, 2009) is a linking approach based on item loadings 
and item difficulties from multiple groups, which are obtained from separate calibrations. 
Based on these item parameters, HL is conducted in two steps. In the first step, item 
loadings are aligned, and in the second step, item difficulties are aligned. In each step, 
linear regression with estimated item parameters as the dependent variable is used to 
calculate joint item parameters referring to all groups (loadings or intercepts) and distri-
bution parameters (means and standard deviations). The linear regression is estimated by 
ordinary least squares. As highlighted by researcher Matthias von Davier, Haberman 
linking is very similar to the IA approach (mentioned in Avvisati, Le Donné, & Pac-
cagnella, 2019). The IA approach appears to be closest to IA in the case of p = 2, which 
corresponds to least squares estimation. However, both approaches make different as-
sumptions about the residual effects (i.e., the differences in group-specific item parame-
ters). For linking item loadings, IA with p = 2 minimizes discrepancies of the form 

                                                                                                                         
6 By defining 0 ൌ 0. 
7 The definition of what is a large bias would always be somehow arbitrary and depends on the context. 
In this study, we are defining an intercept which is greater or equal to 0.3 as large bias.  
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ed standard deviations  1,ˆ ˆ ˆ,  G ψ  from the first step. Due to these different optimi-
zation functions, slightly different behavior in the performance of HL and IA approaches 
can be expected, but such an investigation is left to future research. 

Estimation 

The loss functions     
pf x f x x   are not differentiable, but are replaced in the 

estimation by differentiable approximating functions     / 22 
p

Df x x   with a 

small ε > 0 (e.g., ε = .01)10. Because the function Df  is differentiable, quasi-Newton 
minimization approaches can be used that are implemented in standard optimizers in R 
(R Core Team, 2019). In our experience, in the case of small ε values, the optimization 
of the alignment function is very sensitive to starting values (see also Asparouhov & 
Muthén, 2014). Therefore, the implementation in the sirt (Robitzsch, 2019) package 
specifies a sequence of decreasing values of ε in the optimization, each ε using the previ-
ous solution as initial values (see Battauz, 2019, for a similar approach).  
 
 
 

                                                                                                                         
8 Haberman (2009) decomposed logarithmized item loadings into common item loadings and group 
standard deviations in a linear model. By considering differences of logarithms of item loadings, common 
item loadings can be removed from estimation. This approach is used subsequently to illustrate the rela-
tionship of IA and HL.  
9 For linking item difficulties in the HL approach, the group-specific item difficulties െ�̂�/𝜆መ are de-
composed into common item difficulties and group means in a linear regression. Again, by considering 
differences of item difficulties, common item difficulties can be removed from estimation. 
10 An anonymous reviewer pointed out that Mplus uses ε = .01. 
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An illustrative example with different values of the power p 

In order to illustrate the choice of different values of the power p in the alignment opti-
mization, we consider a fictional example (see Table 1) consisting of six items and two 
groups. We only focus on the alignment of intercepts to show the general idea. It is as-
sumed that the two groups do not differ in their mean. Hence, invariance alignment 
should recover this true mean difference of zero. The first four items do not differ in item 
intercepts between the two groups. However, items I5 and I6 have non-invariant item 
parameters where these items favor the second group. 
 

Table 1: 
Estimated Item Intercepts in Two Groups 

Item Group 1 Group 2 Diff. 
I1 −1.5 −1.5 0 
I2 −0.5 −0.5 0 
I3 0.5 0.5 0 
I4 1.5 1.5 0 
I5 0.0 1.0 1 
I6 1.0 2.0 1 

Note: Diff. = difference between item intercepts 
 

 

 
Figure 1: 

Alignment Optimization Function as a Function of the Group Mean Difference  for 
Different Powers for the Illustrative Dataset 
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It is interesting to compare the performance of invariance alignment for different powers 
(p = 0.1, 0.5, 1, and 2) in this dataset. Figure 1 shows for the different powers p the 
alignment optimization function F as a function of the group mean difference . With 
p = 2, a biased mean difference of  = .33 is obtained because all differences between 
item intercepts contribute equally to the estimation of the group means difference. How-
ever, in the case of p = 1, the sum of absolute deviations is minimized, which results in 
the median difference of  = 0 and an unbiased estimate of the group mean difference. 
The alignment estimate for p = 0.1 and p = 0.5 is also unbiased. However, as displayed 
in Figure 1, this toy dataset also shows that for powers smaller than 1, one additional 
local minimum at  = 1 occurs. Thus, for small power values (i.e., p < 1), estimation 
issues might more frequently occur. However, the probability of estimating the global 
minimum instead of a local minimum can be substantially increased by using multiple 
starting values in the optimization as implemented in Mplus. 

Monte Carlo simulation study 

Previous research 

Up-to-date, only a few studies investigated the performance of IA. Asparouhov and 
Muthén (2014) provided a small scale simulation using 5-item scale varying the sample 
size (100 or 1,000 per group), the number of groups (2, 3, 15 or 60), and the extent of 
non-invariance (0%, 10%, 20% of non-invariant items). AMI situations were not tested, 
but under the partial invariance conditions, the recovery of latent group means was very 
good even with 20% of non-invariant items. These results were confirmed by Flake and 
McCoach (2017), who used a two-factor model with 7 items per factor. Additionally, 
Marsh et al. (2018) showed that latent group means were more accurately estimated with 
alignment than with the scalar CFA-MI, and partial invariance models. Muthén and 
Asparouhov (2018) recommended alignment in a variety of situations, even with a small 
number of items. They concluded that the alignment procedure could be used with a 
small number of groups (even with two groups), but rather large sample sizes should be 
used. Moreover, according to their recommendations, IA is suitable only for partial in-
variance patterns, i.e., the majority of the parameters are invariant and a minority of the 
parameters non-invariant.  
Pokropek, Davidov, and Schmidt (2019) tested different measurement invariance situa-
tions (including AMI) using 3-, 4- and 5-items scales, 24 groups, and 1000 observations. 
In general, they confirmed the excellent performance of IA under partial non-invariance. 
However, the performance of the IA under the AMI situation was not substantially supe-
rior to a simple scalar CFA model that just ignores the non-invariance problem. Similar-
ly, the combination of AMI and partial invariance leads to conditions in which precise 
recovery of latent group parameters is very problematic.  
Some additional studies investigated the detection of non-invariant items by using the IA 
in Mplus (DeMars, 2020; Finch, 2016; Kim et al., 2017) and showed both acceptable 
type I error rates and power rates. However, the present article focuses on the estimation 
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of group mean differences under IA and will not address the detection of non-invariant 
items.  
Overall, previous simulation research was restricted to a limited number of conditions. 
Mostly, short scales were tested, and partial non-invariance was of primary interest. 
Moreover, all of the previous studies were examining only the loss function originally 
proposed by Muthén and Asparouhov (2014). The present simulation study provides a 
more comprehensive evaluation of the performance of the IA approach using different 
forms of the loss function.  

