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Analysing latent constructs via a derived 
metric paired comparison approach:  
An application to students’ emotions in 
mathematics 

Alexandra Grand1 

Abstract 

In this article we suggest an approach for the analysis of sets of items using the method of paired 
comparisons. We applied the proposed approach to a students’ survey of emotions typically experi-
enced while learning mathematics by focusing on the relative dominance of these emotions. The 
emotions of interest were: enjoyment, pride, anger, anxiety, boredom and shame which were each 
measured by a set of items and for which we want to obtain an ordering on a continuum. In a first 
step we evaluated the quality of items by using a method of non-parametric Rasch model tests. The 
item sets of the emotions enjoyment, anxiety and boredom met the properties of a Rasch model. As 
a result of fitting Rasch models, we obtained person “emotion” parameter estimates. We then 
derived for each individual metric paired comparison responses from the obtained person parameter 
estimates and directly modelled these derived relative responses by fitting a beta regression model. 
This model is similar to generalized linear models (GLMs). The proposed model accounts for 
bounded metric paired comparison data in (0,1) where subject covariates and object-specific co-
variates can also be incorporated. We found that there is a tendency, the higher the positive dis-
crepancy between the self concept of maths ability and the averaged perceived maths ability of 
students the more enjoyment and the less anxiety is typically experienced while learning mathemat-
ics. 
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Introduction 

In many sciences, for example, psychology, social sciences or economics (especially in 
the field of marketing), items with a graded response format are commonly used in self-
reporting surveys. Usually, the intention is to obtain an absolute measure for a latent 
construct (e.g. attitudes, abilities, values, emotions, attributes, etc.) on the basis of an 
item set. A two-point rating scale with the response categories disagree, agree or a four-
point rating scale with the categories strongly dissatisfied, dissatisfied, satisfied, strongly 
satisfied, may be examples to name only some. Usually two-point up to seven-point 
rating scales are used in surveys depending on the research question. To come up with a 
measure or measures representing the latent construct(s) one common technique is to 
build the sum of the scores of the items in a set. In practice it is often assumed that all 
items of a set refer to one latent dimension, that respondents do not differ in their inter-
pretation of labelled response categories and that the response categories are equidistant 
and ordered. Concerning the latter issue, Rasch (1961) presented an unidimensional 
model for multicategorical data which defines the probability that person i responds to 
item k in category h ( 0,  , h m= … ). He mentioned that this model can also be extended to 

multidimensional cases (see also e.g. Kubinger, 1989; Andersen, & Olsen, 2001). Ap-
proaches to give up the (questionable) assumptions commonly used in item response 
theory (IRT) are to fit a Rasch model (Rasch, 1960), in the case of dichotomous response 
categories, a Rating Scale model (Andrich, 1978) or a Partial Credit model (Masters, 
1982) for polytomous data (see also e.g. Kubinger, 1989; van der Linden, 1997) and then 
test the assumptions of Rasch model fit via parametric or non-parametric methods. These 
are unidimensionality, local stochastic independence, monotone increasing item charac-
teristic curves, specific objectivity (see also Scheiblechner, 2009) and sufficient statistics 
(for details see e.g. Fischer, 1974; Fischer & Molenaar, 1995). From such approaches we 
obtain reasonable person parameter estimates on an interval scale level. Another tech-
nique for the analysis of sets of responses made on a labelled κ -point response scale is 
to focus on the relative importance, preference etc. of items in a set. Dittrich, Francis, 
Hatzinger, and Katzenbeisser (2007), for example, proposed a paired comparison method 
where dichotomous or trichotomous paired comparison responses were derived from 
Likert-scale responses with the aim to obtain a relative ordering of a set of items. In 
paired comparison studies individuals are asked to repeatedly decide for one of two 
presented objects (of a set of J objects), i.e. either for object j or for object k in a given 

comparison (jk) over ( )( )1 / 2
2

J
J J

 
= − 

 
C  paired comparisons. There are only two 

possible responses (preference for object j, denoted by (jk)j or preference for object k, 
(jk)k) in each comparison by simply ignoring the degree of preference. Dittrich et al. 
(2007) derived judgements via pairwise comparison of J items of a given item set where, 
for example, a response score of 1 of item j only expresses a lower importance than a 
response score of 3 of item k, for a given person i. Equal response scores indicate no 
preference for one of the two items compared, i.e. a tie. For modelling paired comparison 
data the well-known Bradley-Terry (BT) model (Bradley & Terry, 1952) is commonly 
used. The BT model is defined by the probability of preferring object j to object k in the 
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comparison of object (jk). It can be seen as a special case of the Rasch model, where not 
persons are compared against items but items are compared against items, and as a spe-
cial case of the model of Cox (1970), for details see e.g. Kubinger (1989).  

