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Nonignorable data in IRT models: 
Polytomous responses and response 
propensity models with covariates 

C. A. W. Glas1, J. L. Pimentel2 & S. M. A. Lamers3 

Abstract 

Missing data usually present special problems for statistical analyses, especially when the data are 
not missing at random, that is, when the ignorability principle defined by Rubin (1976) does not 
hold. Recently, a substantial number of articles have been published on model-based procedures to 
handle nonignorable missing data due to item nonresponse (Holman & Glas, 2005; Glas & Pimen-
tel, 2008; Rose, von Davier & Xu, 2010; Pohl, Grӓfe & Rose, 2014). In this approach, an item 
response theory (IRT) model for the observed data is estimated concurrently with an IRT model for 
the propensity of the missing data.  

The present article elaborates on this approach in two directions. Firstly, the preceding articles only 
consider dichotomously scored items; in the present article it is shown that the approach equally 
works for polytomously scored items. Secondly, it is shown that the methods can be generalized to 
allow for covariates in the model for the missing data. Simulation studies are presented to illustrate 
the efficiency of the proposed methods. 
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Introduction 

Missing data are always a source of concern for statistical analyses. It raises the level 
complexity of statistical inference. Many researchers, methodologists, and software 
developers resort to editing the data, although ad hoc edits may do more harm than good 
by producing results that are substantially biased, inefficient and unreliable (Schafer & 
Graham, 2002). One way to address the bias in parameter estimates is the identification 
of the variables that explain the cause of missing data. Below, these explanatory varia-
bles will be called ''mechanism or process'' variables. By including a model for this miss-
ing data mechanism in the estimation we can reduce or eliminate the bias in parameter 
estimates. 

Theoretically, if all the process variables associated with a particular piece of missing 
data can be identified and modeled accurately as controls, the impact of the missing data 
can be statistically adjusted to the point where it is ignorable (Little & Rubin, 1987). In 
practice, it is difficult to identify these process variables for all cases of missing data. 
However, if the given data set contains missing observations, the mechanism causing this 
missingness can be characterized by its variety of randomness (Rubin, 1976) as missing 
completely at random (MCAR), missing at random (MAR) and not missing at random 
(NONMAR).  

In this article, we focus on responses of persons to items and on item nonresponse. Sup-
pose θ and ζ  are the parameters of the observed data and the missing data process, 

respectively, and D is the missing data indicator with elements dik = 1 if a realization xik 
was observed and dik = 0 if xik was missing for persons i and items k. Following Rubin's 
definition, missing data is MAR if the probability of D given the observed data xobs, 
missing data xmis, and observed covariates y does not depend on the missing data xmis, that 
is, if  

 ( | , , , ) ( | , , ).obs mis obsp D x x y p D x yζ ζ=   (1) 

Furthermore, the parameters θ and ζ are distinct if there are no functional dependencies 

between them, that is, restrictions on the parameter space (frequentist version) or if the 
prior distributions of ζ  and θ are independent (Bayesian case). (It should be noted that 

this is a somewhat rough definition, for technical details refer to Rubin (1976), Heitjan 
(1994, 1997), Heitjan and Rubin (1991), and Jaeger (2005)). If MAR and distinctness 
hold, the missing data is said to be ignorable, otherwise the missing data are nonignora-
ble. If ignorability holds, we do not have to take the distribution of D and ζ  into ac-

count, and the consistency of the estimates is not threatened by the occurrence of the 
missing data.  

In the framework of IRT, missing data can be split into four types (Lord, 1974). The first 
consists of missing observations which result from a priori fixed incomplete test admin-
istration and calibration designs. In this case, the missing data are a priori fixed and 
ignorability trivially holds. That is, ( | , , , ) ( | , , ) 1obs mis obsp D x x y p D x yζ ζ= = . The second 

type consists of classes of response-contingent designs such as two-stage and multistage 
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testing  designs and computerized adaptive testing (Lord, 1980). These designs produce 
ignorable missing data, because the design variables D are completely determined by the 
observed responses (see, for instance, Mislevy & Wu, 1996). The third type is ignorable 
missing data that results from unscalable responses such as items missing from booklets 
and responses such as “do not know” or “not applicable”'. Missing pages can be reasona-
bly viewed as missing at random; “do not know”' or “not applicable” are already suspi-
cious and might fall in the next category of missing data. The reason is that it is not 
automatically clear whether the given response (don’t know or not applicable) is accurate 
or an instance of avoidance behavior. The fourth and last type of missing data results 
from a nonignorable missing data mechanism. These will, for instance, occur when low-
ability respondents fail to give responses to specific items as a result of discomfort or 
embarrassment. In the framework of a medical survey, Holman and Glas (2005) report 
that patients with a relatively high functional status boosted the estimate of their ability 
level by failing to respond to items of a physical disability scale. Of course, whether 
ignorability holds or not, needs to be tested in these cases. 