Design of simulation 

We focus on three basic and most common situations in social sciences: a small (Study 
1), a medium (Study 2), and a large (Study 3) number of groups. Study 1 focuses on two 
groups and sample sizes from 100 to 1000 persons per group. This scenario would mimic 
small-scale psychological studies, field trial studies, but also a situation where measure-
ment invariance is tested in a two-group case (like gender) in a large national representa-
tive sample. Monte Carlo simulation studies that investigate the performance of IA with 
two groups were conducted by Asparouhov and Muthén (2014), DeMars (2020), and 
Finch (2016). In this article, however, we extend the settings and test IA with different 
specifications. Study 2 focuses on 4 groups and sample sizes from 100 to 2000 per 
group. This situation might reflect a large-scale national study in which 4 groups are  
 

Table 2: 
Design of simulation study 

Study Questionnaire (5 items) Test (20 items) 
Study 1 
(2 groups; 
sample size 
100 to 1000 
per group) 

2 N-I items in 1 group: 
1) Size of N-I (0, 0.3, 0.6, 0.9); 
2) Approximate (0.001, 0.005, 0.010, 
0.05) * N-I items (0, 0.6) 

8 N-I items in 1 group: 
1) Size of N-I (0, 0.3, 0.6, 0.9); 
2) Approximate (0.001, 0.005, 0.010, 
0.05) * N-I items (0, 0.6) 

Study 2 
(4 groups; 
sample size 
per group: 
100, 200, 500, 
1000, 2000) 

2 N-I items in each of 2 groups: 
1) Bias of N-I items (0, 0.3, 0.6, 0.9); 
2) Approximate (0.001, 0.005, 0.010, 
0.05) * N-I items (0, 0.6) 

8 N-I items in each of 2 groups: 
1) Size of N-I (0, 0.3, 0.6, 0.9); 
2) Approximate (0.001, 0.005, 0.010, 
0.05) * N-I items (0, 0.6) 

Study 3 
(25 groups; 
sample size 
1000 per 
group) 

2 N-I items in each of 0, 5, 15 of 
groups 
1) Size of N-I (0, 0.3, 0.6, 0.9); 
2) Approximate (0.001, 0.005, 0.010, 
0.05) * N-I items (0, 0.6)  

8 N-I items in each of 0, 5, 15 of 
groups 
1) Size of N-I (0, 0.3, 0.6, 0.9); 
2) Approximate (0.001, 0.005, 0.010, 
0.05) * N-I items (0, 0.6)  

Note: N-I Non-Invariant 
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compared, a field trial of a larger international study or an evaluation that wants to com-
pare a limited number of countries. Study 3 mimics large scale international surveys like 
the European Social Survey (ESS), the World Values Survey (WVS), or large-scale 
assessments like the Programme for the International Assessment of Adult Competencies 
(PIAAC) or the Programme for International Student Assessment (PISA) with 25 groups 
and sample sizes larger than 1000.  
In each situation, we investigate two lengths of the scales: 5 items and 20 items. The 
scale with 5 items reflects a typical questionnaire scale (e.g., Math anxiety, Cultural 
possessions at home index, Enjoyment of science index in PISA; Advanced Reading at 
home, Advanced Reading at work in PIAAC or Schwartz’s Human Values that are usu-
ally measured by 4 to 6 items). The scale with 20 items reflects a psychological or cogni-
tive test.  
An overview of the simulation designs is presented in Table 2. In all scenarios, we lim-
ited the number of non-invariant items to 40%. In Study 1 and in Study 2, half of the 
groups were affected by non-invariant items, while in Study 3, the number of countries 
that were affected by non-invariant items varied depending on the scenario.  

Data generating procedures and analysis 

In all conditions, data were generated using the same procedure. The true means for the 
groups were assigned as a sequence of equally spaced values between −1 and 1. The SDs 
for the groups were generated in a similar manner but with a minimum value of 0.8 and a 
maximum of 1.2. The means and SDs were matched randomly for each group.  
For simplicity, we consider a situation in which all slopes ( )  were set to 1. The inter-
cept parameters ( ) were generated using the same rule as it was used for the group 
means and were assigned as a sequence of equally spaced values between −1 and 1. The 
values of the item parameters were initially set to be equal across groups. Then, depend-
ing on the scenario, different invariance situations were generated. For the typical non-
invariant N-I situation, biases were assigned to successive even groups starting from the 
second group. The direction of the bias was generated in such a way that it has the same 
sign in the group, while on average, it tends to be balanced between groups. For instance, 
in the 4-group scenario with 5 items, the first group has no biased items, the second has 
only positive biases, the third has no biased items, and the fourth group has only negative 
biases. 

Approximate non-invariance was implemented by adding random values generated from 
a standard normal distribution with mean zero and variance defined by the level of ap-
proximate invariance of differences between item parameters. In other words, for achiev-
ing approximate non-invariance of item parameters that would be characterized by the 
expected variance of the differences between parameters of 0.05, random biases for all 
item parameters were sampled from a standard normal distribution with mean zero and 
variance of 0.025.  
In each scenario, 400 replications were generated. Once the data were generated, six 
models were estimated for each generated dataset: the scalar CFA invariance model in 



An extension of the invariance alignment method for scale linking 315

which all item parameters were fixed to be the same among groups, and five CFA invari-
ance alignment models, two models with a power of p = 0.5 that were specified in Mplus 
and sirt, and three alignment models with p = 0.1, p = 1, and p = 2 that were all specified 
in sirt. 
One should notice that in some settings, the estimating models are not fully correspond-
ing with the true generating models. This choice was made on purpose because we be-
lieve that it is useful to assess how models perform in different settings and to check the 
robustness of the findings for different data scenarios. This strategy was also applied in 
numerous simulation studies for checking the behavior of different models that do not 
match the true population model (see Nylund-Gibson & Masyn, 2016; Muthén & 
Kaplan, 1985; Muthén & Asparouhov, 2008; Rhemtulla, Brosseau-Liard, & Savalei, 
2012, for some examples). 

Performance measures 

For each model, we investigated the average absolute bias and accuracy of the estimated 
latent group means. The average absolute bias reports the average absolute differences 
between an estimated mean by a particular method and a true group mean used to gener-
ate the data: 

  
1 1

1 1  ˆ ,ˆ  
 

  
G R

gr g
g r

Bias
G R

 θ   

where R is the total number of replications, G is the number of groups, and ˆ
gr  is the 

group mean estimate of group g in the rth replication. 