In this article we refer to sets of items or statements, each measuring a latent construct, 
and present a method where we first use Rasch models to obtain person parameter esti-
mates of the latent constructs of interest and second use a BT model to obtain a relative 
ordering of these latent constructs. We explicitly model the degree of relative preference, 
dominance, importance, ability etc. of a set of latent constructs using the method of 
metric paired comparisons (see e.g. Grand & Dittrich, 2014). Let J latent constructs be 

the objects of interest for which we build 
2

J 
 
 

 paired comparisons. By pairwise compar-

ing the person parameter estimates in each comparison for each individual, we obtain 
derived relative responses (which can be thought to be made) on a bounded metric paired 
comparison scale indicating the degree of dominance of one latent construct (i.e. object) 
compared to another. As these responses do not originate from real paired comparison 
tasks, but were afterwards constructed, we termed such responses derived. The metric 
paired comparison approach allows us to model the degree of preference in paired com-
parisons reported on a metric bounded response scale.  

A practical example for using the proposed method would be the measurement of rela-
tive satisfaction with J different attributes (the objects) of a holiday-booking web site of 
a destination. It might be of interest which of the attributes is ranked highest according to 
satisfaction and, for example, if the relative ordering of attributes differs for females and 
males or for people with more or less experience in online-booking. The J latent con-
structs could be each assessed by a set of items where persons can state their degree of 
agreement on a 4 -point rating scale. By applying the suggested method person satisfac-
tion parameter estimates for each attribute were obtained. From these parameter esti-
mates continuous paired comparison responses were derived and a metric paired compar-
ison model fitted. As a result parameter estimates of the attributes indicating the relative 
amount of satisfaction were obtained. These can be located on a continuum where the 
distances between the attributes can be interpreted in a reasonable way, which might be a 
useful guidance for improvement and further development of the holiday-booking web 
site.  

The aim of this article is to present the approach of derived metric paired comparisons 
where possible effects of subject covariates and/or object-specific covariates (see e.g. 
Dittrich, Hatzinger, & Katzenbeisser, 1998) on the relative preference ordering can be 
modelled.  

 
In this study we were interested in emotions (i.e. achievement emotions) that may typi-
cally be experienced by individuals in the context of academic learning. Referring to the 
control-value theory, emotions can be defined as multi-component constructs, sets of 
interrelated psychological processes with affective, cognitive, motivational and physio-
logical components (cf. Pekrun, 2006; Pekrun, Goetz, Frenzel, Barchfeld, & Perry, 
2011). Achievement emotions can be classified by the object focus (activity vs. outcome 
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emotions), the valence (positive vs. negative emotions) and the degree of activation 
implied (activating vs. deactivating emotions), see e.g.  Pekrun, Frenzel, Goetz, and 
Perry (2007).  

Emotions are assumed to play an important role in the process of learning. Positive acti-
vating emotions like enjoyment or pride correlate positively with interest, intrinsic and 
extrinsic motivation and academic achievement. They are positively related to the effort 
spent on academic tasks, metacognitive learning strategies, critical thinking, self-
regulated learning and they can facilitate creative and flexible problem solving strategies. 
Learning related enjoyment has a negative correlation with task-irrelevant thinking and 
may have a positive effect on the flow experience (cf. e.g. Pekrun, Goetz, Titz, & Perry, 
2002a, 2002b). However, emotions are linked to the learning process and they can possi-
bly be influenced by shaping the learning environments of students (cf. e.g. Pekrun et al. 
2002a; Pekrun et al. 2007).  

We suppose that especially learning for mathematics is charged with emotions. Each 
student of the WU (Vienna university of business and economics) has to pass a test in 
mathematics as one prerequisite to pursue her/his study. At each semester several maths 
courses are provided for students to prepare for the test. Students also have the oppor-
tunity to use the e-learning platform Learn@WU where all course materials are available 
and where sequences of the mathematics lectures can be viewed (lecturecasts). They can 
simulate tests, check their knowledge by solving mathematical tasks, obtain solutions 
and have the opportunity to discuss problems at a forum.  