Moustaki (1996, see also Bartholomew & Knott, 1999) developed a general latent trait 
and latent class model for mixed observed variables which applies to Lord's fourth type 
of missing data. Three methods for dealing with nonignorable missing discrete data were 
proposed (O'Muircheartaigh & Moustaki, 1999; Moustaki & O'Muircheartaigh, 2000; 
Moustaki & Knott, 2000). In the first method for the treatment of nonresponse, the miss-
ing value is treated as a separate response category. So the method includes the missing 
values in the analysis of the observed items. That is, it is assumed that responses and 
nonresponses are related to the same attitude dimension or dimensions. 

The second method to deal with nonresponse is computing response propensities. The 
idea is to use a propensity score to weight item responses and respondents to account for 
item and unit nonresponse and to obtain adjusted estimates. This response propensity 
method uses a logistic or probit regression model which is fitted to a binary item re-
sponse-nonresponse variable for the item of interest with a set of covariates. The third 
method is to use a latent variable model with two latent dimensions, one to summarize 
the response propensity and the other to summarize the individual position on the dimen-
sion of interest (such as ability or attitude). As an example, O'Muircheartaigh and 
Moustaki (1999) used a latent variable model for the treatment of item nonresponse in 
attitude scales. This latent variable approach allows missing values to be included in the 
analysis and, equally important, allows information about attitude to be inferred from 
nonresponse. Their method handles binary (dichotomous), metric and mixed (binary and 
metric) manifest items with missing values. The second and third methods are closely 
related: both entail the estimation of a response propensity distribution and can be seen 
as an elaboration of methods of adjustment by propensity scoring proposed by Heckman 
(1979). 

Working within the third approach, Holman and Glas (2005) proposed an IRT model for 
skipped items that allows concurrent estimation of IRT item parameters for both a model 
for the observed dichotomous responses and the missing data indicators. Other applica-
tions pertain to items that are not reached, such as missing item responses at the end of a 
speeded test (Glas & Pimentel, 2008). Rose (2013) generalized these approaches to allow 
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for multidimensional IRT models for the missing data indicators and showed that disre-
garding the multidimensional latent structure can lead to a failure to correct for no-
nignorable item nonresponse. Further, Rose (2013) considered an alternative approach 
where the average number of missing responses is used as a covariate in the distribution 
of the latent variables of an IRT model for the observed responses. This approach has 
both advantages (works well with small sample sizes and small numbers of missing 
responses) and disadvantages (attenuated estimates when the reliability of the covariate 
is low). Finally, Pohl, et al. (2014) studied a version of the model with a combination of 
propensity distributions for omitted and not-reached items. Also, they presented exam-
ples of empirical applications where a propensity distribution was not needed to correct 
for bias in parameter estimates. In such cases, the actually observed responses contain 
enough information to account for missing responses. 

In this article, we generalize model-based adjustment using IRT in two directions: IRT 
models for polytomously scored items and covariates for the propensity distribution. 
This article consists of five sections and is organized in the following manner. After this 
introduction, the model will be outlined and a maximum marginal likelihood (MML) 
estimation procedure will be sketched. Then some simulation studies will be presented to 
illustrate the performance of the procedure. The next section presents an empirical simu-
lation, that is, a simulation using real data, to give an example of how the model can 
work in practice. The article concludes with a discussion.  

IRT models 

General IRT model for missing data 

Suppose, for respondents labeled i = 1,...,N and items labeled k = 1,...,K , that 
{0.,1,2,..., }ikx m∈  is the observed item response and let ( )| 1, , ,ik ik i k kp x d θ α β=  be the 

IRT model for the observed item response with item parameters αk and βk and person 
parameters θi. If 0ikd = , we assume that ikx  is equal to an arbitrary constant c and so 

( | 0, , , ) 1ik ik i k kp x c d θ α β= = = . Let ( ), ,|  ik i k kp d ζ γ δ  be the IRT model for the missing 

data indicator defined above, with item parameters kγ and kδ  and person parameters iζ . 