Accuracy is a combination of bias and variability that quantifies the overall performance 
of an estimator. The more biased and the less precise an estimator is, the worse is its 
accuracy. In this study, we use the average root mean square error (RMSE) for assessing 
accuracy: 

    2

1 1

1 1  ˆ ˆ
 

 
  

 
 
G R

gr g
g r

RMSE
G R

 θ   

Results 

Study 1 

Questionnaire case (5 items) 

In Figure 2, absolute bias (left panel), and accuracy measured by RMSE (right) are pre-
sented. This condition reflects the situation of a small study with two groups, each with 
100 respondents, and a short 5-item scale. In this scenario, two items are non-invariant in 
each group, and the figure displays results with different sizes of DIF. Both absolute bias 
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and RMSE increase substantially with a higher bias of the non-invariant items. However, 
the most crucial observation is that all alignment models perform worse than the scalar 
model that simply ignores the problem of non-invariance. The quality of mean recovery 
is related to the number of estimated parameters (the scalar model is estimating with 
fewer parameters), and this might cause the better performance of the scalar model in the 
presented situations. 
Figure 3 shows that conditions with a small sample size are problematic, resulting in a 
less accurate recovery of group means. It is evident that a sample size of 100 is too small 
to produce reliable estimates in the alignment approach. There is a high increase of accu- 
 
 

 
Figure 2: 

 Results of a simulation study for small scale study reflecting questionnaire scale (5 items; 
100 individuals per group; 2 groups). Condition: size of DIF (two non-invariant items for one 

group) 

 

 
Figure 3: 

Results of a simulation study for small scale study reflecting questionnaire scale (5 items; 2 
groups, two non-invariant items in one group with bias=0.6). Condition: size of the group. 
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racy in the IA approach when the sample size is increased to 200, but only with the sam-
ple size of 500, both RMSE and absolute bias of alignment procedure (with powers 0.1, 
0.5 and 1) are substantially lower than the RMSE and absolute bias of the scalar model. 
In the scenario with a majority of invariant items and a minority of non-invariant items, a 
power of p = 0.1 is most effective, produces smaller absolute bias and RMSE, although 
the results of models with the power of p = 0.5 are very close to it. A power of p = 1 
gives an only slightly worse recovery of the group means. However, IA that uses a power 
of p = 2 in the loss function gives much worse results even compared to the scalar model. 
In Table 3, we present results of a simulation where approximate invariance or approxi-
mate non-invariance (AN-I) was applied to all items. The following factors were varied: 
three sample sizes of one group, 100, 500, and 1000, as well as four sizes of AN-I. 0.001, 
0.005, 0.010, and 0.050. Similar to the results presented in Figure 2 and Figure 3, results 
in Table 3 indicate that the sample size of 100 is too small for the IA approach to beat the 
results of the scalar model. With higher sample sizes, the results of the IA approach  
 

Table 3: 
 Bias and RMSE for a scenario with 5 items, two groups. Different levels of approximate non-
invariance (AN-I). No N-I items with large biases. Smallest average absolute bias and RMSE 

for each condition were bolded. 

Average Absolute Bias RMSE 
Sample 
size 

Model Size of AN-I (dif. variance): Size of AN-I (dif. variance): 
0.001 0.005 0.010 0.050 0.001 0.005 0.010 0.050 

100 scalar model 0.002 0.004 0.005 0.008 0.041 0.041 0.039 0.048 
sirt p = 0.1  0.022 0.020 0.020 0.025 0.072 0.071 0.067 0.078 
Mplus p = 0.5  0.008 0.011 0.009 0.017 0.062 0.069 0.063 0.074 

 sirt p = 0.5  0.022 0.019 0.019 0.022 0.069 0.068 0.063 0.074 
sirt p = 1  0.020 0.017 0.016 0.019 0.056 0.055 0.052 0.062 
sirt p = 2  0.017 0.015 0.013 0.015 0.046 0.048 0.042 0.051 

500 scalar model 0.001 0.000 0.002 0.007 0.019 0.020 0.021 0.030 
sirt p = 0.1  0.004 0.003 0.002 0.004 0.025 0.026 0.027 0.041 
Mplus p = 0.5  0.003 0.003 0.002 0.002 0.023 0.025 0.025 0.038 

 sirt p = 0.5  0.004 0.003 0.002 0.003 0.024 0.025 0.025 0.038 
sirt p = 1  0.004 0.004 0.002 0.002 0.021 0.023 0.022 0.033 
sirt p = 2  0.004 0.004 0.002 0.002 0.020 0.021 0.021 0.030 

1000 scalar model 0.000 0.001 0.002 0.005 0.013 0.015 0.017 0.029 
sirt p = 0.1  0.000 0.002 0.000 0.002 0.016 0.020 0.022 0.038 
Mplus p = 0.5  0.000 0.002 0.000 0.002 0.015 0.018 0.021 0.036 

 sirt p = 0.5  0.000 0.002 0.000 0.002 0.015 0.018 0.020 0.036 
sirt p = 1  0.001 0.002 0.001 0.002 0.014 0.017 0.019 0.033 
sirt p = 2  0.001 0.001 0.001 0.002 0.013 0.015 0.017 0.030 
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significantly improved but are still not as good as the results of the scalar model. The IA 
approach that comes closest to the scalar model in terms of accuracy is the alignment 
procedure with a power of 2.  
Table 4 shows results where AN-I is crossed with large biases in two items. Not surpris-
ingly, for a sample size of 100, the scalar model outperformed all IA approaches. For 
higher sample sizes, and size of AN-I of at most 0.01, the lowest absolute bias and 
RMSE were produced by the IA approach with p = 0.1. Both Mplus and sirt provided 
similar results for p = 0.5 with a slight advantage of sirt. Interestingly, for a high level on 
AN-I (i.e., 0.05), the results of the scalar model remain most accurate.  
 
 

Table 4: 
Bias and RMSE for a scenario with 5 items, two groups. Two N-I items in one group with 

bias 0.6 Different level of approximate non-invariance (AN-I). Smallest average absolute bias 
and RMSE for each condition were bolded. 

Average Absolute Bias RMSE 
Sample 
size 

Model Size of AN-I (dif. variance): Size of AN-I (dif. variance): 
0.001 0.005 0.010 0.050 0.001 0.005 0.010 0.050 

100 scalar model 0.054 0.048 0.049 0.042 0.071 0.067 0.069 0.069 
sirt p = 0.1  0.095 0.091 0.098 0.101 0.132 0.131 0.143 0.166 

 Mplus p = 0.5  0.087 0.083 0.089 0.085 0.120 0.119 0.130 0.133 
sirt p = 0.5  0.093 0.089 0.098 0.099 0.128 0.123 0.141 0.159 
sirt p = 1  0.089 0.086 0.093 0.095 0.112 0.111 0.128 0.148 
sirt p = 2  0.090 0.086 0.093 0.092 0.104 0.100 0.122 0.126 

500 scalar model 0.053 0.050 0.052 0.048 0.057 0.054 0.058 0.061 
sirt p = 0.1  0.030 0.033 0.042 0.057 0.049 0.052 0.064 0.086 

 Mplus p = 0.5  0.035 0.036 0.045 0.059 0.051 0.052 0.063 0.084 
sirt p = 0.5  0.034 0.036 0.045 0.059 0.050 0.051 0.061 0.083 
sirt p = 1  0.043 0.043 0.051 0.062 0.052 0.053 0.062 0.081 
sirt p = 2  0.074 0.071 0.074 0.076 0.077 0.074 0.078 0.085 

1000 scalar model 0.052 0.052 0.051 0.046 0.055 0.055 0.055 0.058 
sirt p = 0.1  0.016 0.023 0.029 0.054 0.031 0.039 0.046 0.084 

 Mplus p = 0.5  0.022 0.029 0.034 0.056 0.033 0.040 0.047 0.081 
sirt p = 0.5  0.022 0.029 0.033 0.055 0.032 0.040 0.046 0.078 
sirt p = 1  0.032 0.038 0.042 0.058 0.039 0.045 0.050 0.077 
sirt p = 2  0.071 0.071 0.071 0.074 0.073 0.074 0.074 0.082 
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Long scale (20 items) 

Let us now turn to a situation with a longer scale that might reflect more refined psycho-
logical scales or cognitive tests in the case of a small sample size of 100. In Figure 4, we 
present results where the size of the N-I bias is manipulated. With such a sample size, 
results of the IA approach were very similar to the scalar model, and only with a high 
bias of 0.9, IA with p = 0.1 and p = 0.5 produced slightly lower absolute bias and RMSE 
than the scalar model.  
 