There may be a great diversity of emotions that can be experienced by students in the 
context of learning mathematics. Pekrun et al. (2002a), for example, named achievement 
emotions that are most often reported in qualitative studies. Following these findings, we 
limited the range and selected the emotions enjoyment, pride, anger, anxiety, boredom 
and shame for our self-reporting online survey. There are several methods to assess 
emotions, for example qualitative interviews, observations (e.g. facial expressions) or 
psychophysiological approaches (e.g. brain imaging techniques). However, in practice 
self-reported surveys are commonly used for assessing individual experienced emotions. 

The aim of this study is to obtain a ranking of specified learning related emotions in 
mathematics on a continuum of relative dominance. We are further interested if this 
ordering is different for various groups of students. In the following section we introduce 
the steps and methods required for transforming graded response data into metric paired 
comparison data and then continue with the application section. 

Transforming graded response data into metric paired 
comparison data 

The idea is to obtain for each individual person parameter estimates of latent constructs 
of interest and then pairwise compare these on a metric bounded paired comparison 
scale. This approach can be described in three steps as follows: 
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1. Selecting Rasch model conform sets of items and obtaining person parameter esti-
mates. 

 

First we test if the sets of items are each Rasch model conform (i.e. that the data fit 
the model). In the case of items with dichotomous response categories, i.e. binary 
observed responses, we usually fit a Rasch model and in the case of items where the 
responses are made on a categorical κ –point rating scale, 2κ > , we fit a Rating 
Scale or Partial Credit model for each item set separately. We then check for the 
properties of the Rasch model. Commonly used parametric methods are, for exam-
ple, Andersen LR tests, Wald tests, item-fit indices, person-fit indices, graphical 
model checks (see e.g. Mair & Hatzinger, 2007; Kubinger, 1989). For a small sam-
ple size non-parametric goodness-of-fit tests for the Rasch model (e.g. for invari-
ance, local dependence and/or homogeneity, discrimination) may be an appropriate 
alternative (see e.g. Rasch, 1960; Rasch, 1961; Ponocny, 2001; Koller & Hatzinger, 
2013). 

 

We suggest estimating the item parameters of the Rasch-family models through a 
conditional maximum likelihood (CML) method and using unconditional maximum 
likelihood (ML) for person parameter estimation (where the item parameter esti-
mates are assumed to be known from prior CML estimation). One problem may be 
that there exist no person parameter estimates for zero and full scorer, but we can 
approximate values by using spline interpolation, for example. 

 

 

2. Deriving metric paired comparison responses from the obtained person parameter 
estimates of the latent constructs of interest (i.e. the objects in the paired compari-
sons). 

From J objects we obtain 
2

J 
 
 

 paired comparisons. For example, having three ob-

jects we build three possible paired comparisons: (12), (13) and (23), where the ob-
jects are labelled with 1, 2 and 3 for ease of notation. In each paired comparison re-
sponses can be derived on a bounded metric paired comparison scale ,a a−   , with a 

predefined known value of a . We determine the bounds –a, a by the lowest and the 
highest approximated value over all person parameter estimates, respectively. Met-
ric paired comparison responses are derived by comparing the estimated person pa-
rameters of the objects of interest. 

For example: Let 1, 1 9ˆ .iθ =  be the person parameter estimate of object 1 and 

2,
ˆ .4iθ =  the estimate of object 2 of individual i. The derived response 12,

d
iy , denoted 
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by d, in the paired comparison (12) of individual i is defined as: 

12, 2, 1,
ˆ .5ˆ 1d

i i iy θ θ= − = −  (see Figure 1).  

 

 
Figure 1: 

Derived response in the comparison of object 1 and object 2 on a bounded metric paired 
comparison scale. 

 
Derived responses < 0 indicate preference for the first object (j) and derived re-
sponses > 0 preference for the second object (k) in a given paired comparison (jk). A 

tied response (i.e. no preference) is indicated by , 0d
jk iy = . We then say that object 1 

is preferred over object 2 by 1.5 units.  