All parameters may be vector-valued. It is assumed that the person's latent variables have 
a multivariate normal distribution with density ( ), ,  ,|i i ig H yζ θ Σ , where yi are observed 

covariates, H are regression coefficients for the regression of ( ),  i i iλ θ γ=  on yi, and Σ 

is the covariance matrix of the residuals. Note that if the covariates are lacking, Σ reduc-
es to the covariance matrix of the latent person variables. Usually, Σ is restricted to a 
correlation matrix to identify the model. The likelihood of the model is expressed as  

 ( ) ( ) ( )
1 1

, , ,  , ,| | , ,| ,   
N K

ik ik i k k ik i k k i i i
i k

p x d p d g H yθ α β ζ γ δ ζ θ
= =

Σ∏∏  . (2) 
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Note that by the definition of ( ), ,| ,ik ik i k kp x d θ α β , the unobserved values of ikx  are 

ignored in the likelihood given by (2). The idea behind the method is that ignorability is 
violated when the covariance between θ and ζ  is non-zero. In these cases, the estima-

tion procedure must be based on the complete model, so including the model for the 
response propensities. 

Next, we will specify the three densities in formula (2). The propensity distribution 

( ), ,|  ik i k kp d ζ γ δ  must be chosen to reflect the process that caused the missing respons-

es. For instance, Korobko, et al. (2008) choose an IRT model with single peaked re-
sponse curves to model the choice of examination topics. In the present application, we 
assume the simpler situation of skipped items, and choose a propensity model that is a 
multidimensional generalization of the model by Holman and Glas (2005). So also “not 
reached” is not considered here. To model the missing data process, we use a Q1-
dimensional IRT model proposed by Reckase (1985, 1997) and Ackerman (1996a & 
1996b). The probability of an observation is given by  

 

1

1

exp

( 1| , , )

1 exp

Q

kq iq k
q

ik i k k Q

kq iq k
q

p d

γ ζ δ
ζ γ δ

γ ζ δ

 
−  

 = =
 

+ −  
 




 . (3) 

The model becomes the two parameter logistic (2PL) model (Lord & Novick, 1968) 
when Q1 = 1 and the Rasch model (Rasch, 1960) when, in addition, 1kqγ = . 

For the observed responses, we consider the multidimensional generalized partial credit 
model (GPCM; Muraki, 1992). The probability of responding in a category g of item k 
by person i is given by  

 

2

2

1

1 1

exp

( | 1, , , )

1 exp

Q

kq iq kg
q

ik ik i k k Qm

kq iq kh
h q

g

p x g d

h

α θ β
θ α β

α θ β

=

= =

 
−  

 = = =
 

+ −  
 



 
 . (4) 

Note that the model has a Q2-dimensional latent person parameter 
21( ,..., ,..., )i i iq iQθ θ θ θ=

, 
21( ,..., ,..., )k k kq kQα α α α=  are discrimination parameters and 

21( ,..., ,..., )k k kq kQβ β β β=  

are location parameters for the item response categories. 

The latent person parameters iλ  (defined above as the concatenation of θi and iζ  are 

assumed to have a Q-variate normal distribution (Q = Q1 + Q2), that is, 

 ( ) ( )/2 1/2 1| (2 ) | | exp 1/ 2( ) ( ),  ,  Q
i i i i

t t t
i ig H y H y H yλ λπ λ− − −= Σ − − Σ −Σ ,   (5) 
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where H is a P X Q matrix of regression coefficients and Σ is a Q X Q variance-
covariance matrix. Equivalently, the general model for the latent variables can be ex-
pressed in matrix form as 

  YH Eλ = + ,  (6) 

where λ  is the N X Q matrix of latent variables, Y is a N X P matrix of observed covari-
ates, and E is the N X Q matrix of residuals. 