 
Figure 4: 

 Results of a simulation study for small scale study reflecting test scale (20 items; 100 
individuals per group; 2 groups). Condition: size of DIF (eight non-invariant items for one 

group). 

 
 

 
Figure 5: 

 Results of a simulation study for small scale study reflecting questionnaire scale (20 items; 2 
groups, eight non-invariant items in one group with bias=0.6). Condition: size of the group. 
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In Figure 5, we varied the sample sizes of the groups and fixed the size of N-I bias to 0.6. 
Clearly, IA (with powers .1, .5, and 1) needs at least 200 to 300 observations per group 
to show superior performance to the scalar model that ignores non-invariance. Alignment 
with a power p = 0.1 performed best in terms of absolute bias and RMSE, but the proce-
dure with the power of 0.5 provided very similar results. Alignment with a power of 1 
gives slightly worse results than p = 0.1 and p = 0.5 but was still superior to the scalar 
model when the sample size per group exceeded 200.  
The approximate non-invariance for the 20-items scenario with varying sample sizes is 
depicted in Table 5. In contrast to the 5-items scale, the IA approach for the 20-item 
scale could mitigate even a large size of approximate N-I using simply a scalar model. In 
fact, the differences between the recovery of group means for the scalar model and dif-
ferent settings of alignment were not substantial, especially with sample sizes 500 and 
1000. 

 
Table 5: 

Bias and RMSE for a scenario with 5 items, two groups. Different level of approximate non-
invariance (AN-I). No N-I items with large biases. Smallest average absolute bias and RMSE 

for each condition were bolded. 

Average Absolute Bias RMSE 
Sample 
size 

Model Size of AN-I (dif. variance): Size of AN-I (dif. variance): 
0.001 0.005 0.010 0.050 0.001 0.005 0.010 0.050 

100 scalar model 0.001 0.001 0.001 0.005 0.035 0.035 0.035 0.037 
 sirt p = 0.1 0.010 0.010 0.013 0.011 0.042 0.044 0.045 0.048 

Mplus p = 0.5  0.008 0.008 0.011 0.008 0.039 0.041 0.041 0.043 
sirt p = 0.5  0.010 0.010 0.013 0.011 0.039 0.041 0.042 0.043 
sirt p = 1  0.010 0.010 0.013 0.010 0.037 0.038 0.039 0.039 
sirt p = 2  0.010 0.010 0.013 0.009 0.036 0.036 0.037 0.038 

500 scalar model 0.001 0.001 0.001 0.003 0.015 0.015 0.016 0.018 
 sirt p = 0.1 0.002 0.003 0.002 0.005 0.016 0.018 0.019 0.025 

Mplus p = 0.5  0.001 0.003 0.001 0.004 0.015 0.017 0.018 0.023 
sirt p = 0.5  0.002 0.003 0.002 0.005 0.015 0.017 0.018 0.023 
sirt p = 1  0.002 0.003 0.002 0.004 0.015 0.016 0.017 0.020 
sirt p = 2  0.002 0.003 0.002 0.003 0.015 0.016 0.016 0.019 

1000 scalar model 0.000 0.000 0.002 0.002 0.011 0.012 0.012 0.016 
 sirt p = 0.1 0.001 0.002 0.000 0.003 0.012 0.013 0.013 0.020 

Mplus p = 0.5  0.001 0.001 0.000 0.002 0.011 0.013 0.013 0.018 
sirt p = 0.5  0.001 0.002 0.000 0.002 0.011 0.013 0.013 0.018 
sirt p = 1  0.001 0.002 0.000 0.002 0.011 0.012 0.012 0.017 
sirt p = 2  0.001 0.002 0.000 0.003 0.011 0.012 0.012 0.016 
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When AN-I is crossed with large biases in eight items, results mimic the conditions of 
those presented in Table 4. For a sample size of 100, the scalar model outperforms all IA 
approaches. For higher sample sizes and sizes of AN-I up to 0.01, the lowest absolute 
bias and RMSE were produced by alignment procedures with p = 0.1. For a high level of 
AN-I (i.e., 0.05), the results of the scalar model remained most accurate. We are not 
presenting the detailed table for this condition, but the results are available under request.  

Study 2 

Questionnaire case (5 items) 

Table 6 shows the performance of the investigated methods with different sizes of non-
invariance and different sample sizes. Not surprisingly, the scalar model works best in 
situations when there are no non-invariant items (i.e., the scalar model conforms to the 
data generating model). It is important to emphasize that in a situation of full invariance, 
IA produced results that were close to the scalar model, at least for large sample sizes 
(very close for a sample size of N ≥ 500). When there are some non-invariant items, the 
best recovery of group means is achieved by IA with a power of p = 0.5, or, in most 
situations, it was even outperformed with the power of p = 0.1. 
Results of the recovery of group means in situations where different levels of AN-I are 
applied appear to be very similar to results displayed in Table 5. It turned out that in the 
presence of AN-I, the scalar model outperformed the IA approach. The advantage of the 
scalar model over the IA approach was higher for larger sample sizes. For smaller sam-
ple sizes, the advantages are clearly visible, while for sample sizes of at least 500, the 
advantage of the scalar model was less noticeable. The detailed results are available 
under request. 
In Table 7, we show results for the condition in which, in addition to AN-I, there are two 
N-I items with large biases (0.6) in two groups. In this situation, except for a small 
sample size of N = 100, the IA approach resulted in better recovery of group means. In 
most situations, IA with a power of p = 0.1 performed best. For sample sizes of at least 
500 and an amount of AN-I variance of 0.050, IA with a power of p = 0.5 performed best 
with a slight advantage of Mplus in favor of sirt.  

Long scale (20 items) 

Table 8 reports simulation results for a 20-item scale for three levels of N-I. The pattern 
of findings is evident and very similar to earlier analyses. Overall, the scalar model per-
formed best for data without N-I items, while in most other situations, IA with a power 
of p = 0.1 performed best. 
We also analyzed conditions with different levels of AN-I. We are not presenting the 
detailed results here (which are available upon request) because they can be straightfor-
wardly described in a few words. The scalar model slightly outperformed the alignment  
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Table 6: 
Bias and RMSE for a scenario with 5 items, four groups. Different levels of non-invariance 
(AN-I). Two N-I items with large biases in two groups. Smallest average absolute bias and 

RMSE for each condition were bolded. 