 

 

3. Modelling derived metric paired comparison data. 

 

For the analysis of metric paired comparison data we suggest using a beta regression 
model (Smithson & Verkuilen, 2006) for continuous response variables restricted to 
the interval ( )0,1 . The model structure is similar to those of generalized linear mod-

els (GLMs) and includes two linear predictors: one for the location parameter μ  

and the other for the precision parameter φ  (cf. e.g. Smithson & Verkuilen, 2006; 

Cribari-Neto & Zeileis, 2010; Simas, Barreto-Souza, & Rocha, 2010): 

( )1 1   ,Tg μ η= =x λ  

( )2 2   ,Tg φ η= =z γ  

where ( )g C  is a link function, λ  and γ  are vectors of unknown parameters and x  

and z  are covariate vectors. 

First we have to transform each derived random variable ,
d
jk iY  in ,a a−    into the in-

terval ( )0,1 . Following the proposed transformation of Smithson and Verkuilen 

(2006) we take two transformation steps. In a first step the derived response variable 

,
d
jk iY , is squeezed so that we obtain a one times (indicated by *) transformed random 

variable *
,

d
jk iY  in the interval 0,1     and in a second step we obtain a two times trans-

formed variable **
,

d
jk iY  in ( )0,1  by: 

object 1 object 2 
-a 0 a 

x
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( )*
, ,  1 0.5

2
* **

, , ,    ,

d d
jk i jk iY a Y n

a n
d d d
jk i jk i jk iY Y Y

+ − +

→ →

C

 

where n is the sample size (cf. Smithson & Verkuilen, 2006; Grand & Dittrich, 
2014). A tie is represented by **

, .5d
jk iY = , a value close to 0 indicates the most fa-

vourable and a value close to 1 the least favourable response for object j. Let the two 
times transformed response **

,
d
jk iy  be the realization of the random variable **

,
d
jk iY  for 

which we assume a beta distribution.  

Second, we specify the transformed random variable in the interval (0,1) as the re-
sponse variable and apply a logit-linear Bradley-Terry model (Bradley & Terry, 
1952) to the logistic mean structure of a beta regression model. The beta regression 
model for paired comparisons for judge i for the comparison (jk) is defined by: 

 ( )jk,i 1 ,logit μ ln ln ,     where    ln  .

j

j k j
j k jk i j j

k k

j k

π
π π π

λ λ η λ ππ π
π π

 
 +   = = = − = =      + 

 (1) 

The parameter jλ  characterizes object j. For identifiability we set Jλ  to be zero. 

The relationship between the λ ’s and the π ’s, the worth parameters, is given by: 

( )
( )1

exp

exp

j

j J

jj

λ
π

λ
=

=


. We labelled model (1) the BBTR model, i.e. beta Bradley-

Terry regression model (see Grand & Dittrich, 2014) where we assume independ-
ence between the derived judgements of the n individuals and between the derived 
paired comparisons. The design structure of a BBTR model is shown in Grand and 
Dittrich (2014). 

Application to a data set of students emotions’ in mathematics 

The online-survey consisted of six item sets each with four or five items. The emotions 
of interest were: enjoyment, pride, anger, anxiety, boredom and shame. In total students 
were asked to respond to 29 statements (items) on a four-point rating scale ranging from 
strongly disagree to strongly agree. The items were chosen from the questionnaire of 
Pekrun, Goetz, and Perry (2005). We slightly altered the statements where necessary and 
translated them into German. The subject covariates used in this study are: 

– gender (sex):  categorical subject covariate (sex: male, female). 

– comparative ability (cab): numeric subject covariate derived by comparing the self 
concept of ability in mathematics (ab) and the perceived 
average of students’ ability in maths (pab), each meas-
ured on a self-reported scale ranging from 0 = low abil-
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ity to 100 = high ability. It can be calculated as follows: 
cab = ab – pab, where a negative sign indicates that stu-
dent i has rated her/his ability in maths below the aver-
aged perceived ability of other students and vice versa. 

– learning resources (lr): originally students could respond in one of four response 
categories (e-learning (Learn@WU), paper-based learn-
ing, peer-learning and lecture learning) according to pre-
dominantly used learning resources. Afterwards we 
merged them into two response categories: e-learning re-
sources and all other resources except of e-learning (i.e. 
lr1: e-learning, lr2: no e-learning) because there were no 
observations for lecture learning and only few students 
chose the category peer-learning. 