MML estimation 

In the present article, the parameters of the model are estimated by maximum marginal 
likelihood (MML, see, Bock, Gibbons & Muraki, 1988). The likelihood given by formu-
la (2) is marginalized by integrating over the person parameters, such that the marginal 
likelihood given by  

 ( ) ( ) ( )
1 1

.. , , ,  , , , ,  ,| | |  
N k

ik ik i k k ik i k k i i i i i
i k

dp x d p d g H y dθ α β ζ γ δ ζ θ θ ζ
= =

Σ∏ ∏    (7) 

is a function of item parameters , ,,k k k kγα δβ , regression parameters H and the covari-
ance matrix Σ only. Glas (1992, 1999, 2010a) shows that the likelihood equations can 
easily be derived using Fisher's identity (Efron, 1977; Louis 1982). The procedure boils 
down to deriving the likelihood equations assuming λ known, and then taking the poste-
rior expectation of both sides of the equation. For instance, applied to the regression 
parameters, the likelihood equations assuming λ known are given by  

  1( )t tH Y Y Y λ−=   (8) 

and taking posterior expectations results in 

  ( )1

1

( ) | , ,
N

tt
i i i i i

i

H Y Y y E x d yλ−

=
=  ,  (9) 

where the Q-dimensional column-vector ( )| , ,i i i iE x d yλ  is the posterior distribution of 

iλ  given all observations on respondent i. Estimation equations for the other parameters 
are derived analogously (refer to Glas 1992, 1999, 2010a, also see, Adams, Wilson, & 
Wang, 1997, for an alternative derivation). 

Simulation studies 

Simulation studies were undertaken to assess the effect of the presence of nonignorable 
missing data on the estimates of item parameters and the effectiveness of the proposed 
methods to improve the estimates. It must be noted in advance that these simulations did 
not have the pretention of being exhaustive, because there are too many possible config-
urations of multidimensional IRT models for polytomously scored items and possible 
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propensity models to meet such a goal. So the primary aim was to check whether the 
approach behaved as expected in a limited set of conditions.   

The simulation study consisted of two parts. The first part extended the study by Holman 
and Glas (2005) to a situation where the model for the missing data indicators is multi-
dimensional, and studied the effects of including no, part of, or all latent dimensions of 
this model in the estimation. The motivation for this part of the study was that Rose 
(2013) showed that ignoring the multidimensional structure of the response propensity 
model can lead to substantial bias. In the present study, it was investigated whether this 
phenomenon also appeared here. The second simulation study pertained to the effects of 
adding observed covariates to the model. All simulations reported in this article were 
conducted with the public domain program MIRT (Glas, 2010b) using an MML estima-
tion procedure.  

Multidimensional response propensity models 

To study the effects of including no, part of, or all latent dimensions of the missing data 
process in the estimation procedure, latent person parameters were drawn from a three-
variate normal distribution. The sample size was N = 500 persons. The variance of the 
latent variables was always equal to one. The correlation between the latent trait varia-
bles θi and iζ , say, ( , )ρ θ ζ , was varied as 0.0, 0.4 and 0.8. The values 0.0, 0.4 and 0.8 
are chosen to clarify the effect of no, a small and a large violation of ignorability. The 
simulations by Holman and Glas  (2005) showed that violations of ignorability related to 
latent correlations less than 0.4 had little impact and that the effects became manifest 
starting from a value of 0.4. Models with ( , ) 0.0ρ θ ζ =  will be referred to as MAR mod-
els because they assume that the covariance between the latent variables pertaining to the 
item responses and the latent variables pertaining to the response propensities are zero. 
Other models will be called NONMAR models for the analogous opposite reason. Also 
the correlations between the two dimensions of the missing data process ( )1 2,  ρ ζ ζ  were 
varied as 0.0, 0.4 and 0.8. The items were either dichotomously and polytomously 
scored. The test consisted of K = 10 items. The values xik and dik were drawn from 

( ), ,| ,ik ik i k kp x d θ α β  and ( ), ,|  ik i k kp d ζ γ δ , respectively. The data were used to com-
pute MML estimates of the item parameters under the various assumptions. Then the 
values of item parameters estimates over replications r (r=1,...,R, with R=100), say  rφ , 
were compared with the values of the parameters used to generate the data using the 
mean absolute error, that is 

 
1

1 R

r
r

MAE
R

φ φ
=

= −  . (10) 

For the dichotomous case, two conditions were used. In the first condition, the item 
parameters for all items were 1.0,  0.0,k k kα γ β= = =  and 1.0kδ = − . These values re-
sulted in about 25% missing data. In the second condition, we used 1.0k kα γ= =  and,

0.0k kβ δ= = , which resulted in about 50% missing data. The motive for fixing the item 
parameters was that it leads to a clear interpretation of the MAE relative to the fixed 
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value. Not reported here are simulation studies carried out where the item parameters 
were drawn from normal distributions with the reported fixed values as expectation and 
standard deviations of 0.5. They produced results similar to the results reported below. 
The MAE of the item parameter estimates are given in Table 1. For the polytomous case, 
items with three response categories were used in the simulation. The location parame-
ters of the IRT model for the response propensities were varied as 0.0,kδ =  and 

1.0kδ = −  for all k. The other item parameters were the same across conditions, that is,   
1.0k kα γ= = , 1 21.0,  and 1.0k kβ β= − = , for all k. The MAEs of the parameter estimates 

are given in Table 2. 

