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Analyzing position effects within reasoning items using the LLTM  
for structurally incomplete data 

JULIA HAHNE1 

Abstract 
Position or transfer effects on an individual’s ability while processing a series of test items are of-

ten ignored when tests are created. It is often implicitly assumed that such effects, if they occur, are a) 
the same for all persons and b) for all items and thus do not contribute to information about person 
ability or item difficulty. Rasch model analyses cannot quantify position effects because they are in-
variably confounded with the item difficulty parameters. In case of adaptive testing, where the exami-
nees are administered the same items at different positions, effects of the position of item presentation 
lead to unfair estimations of item (and, consequently, person) parameters, and are therefore absolutely 
unwarranted. This study applies the Linear Logistic Test Model (LLTM, Fischer, 1973) for structurally 
incomplete data to illustrate how a series of test items can be evaluated for position effects. The test 
material consists of the Viennese Matrices (WMT, Formann & Piswanger, 1979) presented in varying 
item order to six groups of examinees. The study sample group consisted of 405 high school students. 
The concept of virtual items is introduced and applied to different models. Several hypotheses are 
tested by means of hierarchically applied Andersen’s Likelihood Ratio tests. As a result of these analy-
ses, no significant position effect can be found. 
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Introduction 
 
Position effects are generally ignored when test items are presented to examinees in a 

conventional fashion with all items being presented to each examinee in the same order. In 
principle, there are two possibilities how position can influence item difficulty in a rather 
general way: If items become easier the later they appear in the test, we speak of learning (or 
practice) effects. In contrast, fatigue effects lead to increasing item difficulty the later an 
item appears within the test occasion. If learning takes place during a test session, item diffi-
culty will be underestimated with progressive item position. In accordance with Item Re-
sponse Theory (IRT), particularly the Rasch model, it is generally assumed that learning or 
position effects are the same for each person being examined. As long as the Rasch model 
holds true, the latent ability of the examinees can be concluded directly from the number of 
solved items. However, position effects are inseparably connected with item difficulty pa-
rameters and can thus neither be confirmed nor quantified. 

Whereas position effects may not be a problem in conventional testing, they are certainly 
not acceptable in adaptive testing, where items are presented to the examinees in varying 
orders. Items presented at the beginning or end of a training session no longer have the same 
difficulty and ‘fair’ comparisons between examinees are no longer possible. 

 
 

The Linear Logistic Test Model 
 
Fischer (1973) developed the Linear Logistic Test Model (LLTM), in which the item pa-

rameters σi , i=1,…, k, of the Rasch model are composed in a linear combination of elemen-
tary (or basic) parameters ηl, l=1, …, p, representing cognitive processes necessary to solve 
test items. Item difficulty is explained as the weighted sum of the elementary parameters: 
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whereas qil are the element of the weight matrix Q for the elementary parameter ηl in item i. 
The qil elements are known and defined. The parameters of the above model can be esti-
mated using the Conditional Maximum Likelihood (CML) method (cf. Fischer, 1995), as 
long as the number of basic parameters does not exceed the number of item parameters. If 
the Rasch model holds true for a certain set of items, hypotheses about the elementary pa-
rameters can be tested using Andersen’s Likelihood Ratio test (Andersen, 1973; see also 
Fischer, 1995, Kubinger, 2005): 
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where LRM is the likelihood of the data estimated by the Rasch model and LLLTM is the likeli-
hood of the data estimated by the LLTM, with df=k-p.  

Hence, LLTM analyses do not only provide useful information with respect to item diffi-
culty. Furthermore, it is theoretically possible to generate any number of new items follow-
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ing item construction rules and to predict item difficulty. Examples of item construction with 
the Linear Logistic Test Model are the Viennese Matrices (WMT, Formann & Piswanger, 
1979), the Three-dimensional Cube test (3DW, Gittler, 1990), and the Adaptive Matrices 
(AMT, Hornke, Rettig & Etzel, 1999). Further extensive research was conducted by Embret-
son (1998, 1999, 2002), who developed a matrix item generator for Raven-like Matrices, 
reporting good item fit with the 2-PL model. 

Cognitive operations can be described by the LLTM, and it is also possible to factor non-
cognitive components into the item parameters. These may be position effects, learning 
effects or, contrastingly, fatigue effects (cf. Kubinger, 2008). Gittler (1990, see also Gittler 
& Wild, 1989) tested items of the Three-dimensional Cube test (3DW) for global transfer 
effects independent of the cognitive operations involved. The results showed good fit for the 
LLTM when position effects for the first eight items were taken into account. Hornke and 
Rettig (1989) evaluated matrix test items for learning effects, but found none.  