 

Studies of Goetz, Pekrun, Zirngibl, Jullien, Kleine, vom Hofe, and Blum (2004) and 
Frenzel, Pekrun, and Goetz (2007), for example, showed that gender, individual achieve-
ment and the averaged class achievement have an influence on emotions experienced in 
mathematics. We assume that a positive discrepancy between the self concept of ability and 
the perceived ability of other students (the social reference frame) may have a positive 
effect on beliefs of personal competence or control. For example, if students perceive that 
they are better than their colleagues at university, i.e. show a high comparative ability, this 
may have a positive effect on students’ control-related beliefs regarding achievement in 
mathematics. An activation of these beliefs will lead to viewing challenging tasks as being 
manageable and to positive emotions, like enjoyment (Pekrun et al., 2007). In contrast, a 
low level of control-related beliefs may result in negative emotions, like anxiety or anger 
(cf. Goetz, Cronjaeger, Frenzel, Lüdtke, & Hall, 2010). 
The study was conducted at the end of the winter semester 2012/2013. All students of the 
WU who are possibly in the stage of learning mathematics received an e-mail, a short 
time before the maths test took place. They were asked to participate in an online-survey 
of emotions typically experienced while learning mathematics. By eliminating one re-
sponse vector with a missing value we obtained a sample size of n = 111 (male = 44, 
female = 67).  

Method 

The proposed method including the main steps of transforming dichotomous responses 
into metric paired comparison data applied to the data set of students’ emotions, is illus-
trated in Figure 2 and will be described in this section.  

The sample size of n = 111 was relative small. We dichotomized all items where re-
sponses can be made in four response categories to two response categories: disagree 
and agree (see also Discussion) and fitted for each of the six item sets a Rasch model 
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with the R-package eRm (Mair, Hatzinger, & Maier, 2012). The Rasch model defines the 
probability that person i agrees on item k: 

( ) ( )
( )

exp
| ,   ,

1
ik i k

ik ik i k
i k

x
P X x

θ β
θ β

θ β
 − = =
+ −

 
where ikx  is the observed response (coded with 1 for agreement and 0 for disagreement) 
of individual i, 1, , i n= … . The parameter iθ  is the person parameter or in this study the 
emotion parameter of person i and kβ , 1, , k K= … , is the item parameter of item k 
which indicates the difficulty to agree on that item. 

The item parameters, the kβ ’s, were estimated independent from the person “emotion” 
parameters by conditional maximum likelihood (CML). The iθ ’s, the person “emotion” 
parameters were estimated using a maximum likelihood method. Note that the emotion 
parameters for full- and 0-scorers cannot be estimated but instead were spline interpolat-
ed to receive a value (for interpolation a minimum of five items is required).  

An appropriate method to check for Rasch model conformity in a small sample is the 
method of non-parametric goodness-of-fit tests. With this method quasi-exact Rasch 
model tests can be conducted where, simply speaking, an arbitrary chosen number of 
random samples of data matrices, with the same item and person margins as obtained 
from the observed data matrix, are simulated and compared with the observed matrix. 
Only the elements of the data matrices are changed by keeping the margins fixed (see 
e.g. Verhelst, 2008; Koller, Alexandrowicz, & Hatzinger, 2012; Koller & Hatzinger, 
2013). We found that the item sets of the emotions enjoyment, anxiety and boredom are  
 
 

 
Figure 2: 

Overview: transformation into derived metric paired comparison data 
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Rasch model conform (see Appendix) and built three pairs of emotions, i.e. enjoyment, 
anxiety (ea); enjoyment, boredom (eb) and anxiety, boredom (ab). In a next step we 
derived for each individual i responses in each paired comparison (jk) by comparing the 

estimated emotion parameter ,
ˆ

j iθ , characterizing emotion j, and ,
ˆ
k iθ  characterizing, 

emotion k: , , ,
ˆ ˆd

jk i k i j iy θ θ= −  (see also Figure 2). A negative sign indicated preference for 

the first emotion j and a positive sign preference for emotion k in a given paired compar-
ison (jk). The derived responses could then be located on a bounded metric paired com-
parison scale. The bounds of this response scale were specified by the theoretical values 
–8.4 and +8.4, i.e. the highest possible minimum value 4.5eθ = −  and maximum value 

3.9eθ = , respectively, over all emotion parameters. 