Both tables have the same format. The first column, labeled δ , refers to the location 
parameter for the IRT model for the response propensities used for generating the data. 
The first row pertains to a baseline condition where ( ),  0.0ρ θ ζ = . So there ignorability 
holds. The values of the MAE(α) and MAE(β) are given in the two columns labeled α and 
β; they are the mean absolute errors over the 100 replications, and they serve as a base-
line. The next three rows pertain to data generated using ( ),  0.4ρ θ ζ =  and

( )1 2,   ρ ζ ζ = 0.0. These data were analyzed using no, one and two dimensions for the 
missing data indicator, as indicated in the column labeled Q2. The lines below, give the 
results for further values of 1 2( , ),  ( , )ρ θ ζ ρ θ θ  , and Q2. In Table 1, the columns labeled 
α, β, δ and γ give the MAEs for the respective item parameters. For polytomous case, 
reported in Table 2, there are two columns for the mean absolute error of the location 
parameters, referred as β1 and β2.  

The simulations showed that the MAE values of the item parameter estimates were in-
flated when no model for missing data process was used in the parameter estimation. The 
effect increased as correlation between the latent variables for both observed data and the 
missing data process increased. For instance, if we consider Table 1, when 0δ = , (that 
is, when there were 50% missing data) the baseline simulation of MAR data resulted in 
MAE(α) = 0.225 and MAE(β) = 0.120. When ( ),  0.4ρ θ ζ =  and 1 2( ),   0.0ρ ζ ζ = , and 
the missing data were ignored (Q2 = 0), the MAE for α and β had values 0.245 and 0.148, 
respectively. This main effect was generally present both for dichotomously and poly-
tomously scored items. So the first conclusion is that ignoring the missing data process 
lead to inflated estimation errors.  

When the model for the missing data process was included in the analysis, that is, when 
the NONMAR model was used, the MAE values dropped to 0.228 for α and 0.133 for β 
when Q2 =1, and to MAE(α) = 0.223 and MAE(β) = 0.128 when Q2 = 2. In general, a 
decrease in the values of the MAE of the item parameters was observed and this decrease 
was positively related to the number of dimensions included. Similar results were also 
observed for the values of MAE of the item parameters δ  and γ  for missing data pro-

cess. So the second conclusion is that invoking the missing data process leads to a reduc-
tion of estimation errors, even if not all dimensions are invoked. 

The third conclusion that can be drawn from the tables is that when the missing data 
process was completely modeled, that is, when Q2 = 2, the estimation errors could even 
fall below the errors of the baseline. For instance, in Table 1 we see that for 0δ = , the  
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Table 1:  
MAE of item parameter estimates under MAR and NONMAR model;  