 
 

LLTM for experimental designs 
 
In addition to its use with cognitive processes, the LLTM is also used to analyze experi-

mental designs. For this purpose, each item Ii with the corresponding item parameter σi is 
transferred into two (or more) virtual items jI ∗  and lI ∗  with the corresponding item parame-
ters jσ ∗  and lσ

∗ . For an estimation of the change that a real item undergoes in different con-
ditions, effect parameters are introduced. The virtual items’ difficulty is some weighted sum 
of the actual item problem’s difficulty under different conditions. Rather than representing 
cognitive processes, the elementary parameters show the change of item difficulty under 
different experimental conditions. The examinees, obviously, are given the same item prob-
lem just under different circumstances (i.e. test condition). An item problem under two dif-
ferent test conditions is thus formally treated as two virtual items. Because one person gener-
ally does not undergo each experimental condition, the data is incomplete by design (struc-
tural incompleteness).  

The significance of the effect parameters can again be tested using the Likelihood Ratio 
test: 
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L1 is the likelihood of the data under the alternative hypothesis, meaning that the likeli-

hood is estimated including all parameters. L0 is the likelihood of the data without the effect 
parameters in question (null-hypotheses), df=k-p. 

 
 

Materials and methods 
 
The aim of the study was to determine if there were any position effects on examinees 

solving reasoning items. This question was addressed using the LLTM for structurally in-
complete data. The Viennese Matrices (Formann & Piswanger, 1979) was selected as the 
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testing material. The test contains 24 items. The item difficulties can be explained by means 
of three cognitive operations: 
a) Nature of elements, referring to the shape (e.g. circle), pattern (e.g. striated), number and 

spatial arrangement (left-right) 
b) Type of rule, referring to the basic operation applied to the elements. The operations are 

continuation, variation and superimposition 
c) Direction of the rule, referring to vertical, horizontal, or both. 

 
To solve the items, the examinee sees various elements arranged in a 3 × 3 matrix, must 

correctly identify similarities between adjoining elements and must then find and apply the 
logical principles behind the matrix elements to determine the correct solution to be selected 
from a set of eight answer options. The following is an example: 

 
 

 
Figure 1:  

Item 2 from the Viennese Matrices. The correct answer is d. 
 
 
The test was chosen for two reasons: First, the items of this test are known to fit the 

Rasch model, which obviously is a prerequisite when working with the LLTM. Second, there 
is some evidence that learning may occur in Matrices tests (Raven, Raven & Court, 1998). 
The study sample consisted of high school students. The data collection took place in group 
sessions in two different schools. For all examinees, informed consent was obtained from the 
parents. The Viennese Matrices are usually administered in a power test setting. This point 
was extremely important for the present study: The students were instructed to work as long 
as they needed and, in agreement with school administration, no time limit was set for the 
testing procedure. Six different types of test booklets were created, each type with different 
item order (see table 1). 

Whenever an examinee did not know the answer to an item, he/she had the possibility of 
checking the category labeled I don’t know. This deviated from the usual test protocol and 
was introduced to diminish guessing effects.  

The study sample consisted of 405 high school students, 251 (62%) boys and 154 (38%) 
girls. The mean age was 15.51 years (s = 1.18). The examinees were tested in group ses-
sions; the mean duration of the test was 27.13 minutes (s = 7.15). Complete data sets were 
obtained for all examinees. The 405 students were randomly assigned to one of the six test 
booklets. The items for each booklet were the same, but their position in the test was 
changed. One group was tested with the original test form that contained items in ascending 
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order of item difficulty. Another group solved the items in descending order, beginning with 
the most difficult item. The other four groups received test booklets with randomly selected 
item orders. Each session started with an introductory example to familiarize the examinees 
with the testing material and three exercise items (see Table 1). As a warming up item, the 
first test item was excluded from the analyses. The LPCM-win program (Fischer & Po-
nocny-Seliger, 1998) was used for all analyses. 

 
 

Table 1:  
Test protocol: G1 (2,3,4,5,6) refers to Group 1 (2,3,4,5,6). I refers to the introductory example, 
e1-3 are the exercise examples 1 to 3. As indicated by the perforated line, only the first and the 

last items are shown  
 

G1 1 2 3 4 5  20 21 22 23 24 
G2 1 10 16 12 8  11 17 7 13 9 
G3 1 9 18 2 14  11 17 20 3 8 
G4 1 24 23 22 21  7 6 5 4 3 
G5 1 16 10 14 18  15 9 19 13 17 
G6 

 
 
 
I 

 
 
 

e1-3 

1 18 9 7 13  16 10 6 24 19 
 
 

Rasch Model analyses 
 
LLTM can only be applied as long as the data shows fit with the Rasch model. This was 

tested by means of Andersen’s Likelihood Ratio test. When using this test the sample of 
examinees is divided into subsamples in line with content-related considerations. The pooled 
likelihood of the data of each subsample is compared to the likelihood of the data of the 
entire sample. The formula to be used is again (3). The degrees of freedom are according to 
the difference of the estimated parameters. 