As we could not derive a response with the value –8.4 or 8.4 (because we did not com-
pare the emotion enjoyment by itself) we transformed the random variable ,

d
jk iY  which 

takes on values in (–8.4, 8.4) into the interval ( )0,1  as follows: ,*
,

8.4
 

2 8.4

d
jk id

jk i

Y
Y

+
=

C
. We 

assumed that the one time transformed random variable *
,

d
jk iY  is beta distributed and 

fitted a beta Bradley-Terry regression (BBTR) model by using R (R Development Core 
Team, 2013) and the packages prefmod (Hatzinger, 2012) for construction of a corre-
sponding design structure and betareg (Zeileis, Cribari-Neto, Grün, Kosmidis, Simas, & 
Rocha, 2013) for estimating the parameters of interest. 

For model selection of nested BBTR models we used a likelihood ratio test. In general, 
for all analysis in this article we committed a type-I-risk of .05α = . 

Results 

We started by fitting a basic BBTR model (see Table 1, 0-model) without subject covari-
ates to get an initial overview. The object parameter estimates of this model (listed in 
Table 1) can be interpreted in terms of the higher a negative value the more dominant an 
emotion and the higher a positive value the less dominant an emotion. To simplify inter-
pretation we reversed (denoted by r) these object parameter estimates, i.e. we multiplied 

them by 1− , e.g. ˆ ˆ* 1  .331r
enjoyment enjoymentλ λ− = = . Higher values now indicate a more 

dominant emotion and vice versa. These reversed object parameter estimates are shown 
in Figure 3. We can see in Figure 3 that enjoyment was ranked first, followed by anxiety 
and with distance followed by boredom (enjoyment > anxiety > boredom). However, we 
were interested if the ordering of the three learning related emotions may be different for 
various groups of students, i.e. if the incorporation of subject covariates (see also e.g. 
Dittrich et al., 1998; Francis, Dittrich, Hatzinger, & Penn, 2002; Grand & Dittrich, 2014) 
would significantly improve the model fit. We started our model selection process with a 
full BBTR model, i.e. a three-way interaction model consisting of the categorical subject 
covariates gender (sex) and learning resources (lr) and the numerical subject covariate 
comparative ability (cab). 
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Table 1: 
Estimates of nested BBTR models 

estimates two-way 
interaction 
model (s.e.) 

0-model (s.e.) 

enjoyment –.204 (.201) –.331 (.060) 
anxiety –.147 (.116) –.222 (.060) 
boredom 
enjoyment:lr2 
anxiety:lr2 
boredom:lr2 

0 (NA) 
–.453 (.356) 
–.201 (.206) 

0 (NA) 

0 (NA) 
- 
- 
- 

enjoyment:cab .000 (.009) - 
anxiety:cab .015*(.005) - 
boredom:cab 
enjoyment:lr2:cab 
anxiety:lr2:cab 
boredom:lr2:cab 
lr1 (e-learning) 
lr2 (no e-learning) 
cab 

0 (NA) 
–.017* (.006) 

.002 (.006) 
0 (NA) 

–.013 (.143) 
.046 (.206) 

–.001 (.006) 

- 
- 
- 
- 
- 
- 
- 

precision submodel:   
phi 7.021 (.512) 5.582 (.400) 

log-likelihood 121.6 83.84 
number of estimated parameters 12 3 

 
 

Based on a likelihood ratio test and backward elimination we selected a model with a 
two-way interaction between learning resources (lr) and comparative ability (cab) with a 
constant precision parameter (see Table 1, two-way interaction model). We again re-
versed the estimated parameters of the selected model. On basis of the reversed object 
and interaction parameter estimates we calculated the estimates of the worths (the ˆ jsπ ) 
by ensuring that the sum of the worths is equal to one for a given level of the subject 
covariate learning resources (lr) and a given value of the covariate comparative ability 
(cab).  

Example: For illustrative purposes suppose that we are only interested in the worth of the 
emotion anxiety. The worth of anxiety for the group of students who uses e-learning (lr1) 
and who rates their ability in maths above the averaged perceived ability of students, i.e. 
cab = 20, can be calculated by: 

:

:1

exp  20 exp .147 .291
.281

3.085exp

ˆ

ˆ  20

ˆ

ˆ

r r
anxiety anxiety cab

J r r
j j cabj

λ β

λ β
=

 + −    = =
 + 

 , 
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see also Figure 4, left plot. The parameter anxietyλ  is the parameter of anxiety for the 
group of students who mainly uses e-learning (lr1), i.e. the reference group, the first 
level of the covariate learning resources (lr), and :anxiety cabβ  is the interaction parameter 
between anxiety and the covariate comparative ability (cab) of the e-learning group (lr1).  