Dichotomously scored items 

Generating Values  Analysis  Mean Absolute Error 

δ ρ( θ, ζ ) ρ( ζ1 , ζ2 )  Q2  α β δ γ 
-1.0 0.0 -  -  0.168 0.102   

 0.4 0.0  0  0.169 0.118   

    1  0.163 0.113 0.126 0.467 

    2  0.163 0.113 0.106 0.162 

  0.4  0  0.169 0.107   

    1  0.164 0.102 0.109 0.205 

    2  0.165 0.102 0.108 0.149 

  0.8  0  0.170 0.110   

    1  0.165 0.104 0.100 0.137 

    2  0.165 0.104 0.104 0.140 

 0.8 0.4  0  0.176 0.140   

    1  0.156 0.105 0.101 0.151 

    2  0.160 0.104 0.099 0.135 

  0.8  0  0.170 0.137   

    1  0.153 0.103 0.099 0.136 

    2  0.156 0.103 0.103 0.137 

0.0 0.0 -  -  0.225 0.120   

 0.4 0.0  0  0.245 0.148   

    1  0.228 0.133 0.081 0.568 

    2  0.223 0.128 0.089 0.154 

  0.4  0  0.229 0.142   

    1  0.209 0.124 0.079 0.194 

    2  0.209 0.125 0.084 0.147 

  0.8  0  0.222 0.144   

    1  0.214 0.121 0.086 0.126 

    2  0.214 0.122 0.088 0.126 

 0.8 0.4  0  0.257 0.210   

    1  0.187 0.128 0.078 0.158 

    2  0.186 0.129 0.083 0.136 

  0.8  0  0.245 0.220   

    1  0.192 0.133 0.083 0.121 

    2  0.194 0.133 0.083 0.121 
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Table 2:  
MAE of item parameter estimates under MAR and NONMAR model; 

Polytomously scored items 

Generating Values  Analysis Mean Absolute Error 

δ ρ( θ, ζ ) ρ( ζ1 , ζ2 )  Q2 α β1 β2 δ γ 
-1.0 0.0 -  - 0.137 0.135 0.194   

 0.4 0.0  0 0.142 0.129 0.194   

    1 0.139 0.126 0.192 0.127 0.470 

    2 0.138 0.125 0.193 0.103 0.167 

  0.4  0 0.138 0.139 0.198   

    1 0.136 0.129 0.194 0.109 0.192 

    2 0.135 0.129 0.194 0.107 0.162 

  0.8  0 0.136 0.137 0.206   

    1 0.133 0.126 0.193 0.098 0.138 

    2 0.132 0.127 0.192 0.100 0.139 

 0.8 0.4  0 0.152 0.153 0.247   

    1 0.140 0.129 0.200 0.100 0.154 

    2 0.138 0.126 0.200 0.103 0.138 

  0.8  0 0.138 0.150 0.241   

    1 0.129 0.125 0.196 0.098 0.130 

    2 0.128 0.125 0.197 0.102 0.130 

0.0 0.0 -  - 0.187 0.156 0.239   

 0.4 0.0  0 0.182 0.173 0.259   

    1 0.175 0.148 0.250 0.080 0.548 

    2 0.174 0.145 0.242 0.088 0.155 

  0.4  0 0.189 0.173 0.257   

    1 0.182 0.150 0.241 0.078 0.182 

    2 0.182 0.150 0.243 0.084 0.143 

  0.8  0 0.188 0.182 0.274   

    1 0.183 0.151 0.246 0.087 0.131 

    2 0.183 0.151 0.246 0.090 0.129 

 0.8 0.4  0 0.197 0.228 0.367   

    1 0.165 0.148 0.245 0.081 0.152 

    2 0.167 0.143 0.247 0.086 0.137 

  0.8  0 0.195 0.241 0.411   

    1 0.170 0.154 0.250 0.088 0.120 

    2  0.171 0.153 0.249 0.090 0.123 
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MAE(α) = 0.225 for the baseline and MAE(α) = 0.194 for ( )1 2,  ,   0) .( 8ρ θ ζ ρ ζ ζ= =  
and Q2 = 2. The tentative conclusion is that invoking a model for the missing data indica-
tor resulted in additional collateral information which improved the estimates. 

The fourth conclusion pertains to the extent to which MAR was violated. Inspection of 
the tables shows that if we ignored the missing data process (Q1 = 0), the magnitude of 
the estimation error for ( ),  0.8ρ θ ζ =  was greater than the magnitude for ( ),  0.4ρ θ ζ =
. For instance, in Table 1 we see that conditionally on ( )1 2,   0.4ρ ζ ζ = , the MAEs for α 
were 0.229 and 0.257, respectively. Finally, there was no clear effect of ( )1 2,  ρ ζ ζ . That 
is, the effect was clear insofar that for the item parameters of the latent ability, the actual 
dimensionality of the missing propensity was irrelevant.  