For the present study the criteria score separated in examinees with a high and examinees 
with a low score. Age, sex and test duration were used as well as a criterion. The sample was 
divided for all criteria except sex by means of median splits. Table 2 shows cut off values 
and distribution for the partition criteria.  

 
Table 2:  

Cut off values for test duration (in minutes), score and age (in years) and distribution of sex 
(‘f’ female, ‘m’ male). 

 

group test duration (min.) score age (yrs.) sex n 
  n  n  n  n  n  n n(m) n(f)  
1 <27 32 ≥27 35 <16 32 ≥16 35 <15 37 ≥16 30 38 29 67 
2 <27 31 ≥27 37 <16 34 ≥16 34 <16 36 ≥16 32 45 23 68 
3 <26 34 ≥26 34 <18 35 ≥18 32 <16 38 ≥16 29 38 29 68 
4 <28 34 ≥28 33 <17 36 ≥17 33 <16 35 ≥16 33 41 27 67 
5 <28 35 ≥28 33 <16 33 ≥16 35 <16 35 ≥16 33 42 22 68 
6 <28 33 ≥28 34 <17 35 ≥17 32 <16 33 ≥16 34 47 20 67 
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The results of the Likilihood Ratio tests are shown in Table 3. Because the first item of 
each booklet was used as a warming up item, 23 item parameters per group were estimated. 
The critical value is χ2(1%) = 40.92, df = 22. As can be seen, the items showed good fit with 
the Rasch model.  

 
Table 3:  

Results of the Rasch model analyses 
 

group criterion χ2 
1 score 28,04290
 age 16,29413
 sex 16,17168
 time 10,45272
2 score 20,54809
 age 18,89184
 sex 22,12476
 time 33,34823
3 score 31,00931
 age 22,46003
 sex 23,04322
 time 25,31805
4 score 24,54910
 age 26,27065
 sex 26,90836
 time 18,07122
5 score 23,59339
 age 16,69636
 sex 24,61706
 time 23,82070
6 score 36,48543
 age 30,67309
 sex 33,73163
 time 19,58271

 
 

LLTM analyses 
 
Three models were postulated for the LLTM analyses. Model 1 estimates item parame-

ters regardless of their position in the test, i.e. * * * * * *
1 2 3 4 5 6i i i i i iσ σ σ σ σ σ= = = = = plus one posi-

tion or learning parameter λ. It is assumed that the latter continuously increases with each 
processed item, regardless of whether the item was solved or not and independently of the 
cognitive operations involved. Hence, 22 item difficulty parameters are estimated and the 
parameter λ representing the position within the respective test booklet. Figure 2 shows the 
design matrix. 
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Figure 2:  
Weight matrix Q of model 1 for the groups 1 and 6. The first item was excluded  

from the analysis 
 
 

*
1σ  to *

138σ  are the item parameters for the virtual items of the six test booklets, 2σ  to 
24σ  are the parameters for the real item problems (Item 1 is the warming up item and there-

fore excluded from the analysis). There are p = (k − 1) × h = 23 × 6 = 138 virtual items (item 
problems i = 2, ... , k; k = 24 – groups g = 1, ... h; h = 6). The null-hypothesis is H0: ih ihσ σ=  
and the alternative hypothesis is H1: ( )ih i igqσ σ λ= + ; q(ig) = l = 0, 1, 2, … k – 1, dependent 
on item problem i’s position.  

Model 2 ignores the different testing conditions, i.e. item positions, and the item parame-
ters for each item are estimated independently of their position. That is, it is hypothesized 
that * * * * * *

1 2 3 4 5 6i i i i i iσ σ σ σ σ σ= = = = = . For this model, the null-hypothesis is again H0: 
ih ihσ σ=  the alternative hypothesis is H1: ih iσ σ= . That means, the 138 virtual items can be 

reduced to 23 items. 
Model 3 supposes as many position parameters as item positions are given, ignoring 

which item problem is given at this position. That is, in this model the item difficulty only 
refers to its position within the test booklet. Again, H0: ih ihσ σ= , but now H1: ( )ih igσ λ= . 
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Table 4 provides a formal description of the models: 
 
 

Table 4:  
Definition of the models 

 
model 0 G1: 

1 1
*
i iσ σ=  u = 6 × 22 

= 132 
 G2: 