  Average Absolute Bias RMSE 
Sample 
size 

Model Size of N-I Item Bias: Size of N-I Item Bias: 
0.0 0.3 0.6 0.9 0.0 0.3 0.6 0.9 

100 scalar model 0.001 0.060 0.115 0.163 0.072 0.104 0.153 0.204 
 sirt p = 0.1 0.018 0.061 0.067 0.066 0.095 0.137 0.160 0.184 

Mplus p = 0.5  0.016 0.063 0.076 0.071 0.088 0.126 0.153 0.167 
sirt p = 0.5  0.017 0.063 0.077 0.075 0.088 0.127 0.153 0.172 
sirt p = 1  0.018 0.067 0.098 0.112 0.079 0.117 0.150 0.173 
sirt p = 2  0.021 0.071 0.129 0.187 0.076 0.115 0.170 0.229 

200 scalar model 0.001 0.060 0.115 0.162 0.053 0.089 0.141 0.187 
 sirt p = 0.1 0.007 0.041 0.032 0.019 0.065 0.098 0.100 0.081 

Mplus p = 0.5  0.008 0.046 0.039 0.031 0.059 0.092 0.093 0.084 
sirt p = 0.5  0.008 0.046 0.040 0.031 0.060 0.092 0.094 0.084 
sirt p = 1  0.009 0.055 0.076 0.080 0.056 0.090 0.111 0.117 
sirt p = 2  0.011 0.066 0.128 0.187 0.054 0.096 0.155 0.213 

500 scalar model 0.000 0.059 0.115 0.162 0.032 0.076 0.129 0.176 
 sirt p = 0.1 0.003 0.021 0.010 0.009 0.038 0.059 0.048 0.045 

Mplus p = 0.5  0.003 0.028 0.020 0.017 0.035 0.057 0.050 0.046 
sirt p = 0.5  0.003 0.027 0.019 0.016 0.036 0.058 0.049 0.046 
sirt p = 1  0.003 0.044 0.052 0.053 0.034 0.065 0.074 0.074 
sirt p = 2  0.004 0.063 0.125 0.185 0.033 0.080 0.140 0.200 

1000 scalar model 0.001 0.060 0.114 0.162 0.023 0.071 0.123 0.170 
 sirt p = 0.1 0.001 0.013 0.005 0.007 0.026 0.036 0.031 0.030 

Mplus p = 0.5  0.001 0.021 0.014 0.011 0.024 0.040 0.034 0.032 
sirt p = 0.5  0.001 0.019 0.012 0.011 0.024 0.039 0.033 0.032 
sirt p = 1  0.001 0.038 0.041 0.041 0.024 0.052 0.055 0.056 
sirt p = 2  0.002 0.063 0.125 0.185 0.023 0.074 0.134 0.195 

2000 scalar model 0.000 0.060 0.114 0.162 0.016 0.066 0.119 0.167 
 sirt p = 0.1 0.001 0.009 0.004 0.004 0.017 0.024 0.020 0.020 

Mplus p = 0.5  0.001 0.017 0.011 0.009 0.016 0.029 0.024 0.022 
sirt p = 0.5  0.001 0.015 0.009 0.008 0.016 0.028 0.023 0.022 
sirt p = 1  0.001 0.034 0.035 0.035 0.016 0.043 0.044 0.045 
sirt p = 2  0.001 0.063 0.124 0.185 0.016 0.069 0.130 0.191 
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Table 7: 
 Bias and RMSE for a scenario with 5 items, four groups. Different levels of approximate 
non-invariance (AN-I) combined with two N-I items with large biases (0.6) in two groups. 

Smallest average absolute bias and RMSE for each condition were bolded. 

Average Absolute Bias RMSE 
Sample 
size 

Model Size of AN-I (dif. variance): Size of AN-I (dif. variance): 
0.001 0.005 0.010 0.050 0.001 0.005 0.010 0.050 

100 scalar model 0.115 0.117 0.115 0.119 0.155 0.158 0.160 0.168 
 sirt p = 0.1 0.072 0.075 0.077 0.100 0.160 0.164 0.168 0.204 

Mplus p = 0.5  0.078 0.082 0.091 0.107 0.150 0.154 0.166 0.195 
sirt p = 0.5  0.079 0.084 0.092 0.108 0.151 0.155 0.169 0.197 
sirt p = 1  0.102 0.103 0.108 0.118 0.150 0.152 0.161 0.181 
sirt p = 2  0.134 0.131 0.134 0.135 0.172 0.173 0.178 0.182 

200 scalar model 0.112 0.114 0.116 0.115 0.137 0.140 0.144 0.155 
 sirt p = 0.1 0.028 0.034 0.038 0.076 0.066 0.068 0.073 0.103 

Mplus p = 0.5  0.042 0.042 0.049 0.078 0.096 0.100 0.112 0.160 
sirt p = 0.5  0.041 0.042 0.048 0.079 0.096 0.100 0.111 0.159 
sirt p = 1  0.073 0.073 0.081 0.096 0.110 0.113 0.123 0.151 
sirt p = 2  0.126 0.125 0.127 0.126 0.152 0.153 0.158 0.166 

500 scalar model 0.114 0.116 0.115 0.118 0.127 0.132 0.133 0.150 
 sirt p = 0.1 0.011 0.016 0.019 0.056 0.049 0.059 0.067 0.139 

Mplus p = 0.5  0.020 0.027 0.031 0.067 0.051 0.061 0.070 0.134 
sirt p = 0.5  0.019 0.026 0.031 0.068 0.051 0.061 0.072 0.136 
sirt p = 1  0.054 0.059 0.064 0.090 0.076 0.083 0.092 0.136 
sirt p = 2  0.125 0.127 0.126 0.126 0.139 0.143 0.144 0.158 

1000 scalar model 0.114 0.115 0.114 0.117 0.122 0.126 0.127 0.147 
 sirt p = 0.1 0.008 0.011 0.016 0.056 0.033 0.043 0.055 0.131 

Mplus p = 0.5  0.014 0.020 0.023 0.062 0.035 0.045 0.056 0.125 
sirt p = 0.5  0.013 0.018 0.022 0.062 0.035 0.045 0.056 0.126 
sirt p = 1  0.042 0.049 0.054 0.085 0.057 0.068 0.077 0.129 
sirt p = 2  0.125 0.125 0.124 0.124 0.134 0.137 0.138 0.154 

2000 scalar model 0.115 0.114 0.117 0.116 0.120 0.123 0.128 0.142 
 sirt p = 0.1 0.005 0.007 0.012 0.053 0.033 0.043 0.055 0.131 

Mplus p = 0.5  0.013 0.016 0.024 0.056 0.027 0.038 0.050 0.121 
sirt p = 0.5  0.012 0.015 0.023 0.057 0.026 0.037 0.050 0.123 
sirt p = 1  0.038 0.042 0.053 0.080 0.048 0.058 0.072 0.122 
sirt p = 2  0.126 0.125 0.126 0.122 0.131 0.134 0.138 0.149 
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Table 8: 
 Bias and RMSE for a scenario with 20 items, four groups. Different levels of approximate 
non-invariance (AN-I). Eight N-I items with large biases in two groups. Smallest average 

absolute bias and RMSE for each condition were bolded. 