Response propensity models with observed covariates 

The simulation procedure used was analogous to the simulation procedure in the previ-
ous section, but with the added feature of including observed covariates. To achieve 
comparability with the previous section, the regression coefficients were chosen as fol-
lows. Let λΣ  be the covariance matrix of both the latent variables for the observed re-
sponses and the missing data indicator. As in the previous section, there was one dimen-
sion for the observed responses and there were two dimensions for the missing data 
process. Only the case ( )1 2,   0.8ρ ζ ζ =  was considered here. Further, either ( ),ρ θ ζ  = 
0.4 or ( , )ρ θ ζ  = 0.8. Let εΣ  be the diagonal matrix of the variances of the error terms. 
These variances were all equal to 0.15. For the data generation, the variables yi had Q-
variate independent standard normal distributions, and the regression coefficients H were 
chosen such that 

 tHHλ εΣ = + Σ  , (11) 

where H is a lower-triangular matrix. As before, the sample size was N = 500. Again the 
test length was K = 10 and the item parameters were also as used above. One hundred 
replications were made for every combination of δ , ( ),ρ θ ζ  and Q2.  

The results are given in the tables 3 and 4. The format of the tables is analogous to the 
previous two tables, except for an added column P, which refers to the number of covari-
ates included in the parameter estimation. Note that also the baseline model where 

( , )ρ θ ζ  = 0.0 (the MAR model) includes a covariate. This was done to enable the com-

parison with the NONMAR models. 

Referring to Table 3, the baseline MAR model resulted in MAE(α) = 0.145 and MAE(β) 
= 0.117 for the case δ  = 0, i.e., 50% missing data, as compared to the analogous simu-
lation reported in Table 1, where MAE(α) = 0.225 and MAE(β) = 0.120. This increase in 
precision is due to the inclusion of a covariate. When we increased the correlation to 

( , )ρ θ ζ = 0.4 and ( ),  0.8ρ θ ζ = , results showed that when the missing data process 
was ignored and only the covariate for θ was included, the values MAE(α) = 0.170 and 
MAE(β) = 0.164 were obtained. When a response propensity model with one latent di- 
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Table 3: 
MAE of item parameter estimates under MAR and NONMAR model with covariates. 

Dichotomously scored items 

Generating Values  Analysis  Mean Absolute Error 
δ ρ( θ, ζ ) ρ( ζ1 , ζ2 )  Q2 P  α β δ γ 

-1.0 0.0 -  - 1  0.121 0.095   
 0.4 0.8  0 1  0.157 0.117   
    1 2  0.131 0.097 0.102 0.150 
    2 3  0.120 0.097 0.095 0.104 
 0.8 0.8  0 1  0.188 0.142   
    1 2  0.159 0.110 0.092 0.127 
    2 3  0.126 0.101 0.089 0.100 

0.0 0.0 -  - 1  0.145 0.117   
 0.4 0.8  0 1  0.170 0.164   
    1 2  0.150 0.116 0.083 0.134 
    2 3  0.140 0.114 0.078 0.094 
 0.8 0.8  0 1  0.313 0.228   
    1 2  0.204 0.134 0.092 0.125 
    2 3  0.155 0.126 0.084 0.097 

 

 

Table 4: 
MAE of item parameter estimates under MAR and NONMAR model with covariates. 

Polytomously scored items 

Generating Values  Analysis  Mean Absolute Error 
δ ρ( θ, ζ ) ρ( ζ1 , ζ2 )  Q2 P  α β1 β2 δ γ 

-1.0 0.0 -  - 1  0.109 0.118 0.175   
 0.4 0.8  0 1  0.139 0.133 0.212   
    1 2  0.115 0.120 0.179 0.099 0.149 
    2 3  0.108 0.119 0.177 0.093 0.103 
 0.8 0.8  0 1  0.143 0.159 0.254   
    1 2  0.130 0.125 0.198 0.103 0.132 
    2 3  0.107 0.119 0.180 0.096 0.104 

0.0 0.0 -  - 1  0.126 0.146 0.217   
 0.4 0.8  0 1  0.166 0.180 0.309   
    1 2  0.138 0.143 0.211 0.090 0.143 
    2 3  0.128 0.140 0.211 0.084 0.101 
 0.8 0.8  0 1  0.191 0.241 0.417   
    1 2  0.159 0.148 0.238 0.089 0.126 
    2 3  0.127 0.140 0.219 0.084 0.097 
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mension predicted by two covariates was used, results were MAE(α) = 0.150 and 
MAE(β) = 0.116. Further, when two dimensions with three covariates were used as a 
propensity model, results obtained were MAE(α) = 0.140 and MAE(β) = 0.114. An anal-
ogous pattern appeared in all conditions. It can be seen that increasing the correlation of 
the latent variables θ  and ζ , that is, increasing the violation of ignorability, resulted in 
more bias in the parameter estimates when the covariates are ignored. Including them 
reduced the bias to a value close to the baseline. 