2 2
*
i iσ σ=   

 G3: 
3 3

*
i iσ σ=   

 G4: 
4 4

*
i iσ σ=   

 G5: 
5 5

*
i iσ σ=   

 G6: 
6 6

*
i iσ σ=   

model 1 G1, G2, G3, G4, G5, G6: * * * * * *
1 2 3 4 5 6 ( )i i i i i i i igqσ σ σ σ σ σ σ λ= = = = = = +  u = 23 

model 2 G1, G2, G3, G4, G5, G6: * * * * * *
1 2 3 4 5 6i i i i i i iσ σ σ σ σ σ σ= = = = = =  u = 22 

model 3 G1, G2, G3, G4, G5, G6:
( )

,
ih ihl l ih

h l
qσ η λ= +∑  u = 22 

 
 
G1 (2,3,4,5,6) refers to groups 1 (2,3,4,5,6). *

ihσ  are the item parameters of the Rasch 
model analysis. σi refers to the item problem parameters (k = 23). λ is a global position or 
learning parameter, u is the number of parameters to be estimated within the 4 models. One 
parameter per model is not to estimate because of standardizing conditions. 

The LLTM can be applied to an experimental design with hierarchical testing, in which 
independent parameters are estimated for each item under each experimental condition in a 
so-called saturated model. This constitutes the core condition of hierarchical testing. The 
saturated model can then be opposed to any model containing a restricted number of parame-
ters using Likelihood Ratio tests. To estimate a saturated model for the present study, each 
person would have to answer to all test forms, which is impossible because of massive trans-
fer effects. The conditions of independent parameters per item and experimental condition 
can also be met using a quasi-saturated model, where subgroups of persons work with differ-
ent test forms. One parameter is estimated for each item under each condition, resulting in 6 
× 23=138 virtual item parameters for the quasi-saturated model (model 0). 
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Results 
 
The estimated log-likelihoods for the models can be seen in Table 5: 
 
 

Table 5:  
Degrees of freedom and log-Likelihood of the models 

 
model  df −ln L 

model 0 quasi saturated model 132 3467,639947 
model 1 23 item parameters, 1 position 

parameter 
23 3524,062746 

model 2 23 item parameters 22 3525,280193 
model 3 23 position parameters 22 4565,347449 

 
Andersen’s Likelihood Ratio tests can determine whether models 1 through 3 describe 

the data as well as the quasi-saturated model 0. Hence, model 0 always represents the null-
hypothesis, to be tested against models 1 through 3, which represent the respective alterna-
tive hypotheses. Table 6 gives a summary. 

 
 

Table 6:  
Results of the LRT 

 
 df 2χ  2

.05αχ =
 

model 0 vs. model 1 109 112.8456 136.59 
model 0 vs. model 2 110 115.2805 135.48 
model 0 vs. model 3 110 297.5784 135.48 

 
 
As shown, models 1 and 2 fit well, indicating that the data are not described any worse 

by a reduction from 138 (quasi-saturated model) to 23 (model 1) and 24 (model 2) parame-
ters. Model 3, in which the likelihood of the data is explained solely through item position, 
must be rejected.  

To test whether the position parameter contributes significantly to the model, one can 
easily stay within the framework of hierarchical testing: The Likelihood Ratio test opposes 
the probability of the data in model 1 to that of the data in model 2: 

 

( ) 22 3524.062746-3525.280193 =2.434894~
as
χ−  

 
As the critical 2χ for 5% (df =1) is 3.841, the data are not explained any worse with the 

fewer number of parameters of model 2, the position parameter does not seem to be of value. 
Two graphs demonstrate the results: 
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Figure 3: 

Item difficulty parameters for all test groups. 
 
 
In Figure 3, item difficulties of all test groups are ordered according to test Group 1, i.e. 

to the original item order of the Viennese Matrices. Please note that the item parameters are 
in fact item easiness parameters. The descending lines indicate that the items for all groups 
show nearly the same difficulties relative to the items preceding or following.  

By contrast, Figure 4 shows the item difficulty parameters for the study groups ordered 
for item position. Each position, 1 through 23, in fact shows six different item difficulties. 
As position does not contribute to item difficulty, no distinct pattern can be seen.  

 
 

Conclusion 
 
The results indicate no evidence for position effects within the Viennese Matrices. In the 

context of this study, position effects were assumed as linear and constant for each position 
within the test series. In this case, the data are not explained any worse by means of only 23  
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Figure 4:  

Item difficulty parameters arranged according to item position 
 
 

actual item problem parameters as opposed to 138 (virtual) item parameters in the quasi-
saturated model. The LLTM makes it possible to deal with the problem of position effects 
rather economically. The testing occasion, however, may have contributed to this result insofar, 
as 5 items were presented before the test session started: One introductory example, three exer-
cise items and one warming up item. The exercise examples include all three elementary opera-
tions that are responsible for item difficulty, even though in a very easy version.  
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