Average Absolute Bias RMSE 
Sample 
size 

Model Size of N-I Item Bias: Size of N-I Item Bias: 
0.0 0.3 0.6 0.9 0.0 0.3 0.6 0.9 

100 scalar model 0.003 0.060 0.119 0.168 0.063 0.098 0.152 0.201 
 sirt p = 0.1 0.013 0.055 0.042 0.026 0.069 0.104 0.099 0.081 

Mplus p = 0.5  0.009 0.059 0.061 0.049 0.066 0.102 0.106 0.092 
sirt p = 0.5  0.006 0.058 0.057 0.045 0.067 0.102 0.105 0.092 
sirt p = 1  0.007 0.063 0.094 0.103 0.065 0.103 0.132 0.140 
sirt p = 2  0.014 0.069 0.129 0.190 0.065 0.107 0.164 0.223 

200 scalar model 0.001 0.060 0.117 0.168 0.048 0.084 0.139 0.187 
 sirt p = 0.1 0.013 0.055 0.042 0.026 0.049 0.071 0.058 0.058 

Mplus p = 0.5  0.006 0.044 0.035 0.029 0.049 0.075 0.067 0.061 
sirt p = 0.5  0.004 0.042 0.034 0.027 0.049 0.074 0.066 0.060 
sirt p = 1  0.005 0.054 0.073 0.076 0.048 0.081 0.098 0.100 
sirt p = 2  0.008 0.064 0.126 0.186 0.048 0.090 0.149 0.207 

500 scalar model 0.001 0.060 0.116 0.166 0.029 0.074 0.128 0.177 
 sirt p = 0.1 0.003 0.018 0.010 0.007 0.030 0.039 0.035 0.034 

Mplus p = 0.5  0.002 0.029 0.018 0.015 0.029 0.048 0.039 0.036 
sirt p = 0.5  0.002 0.027 0.017 0.014 0.029 0.046 0.038 0.035 
sirt p = 1  0.002 0.045 0.050 0.051 0.029 0.060 0.066 0.066 
sirt p = 2  0.003 0.063 0.124 0.184 0.029 0.077 0.137 0.196 

1000 scalar model 0.000 0.060 0.115 0.167 0.021 0.068 0.123 0.174 
 sirt p = 0.1 0.001 0.012 0.007 0.004 0.022 0.026 0.024 0.021 

Mplus p = 0.5  0.001 0.021 0.013 0.012 0.021 0.033 0.027 0.027 
sirt p = 0.5  0.001 0.019 0.012 0.011 0.021 0.032 0.026 0.026 
sirt p = 1  0.001 0.038 0.039 0.042 0.021 0.048 0.050 0.052 
sirt p = 2  0.002 0.062 0.123 0.185 0.021 0.071 0.131 0.193 

2000 scalar model 0.000 0.061 0.117 0.168 0.015 0.066 0.121 0.172 
 sirt p = 0.1 0.001 0.008 0.004 0.003 0.014 0.019 0.016 0.016 

Mplus p = 0.5  0.001 0.017 0.011 0.009 0.015 0.025 0.021 0.019 
sirt p = 0.5  0.000 0.015 0.010 0.008 0.015 0.024 0.020 0.018 
sirt p = 1  0.000 0.033 0.035 0.035 0.015 0.040 0.041 0.042 
sirt p = 2  0.001 0.063 0.125 0.185 0.015 0.068 0.129 0.190 
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procedure, especially for small sample sizes. While the biases were approximately zero 
for all powers in the IA approach, the RMSE was lowest for p = 2 and close to the 
RMSE in the scalar model. 
The final results for Study 2 refer to the situation where AN-I biases were combined with 
large biases of 0.6 in eight items from two out of four groups. In those settings, IA with 
p = 0.1 clearly produced the highest accuracy of group means producing lowest biases 
and highest RMSE for all sample sizes and conditions except for sample size 100 and the 
level of AN-I of 0.05 where RMSE is slightly lower for p = 0.05. In all other situations, 
the p = 0.05 gives the second-best results. The worst recovery was obtained with p = 2 
where recovery of the means is even slightly worse than for the scalar model. We are not 
providing detailed results, but the results could be obtained upon request.  

Study 3 

Questionnaire case (5 item) 

In Study 3, we consider a situation typical for large scale-scale comparative studies, that 
is a large number of groups (i.e., 25) and large sample sizes (i.e., 1000). First, we analyze 
a 5-item scale. In Table 9, the results of a simulation study with no N-I item or two N-I  
 
 

Table 9: 
 Average absolute bias and RMSE for a scenario with 5 items, 25 groups, 1000 observations 
per group,and 2 N-I items with large biases (in 5 and 15 groups). Smallest average absolute 

bias and RMSE for each condition were bolded. 

N 
affected 
groups 

Model Average Absolute Bias RMSE 
Size of N-I Item Bias: Size of N-I Item Bias: 

0.0 0.3 0.6 0.9 0.0 0.3 0.6 0.9 
5 scalar model 0.002 0.027 0.052 0.073 0.030 0.048 0.070 0.089 
 sirt p = 0.1 0.003 0.015 0.006 0.005 0.031 0.040 0.033 0.032 

Mplus p = 0.5 0.003 0.019 0.025 0.022 0.031 0.041 0.049 0.051 
sirt p = 0.5 0.003 0.019 0.011 0.009 0.031 0.041 0.037 0.034 
sirt p = 1 0.003 0.023 0.027 0.027 0.031 0.044 0.047 0.047 
sirt p = 2 0.003 0.029 0.057 0.084 0.031 0.050 0.074 0.099 

15 scalar model 0.002 0.074 0.152 0.254 0.030 0.086 0.160 0.260 
 sirt p = 0.1 0.002 0.012 0.007 0.006 0.030 0.038 0.035 0.034 

Mplus p = 0.5 0.003 0.024 0.016 0.014 0.031 0.044 0.038 0.037 
sirt p = 0.5 0.003 0.021 0.014 0.012 0.031 0.042 0.037 0.036 
sirt p = 1 0.003 0.043 0.045 0.046 0.031 0.058 0.060 0.061 
sirt p = 2 0.003 0.076 0.150 0.223 0.031 0.087 0.157 0.228 



A. Pokropek, O. Lüdtke & A. Robitzsch 326

items in 5 and 15 affected groups (out of 25 groups) are presented. Additionally, differ-
ent sizes of N-I biases were considered: 0.3, 0.6, and 0.9. Results clearly show that in a 
situation where all items were invariant, the scalar model performed best. The IA ap-
proach, however, did not significantly differ in performance. This means that applying 
IA to the data without N-I items did not affect results in a significant way. On the other 
hand, IA optimization performed much better than the scalar model when N-I items are 
present in the data. The best mean recovery in terms of average absolute bias and RMSE 
was achieved with a power p = 0.1. 
In Table 10, the results of a simulation study for different numbers of affected groups of 
N-I items with a large bias of 0.6 and different values of AN-I variance are presented. 
The general pattern is apparent. For AMI scenarios without N-I items (i.e., no affected 
groups), the scalar model performed best. When some groups are affected by N-I items,  
 
 

Table 10: 
Average absolute bias and RMSE for a scenario with 5 items, 25 groups, 1000 observations 

per group, and different levels of AN-I and two N-I items with large biases (0.6 in 0, 5 and 15 
groups). Smallest average absolute bias and RMSE for each condition were bolded. 