The worth of anxiety for students, with cab = 20, who do not mainly use e-learning re-
sources (lr2) can be obtained by: 

( )
( )

: 2 : : 2:

: 2 : : 2:1

exp  20 exp .348 .334
.216

ˆ ˆ ˆ ˆ

4.695exp ˆ 0ˆ ˆ ˆ  2

r r r r
anxiety anxiety lr anxiety cab anxiety lr cab

J r r r r
j j lr j cab j lr cabj

λ λ β β

λ λ β β
=

 + + + −     = =
 + + +  

  , 

where : 2anxiety lrλ  is the interaction parameter between anxiety and the second level of the 

covariate learning resources lr (i.e. lr2, the no e-learning group). This parameter indi-
cates the change of anxietyλ  for group lr2. The parameter : 2:anxiety lr cabβ  is the interaction 

parameter between anxiety, the second level of the covariate lr and the covariate cab. 
The worth parameters of the selected model for the group of students who mainly uses e-
learning as resource for learning mathematics and the group who mainly uses other re-
sources (paper-based learning, peer-learning), denoted by no e-learning, are shown in  
 

 
Figure 3: 

Plot with a 95 % - confidence line for the estimated object parameters. Note that the object 
boredom has no confidence line as it is defined as the reference object  (i.e. set to be zero) in 

this model fit 
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Figure 4. The x-axis of the worth plot (see Figure 4) shows the covariate comparative 
ability (cab) ranging from 70−  to 50+ . A value of cab below zero means that the maths 
ability of a student is below the averaged perceived ability, zero indicates equivalence 
and a value above zero can be interpreted that a student rated her/his ability above the 
maths ability of other students. The y-axis shows the estimated worth parameters, where 
the higher the value the more dominant an emotion while learning mathematics. We can 
see in Figure 4 that for both groups the ordering of the emotions varies according to the 
value of the covariate comparative ability. For students who report equivalence (cab = 
0), i.e. whose self concept of ability is conform with the perceived averaged ability of 
other students, enjoyment is the first ranked emotion followed by anxiety and the least 
experienced emotion boredom. For students with cab = 0 who mainly use e-learning 
resources the worths of the three emotions are relatively close together, which means that 
enjoyment, anxiety and boredom are similarly dominant while learning mathematics. 
Whereas for students with cab = 0 who do not mainly use e-learning resources the 
worths differ, showing gaps between the emotions. In general, there is a tendency that 
the higher the comparative ability the less anxiety and the more enjoyment is experi-
enced while learning mathematics, whereas this tendency seems to be much stronger for 
the no e-learning group (see Figure 4). For students with low comparative ability who  
 

 
Figure 4: 

Plot of worth parameters according to the covariate comparative ability for the group of 
students who mainly use e-learning and for those who do not 
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mainly use other resources than e-learning boredom is ranked on the second place 
whereas for students who use e-learning resources boredom is the least experienced 
emotion. A more detailed look at the object parameter estimates for students who rate 
their maths ability much lower than the averaged perceived ability of students (i.e. cab = 

60− ) and who predominantly use e-learning shows that the distance between the esti-
mated parameters of the emotions anxiety and enjoyment (i.e. 

( ) ( ), : :
ˆ ˆ ˆ ˆ* 60 * 60 .802r r r r

anxiety enjoyment anxiety anxiety cab enjoyment enjoyment cabλ β λ βΔ = + − − + − = ) is less 

than for students who do not use e-learning (i.e. , 1 .682anxiety enjoymentΔ = ). For students 

who rated their comparative ability relatively high (e.g. cab = 40) the object parameter 
estimates of the first ranked emotion enjoyment and the second ranked emotion boredom 
differ far less ( , .194enjoyment boredomΔ = ) for students who mainly use e-learning resources 

than for students who do not ( , 1.316enjoyment boredomΔ = ). 

Discussion 

The presented approach is a method for analysing latent constructs. It is suitable in situa-
tions where someone is interested in explicitly modelling relative judgements and obtain-
ing a relative preference ordering of a set of latent constructs.  

This method is appropriate for data sets with no missing values which meet the require-
ments of a Rasch model. Metric paired comparisons can be analysed by fitting a beta 
regression model in a similar manner to generalized linear models, provided that a corre-
sponding design structure has been built up. Subject covariates and object-specific co-
variates can be incorporated into the suggested model and model selection can easily be 
done through likelihood ratio tests of nested models. 