N 
affected 
groups 

Model Average Absolute Bias RMSE 
Size of AN-I (dif. variance): Size of AN-I (dif. variance): 
0.001 0.005 0.010 0.050 0.001 0.005 0.010 0.050 

0 scalar model 0.002 0.001 0.001 0.003 0.031 0.036 0.043 0.072 
 sirt p = 0.1 0.003 0.003 0.003 0.005 0.032 0.038 0.046 0.079 

Mplus p = 0.5  0.003 0.003 0.003 0.005 0.032 0.037 0.044 0.075 
sirt p = 0.5  0.003 0.003 0.003 0.005 0.032 0.037 0.044 0.075 
sirt p = 1  0.003 0.003 0.003 0.004 0.032 0.037 0.043 0.072 
sirt p = 2  0.003 0.003 0.003 0.004 0.032 0.036 0.043 0.072 

5 scalar model 0.052 0.052 0.052 0.054 0.072 0.076 0.081 0.110 
 sirt p = 0.1 0.007 0.009 0.020 0.030 0.036 0.043 0.052 0.110 

Mplus p = 0.5  0.022 0.020 0.019 0.038 0.048 0.051 0.056 0.104 
sirt p = 0.5  0.012 0.014 0.017 0.037 0.039 0.046 0.054 0.105 
sirt p = 1  0.027 0.030 0.033 0.047 0.049 0.056 0.064 0.106 
sirt p = 2  0.057 0.057 0.057 0.058 0.076 0.080 0.084 0.111 

15 scalar model 0.152 0.153 0.154 0.158 0.162 0.164 0.168 0.187 
 sirt p = 0.1 0.008 0.010 0.014 0.037 0.038 0.045 0.053 0.111 
 Mplus p = 0.5  0.018 0.022 0.027 0.060 0.041 0.049 0.058 0.112 
 sirt p = 0.5  0.015 0.020 0.025 0.058 0.040 0.048 0.057 0.112 
 sirt p = 1  0.048 0.054 0.062 0.098 0.063 0.073 0.083 0.135 
 sirt p = 2  0.150 0.150 0.150 0.151 0.158 0.160 0.163 0.178 
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the recovery of the group means was better for the IA methods than the scalar method. 
For the settings used in this simulation, the power of p = 0.1 resulted in the lowest aver-
age absolute bias and RMSE. 

Long scale (20 items) 

The results of the simulation where zero or eight N-I items were simulated in 5 and 15 
out of 25 groups and different sizes of N-I biases were considered: 0.3, 0.6, and 0.9. The 
IA approach with p = 0.1 gave the best recovery of the group means. Differently from 
scenarios for a 5-item scale, the IA approach provided better results even for conditions 
in which all items were invariant. With increasing values of p, mean recovery is getting 
worse. The IA with p = 2 gives similar results to the scalar model. The detailed results 
are available upon request.  

 
Table 11: 

Average absolute bias and RMSE for a scenario with 20 items, 25 groups, 1000 observations 
per group, and different levels of AN-I and eight N-I items with large biases (0.6 in 0, 5 and 

15 groups). Smallest average absolute bias and RMSE for each condition were bolded. 

N 
affected 
groups 

Model Average Absolute Bias RMSE 
Size of AN-I (dif. variance): Size of AN-I (dif. variance): 

0.001 0.005 0.010 0.050 0.001 0.005 0.010 0.050 
0 scalar model 0.002 0.002 0.003 0.003 0.028 0.029 0.031 0.043 
 sirt p = 0.1 0.002 0.002 0.002 0.003 0.028 0.030 0.032 0.045 
 Mplus p = 0.5  0.007 0.003 0.003 0.003 0.074 0.030 0.032 0.044 
 sirt p = 0.5  0.003 0.003 0.003 0.003 0.029 0.030 0.032 0.045 
 sirt p = 1  0.004 0.003 0.003 0.004 0.029 0.030 0.032 0.044 
 sirt p = 2  0.004 0.003 0.003 0.004 0.029 0.030 0.032 0.043 
5 scalar model 0.053 0.053 0.053 0.055 0.070 0.071 0.072 0.085 
 sirt p = 0.1 0.007 0.008 0.010 0.031 0.030 0.033 0.037 0.069 
 Mplus p = 0.5  0.013 0.015 0.019 0.043 0.034 0.038 0.042 0.075 
 sirt p = 0.5  0.011 0.014 0.018 0.041 0.033 0.037 0.041 0.074 
 sirt p = 1  0.026 0.030 0.034 0.051 0.045 0.050 0.054 0.081 
 sirt p = 2  0.057 0.057 0.057 0.057 0.073 0.074 0.075 0.086 
15 scalar model 0.150 0.151 0.151 0.157 0.158 0.159 0.160 0.170 
 sirt p = 0.1 0.008 0.011 0.014 0.042 0.008 0.011 0.014 0.042 
 Mplus p = 0.5  0.018 0.024 0.029 0.068 0.036 0.041 0.047 0.090 
 sirt p = 0.5  0.016 0.022 0.026 0.066 0.035 0.039 0.045 0.088 
 sirt p = 1  0.049 0.058 0.065 0.108 0.061 0.070 0.078 0.124 
 sirt p = 2  0.150 0.150 0.150 0.150 0.157 0.157 0.158 0.164 
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In Table 11, the results of a simulation study for different levels of AMI scenarios (num-
ber of affected groups) and where AMI is combined with N-I items with large biases 
(0.6) are presented. Similar to previous simulation conditions, when only AMI is present. 
in general, the scalar model performed best. For conditions where AMI occurred in com-
bination with large biases (i.e., there exist N-I items), the IA approach with p = 0.1 pro-
vided the best mean recovery in terms of bias and RMSE.  

Real data example  

As an illustrative example of the IA approach, we use data on a measure of depression 
from Round 6 of the European Social Survey (ESS) from 2012 (ESS, 2014). This data 
set was also used by Kuha and Moustaki (2015) to illustrate the estimation of latent 
group mean differences in the case of non-invariant items. We used the same six depres-
sion items, each with four response categories (see Kuha & Moustaki, 2015). The ESS 
dataset contains probability samples from adult populations of 29 countries (listed in 
Table 12). In our analysis, sample sizes ranged from 752 to 2,958 respondents per coun-
try (M = 1886, SD = 520), and the total sample size was 54,673. In the IA approach, 
sampling weights were used in the estimation, and the sampling weights were normal-
ized within a country to correspond to a target population of 5,000 respondents. Country 
means and standard deviations were subsequently transformed such that the total popula-
tion comprising all 29 countries (all countries have equal contributions) has a mean of 
zero and a standard deviation of one. 
In Table 12, we present the results of the estimated country means under different pow-
ers of the IA approach. Again, Mplus and sirt were used for estimating the IA approach. 
It can be seen that the IA results of Mplus and sirt (IA with p = 0.5) closely match and 
maximally differ by .024. The average absolute deviation between both software packag-
es was 0.009, which can be seen as close enough for practical applications. However, the 
range of means for a country produced by different powers of IA (i.e., p = 0.1, 0.5, 1, and 
2) varied considerably (M = 0.051, SD = 0.035, Max = 0.121), although the ranking 
among countries remained relatively stable. 
Table 17 shows the correlations of the estimated country means for the IA approach with 
different power values. The Mplus and sirt (p = 0.5) estimates were quite close 
(r = .999). In addition, the powers p = 1 and p = 0.5 (r = .998), as well as p = 0.5 and 
p = 0.1 (r = .998), turned out to be very similar. When comparing the differences be-
tween the different country mean estimates (see Table 12) and the correlations of the 
different estimates at the country level (see Table 13), it can be seen that even with a 
very large correlation at the country level (e.g., r = .97), absolute differences of country 
mean estimates obtained from different methods can be non-negligible. 
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Table 12: 
Estimated Country Means for Depression Scale for ESS Data (Round 6) 