The sample size of n = 111 was relatively small so that we decided to evaluate the quality 
of the items by non-parametric goodness-of-fit tests of Rasch models. We collapsed the 
four-point into two-point items and fitted Rasch models. Of course, the items with a di-
chotomous response scale still have to be checked in original by collecting a new sample to 
give reasonable statements about the Rasch model properties. Therefore the findings in this 
article should be interpreted carefully. Moreover, the excluded emotion item sets in this 
study should be inspected in more detail to find possible reasons for non Rasch conformity. 

We found that gender (sex) has no significant effect on the ordering of the learning relat-
ed emotions and selected a two-way interaction model with the covariates learning re-
sources (lr) and comparative ability (cab). For students with high comparative ability 
who do not mainly use e-learning resources, enjoyment is, with great distance, the first 
ranked emotion followed by boredom. Students who mainly use other learning resources, 
e.g. paper-based resources, may obtain further information, explanations and more in-
sights in the theory behind, have the opportunity to easily take notes, draw pictures etc. 
and actively practice learning. Students might enjoy a higher level of activity which can 
be set compared to a restricted interactive form of learning with compressed information 
provided at the e-learning platform. However, possible reasons regarding differences in 
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students’ emotions according to learning resources have to be further explored and ana-
lysed in following studies. 
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Appendix 

Table 2: Outcomes of non-parametric Rasch model tests 

 
Bonferroni-corrections are indicated by α* . The p-values were based on n = 150 simulated data matrices. Values in 
parentheses are the p-values obtained from testing if the items for a given group are too difficult as expected under the 
Rasch model. To be able to replicate these outcomes we fixed for each goodness-of-fit test a different starting point. 

non-parametric model tests enjoyment items anxiety items boredom items 
subgroup invariance (global) 
internal split criterion:

mean ( mean, > mean) 
external split criteria:

sex  (male, female) 
comparative ability  
(  0,  0) 
mainly e-learning (yes, no) 

* .05 / 4 .0125

.493

.040

.087

 .067 

* .05 / 4 .0125

.173 

.227 

.020

 .733 

* .05 / 4 .0125

.113

.367

.693

 .033 
subgroup invariance  
on item level:

emotion group  mean 
item 1 
item 2 
item 3 
item 4 
item 5 
female group 
item 1 
item 2 
item 3 
item 4 
item 5 
group with  
comparative ability  0
item 1 
item 2 
item 3 
item 4 
item 5 
no e-learning group 
item 1 
item 2 
item 3 
item 4 
item 5 

* .05 / 4 .0125

1.000 (.633) 
 .840
.813
.293
.420

 .960 (.140) 
.793
.720
.020
.680

.967 (.053) 
.180
.520

.993 (.093)
.073

.053
.987 (.020)

.320

.360
 .947 (.213) 

* .05 / 4 .0125

 .920 (.327) 
 .273 
 .027 
 .987 (.060) 
 .787 

.980 (.093)
 .147 
 .940 (.147) 

.327

.213

.867
 .053 
 .173 

.987 (.073) 
.693

 .820 
 .707 
 .453 
 .467 
 .660 

* .05 / 4 .0125

 .853 
 .707 
 .020 
 1.000 (.533) 
 .987 (.153) 

 .973 (.140) 
 .553 
 .907 (.400) 
 .393 
 .167 

 .960  (.180) 
 .613 
 .747 

.380 
 .327 

 .507 
 1.000 (.020) 
 .087 
 .933 (.287) 
 .207 

item homogeneity  
split criterion median 

.05
 .393 

.05
 .340 

.05
 .813 

local stochastic independence  
and/or homogeneity (global) 

.05
 .093 

.05
 .060 

.05
 .213 

local stochastic
independence (item level)

* .05 / .005
2
J

no item-pair p < .005 

* .05 / .005
2
J

no item-pair p < .005 

* .05 / .005
2
J

no item-pair p < .005 
discrimination 
item 1 
item 2 
item 3 
item 4 
item 5 

* .05 / 5 .01
.227
.593
.987
.187

 .687 

* .05 / 5 .01
 .827 
 .300 

.013

.880
 .980 

* .05 / 5 .01
.333

 .760 
 .013 
 .973 
 .920 