sirt sirt sirt Mplus sirt 
Country p = 2 p = 1 p = 0.5 p = 0.5 p = 0.1 
NOR −0.481 −0.479 −0.478 −0.477 −0.476 
DEN −0.326 −0.378 −0.415 −0.405 −0.433 
FIN −0.375 −0.386 −0.384 −0.376 −0.357 
SWE −0.346 −0.333 −0.330 −0.318 −0.329 
IRE −0.309 −0.297 −0.292 −0.283 −0.290 
ISL −0.257 −0.266 −0.287 −0.285 −0.309 
NLD −0.226 −0.263 −0.283 −0.278 −0.293 
SVN −0.272 −0.272 −0.277 −0.273 −0.281 
CHE −0.225 −0.226 −0.235 −0.246 −0.246 
GER −0.070 −0.115 −0.155 −0.151 −0.215 
UK −0.081 −0.117 −0.151 −0.127 −0.170 
BEL −0.030 −0.080 −0.092 −0.068 −0.095 
CYP −0.146 −0.092 −0.058 −0.057 −0.023 
ISR −0.055 −0.043 −0.036 −0.044 −0.032 
POR  0.082  0.005 −0.009 −0.023 −0.014 
POL −0.036 −0.011 −0.004 −0.001 −0.006 
FRA  0.000  0.036  0.039  0.046  0.037 
SPA  0.043  0.074  0.095  0.085  0.110 
EST  0.134  0.126  0.124  0.121  0.124 
BGR  0.075  0.138  0.171  0.167  0.184 
SVK  0.250  0.222  0.212  0.209  0.208 
ITA  0.179  0.211  0.237  0.240  0.252 
LIT  0.143  0.210  0.244  0.229  0.262 
CZE  0.300  0.312  0.333  0.322  0.357 
RUS  0.374  0.386  0.388  0.378  0.389 
KOS  0.499  0.427  0.402  0.378  0.389 
HUN  0.559  0.556  0.540  0.554  0.531 
UKR  0.600  0.656  0.703  0.682  0.725 

Note: p = Used power in alignment optimization function. Mplus = IA estimation 
with ML in Mplus. 

 
 
 
 



A. Pokropek, O. Lüdtke & A. Robitzsch 330

Table 13: 
Correlations of Estimated Country Means for Depression Scale for ESS Data (Round 6) of 

Different Linking Approaches 

p = 2 p = 1 p = 0.5 p = 0.1 
p = 1 .991 
p = 0.5 .981 .998 
p = 0.1 .972 .993 .998 
Mplus .981 .998 .999 .997 

Note: p = used power in the IA approach in sirt. Mplus = IA 
estimation in Mplus (using p = 0.5). Correlations larger than .995 are 
written in bold. 

Discussion 

In this article, we discussed the generalized form of the loss function for IA proposed by 
Robitzsch (2019) and evaluated different forms of the loss function under different types 
of non-invariance situations using a Monte Carlo study and an empirical example. We 
compared two software implementations: Mplus and R, and we conclude that no signifi-
cant differences exist in terms of parameter recovery (for p = 0.5). Our results suggest 
that the performance of IA heavily depends on the form of the loss function, type of the 
data (mostly sample size), and type of invariance that could be encountered. In the case 
of small sample sizes (200 and smaller), alignment models performed worse than the 
scalar model that simply ignores the problem of non-invariance. In a typical partial in-
variance situation or when partial invariance is combined with approximate invariance, 
the alignment model with a power of p = 0.1 is the favourable model, closely followed 
by alignment with p = 0.5. The reason behind this is that those small deviations receive 
larger values in the optimization function for p = 0.1 than for p = 0.5. In the limit of p
0, the number of invariant parameters is maximized. When data is generated under par-
tial invariance or partial invariance combined with approximate invariance, we can ex-
pect that p = 0.1 is superior to p = 0.5.  
For approximate invariance without large non-invariance biases, the scalar model and 
alignment with p = 2 provided the best recovery of the means. However, it needs to be 
emphasized that those results are limited to the specific situations and conditions used in 
this study. In our opinion, we chose the most relevant conditions and most plausible 
types of item non-invariance to provide a broad general picture of IA performance in 
estimating group means. More studies examining different conditions and recovering 
other parameters of the models (e.g., item parameters) are needed to understand the 
performance and usefulness of IA better. The most urgent issue is to establish proper 
procedures for choosing the most suitable powers of the loss function for the actual data. 
It should be noted that for models without equality constraints on item parameters, clas-
sical CFA or IRT fit measures are not useful for choosing the proper loss function for IA, 
and new approaches need to be developed. One direction could be to use a cross-
validation approach where data are split into an estimation set and cross-validation set. 
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The first one is used for estimation, the second one for checking the predictive power of 
the model. However, this approach could become problematic, especially when sample 
sizes are small. Some solutions exist, for example, the leave-one-out cross-validation 
(LOO-CV; Gelfand, Dey & Chang 1992), where a series of single data points are used to 
test the model’s predictive power.  
Another direction for the development of IA that, among others, could allow establishing 
proper model fit is regularization. The invariance alignment approach bears strong simi-
larities to regularization techniques, which are often used in variable selection problems 
and machine learning (for an overview, see Hastie, Tibshirani, & Wainwright, 2015). In 
a regularization approach to invariance (Bauer, Belzak, & Cole, 2020; Huang, 2018; 
Liang & Jacobucci, 2019; Lindstrøm & Dahl, 2020), group-specific item parameters are 
decomposed into a common item parameter and a group-specific deviation. For example, 
for item loadings it is assumed that  ig i ige  , which results in an overidentified mod-
el. However, in regularization, penalty terms regarding the non-identifiable group-
specific deviations ige  are added to the log-likelihood function in the estimation, which 
ensures empirical identifiability of model parameters and imposes assumptions about the 
distribution of parameters of non-invariance. IA with p = 1 is similar to using the least 
absolute shrinkage and selection operator (lasso; Tibshirani, 1996) penalty function, 
while p = 2 corresponds to the ridge penalty (Hoerl and Kennard, 1970). IA with p = 0.5 
is similar to using a bridge penalty in regularized estimation (Hastie et al., 2015). Regu-
larization, as well as IA, show optimal performance in data constellations that result in 
many invariant parameters for which the differences in parameters among groups are 
nearly zero, and a few non-invariant item parameters for which the differences in param-
eters among groups are large. However, regularized estimation typically sets many item 
parameter deviations to zero, while IA estimates them close to zero. This property has 
the potential that regularized estimates could produce more stable estimates of group 
means than the alignment approach. In future studies, it could be interesting to examine 
whether this assumption holds true. 

Finally, it is worth mentioning that alignment shows conceptual similarities with the 
anchor point selection (APS) procedure proposed by Strobl et al. (2018; see also Bechger 
& Maris, 2015, for an alternative approach). Although IA is different from APS from a 
computational point of view, it would be interesting to compare the methods and their 
performance. 
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