An empirical simulation 

In the previous studies, all response data were simulated under IRT models. In practice, 
IRT models do not perfectly fit response data. For instance, the assumptions regarding 
local reliability, dimensionality and subgroup invariance might not be perfectly met. 
Therefore, an empirical simulation was carried out to investigate the effectiveness of the 
method with real data. The data were collected in the LISS panel of CentERdata, a repre-
sentative internet panel for Longitudinal Internet Studies in the Social sciences. The 
panel consisted of households which are randomly selected from the municipal registers 
in the Netherlands. Participants filled out questionnaires on a monthly basis. The empiri-
cal simulation was based on data from two questionnaires. The first was the Mental 
Health Continuum-Short Form (MHC-SF, abbreviated here to MHC) (Keyes et al., 2008, 
Lamers et al., 2011). The MHC consisted of 14 items measuring positive mental health 
on a Likert scale from 0 to 5. The Dutch version of the MHC has shown good psycho-
metric properties (Lamers et al., 2011) and the item parameters proved stable over time 
(Lamers et al., 2012). The second questionnaire was the Brief Symptom Inventory (BSI; 
Dutch version) (de Beurs & Zitman, 2006). The 53 items pertained to psychological 
symptoms which are scored on Likert scales ranging from 0 to 4. The sample consisted 
of 1,932 adults who filled out the questionnaires on four measurement occasions in nine 
months. The autocorrelation between response occasions was 0.653 for the MHC and 
0.663 for the BSI. The distribution of item responses across the categories for both tests 
was quite different. The MHC had an average score of 42.55 with a maximum possible 
score of 70 and all response categories attracted a substantial number of responses. For 
the BSI the average score was low, that is, 19.30 with a maximum possible score of 212, 
and most responses were in the zero categories. The reason is that the BSI assesses nega-
tive psychological symptoms ranging from depression and anxiety up to paranoia and 
psychoticism. Such symptoms are relatively rare in the general population.   

For the simulation, missing item responses were created by removing responses from the 
fourth occasion. This was done as follows. The probability of an observation was deter-
mined by the posterior expected estimate of θ on the previous occasion. In one condition, 
constant item location parameters were used to produce proportions of missing responses 
of 0.30 or 0.50. In a second condition, similar proportions of missing responses were 
created, but in this case the item location parameters were chosen in such a way that the 
response propensity uniformly decreased from 0.625 on the first item to 0.375 on the last 
item. The first condition will be labeled the Uniform condition, while the second will be 
labeled the Progressive condition. The means and variances of all latent dimensions were 
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equal to zero and one, respectively; the correlations were equal to the autocorrelations 
mentioned above. 

100 replications were made and the item parameter estimates obtained using the com-
plete data were the reference values to which mean absolute errors were computed using 
formula (9). The models used to analyze the data are listed in Table 5. All estimates were 
made using MML. Model 1 in Table 5 does not include a response propensity model and 
is expected to produce the largest bias. Model 2 has the total scores of the previous ad-
ministration as covariate for θ. Model 3 has the 2PL model for the distribution of the 
missing data indicators but no covariates. The same held for Model 4, but here, the total  
 
 

Table 5: 
 Summary of analysis models for empirical simulation 

 Model Legend 

1 ( ) ( )|p x gθ θ Incomplete response data only. 

2 ( ) ( )1| | tp x g yθ θ −   
Incomplete response data with total 
scores of the previous administration 
as covariate. 

3 ( ) ( ) ( )| | ,p x p d gθ ζ θ ζ
  

Incomplete response data and missing 
data indicator. 

4 ( ) ( ) ( )1| | , | tp x p d g yθ ζ θ ζ −  
Incomplete response data and missing 
data indicator, with total scores of the 
previous administration as covariate. 

5 ( ) ( ) ( ) ( )1 1 1| | , | |t t tp x p d g p xθ ζ θ ζ θ θ− − −  
Incomplete response data, missing 
data indicator, and responses on 
previous administration as covariate. 

 

 

Table 6: 
MAE of item parameter estimates under various MAR and NONMAR models 

Measure: MHC  BSI 

Pattern: Uniform  Progressive  Uniform  Progressive 

Missing: 30%  50%  30%  50%  30%  50%  30%  50% 

Model                

1 0.826  1.111  0.768  1.184  0.914  1.283  0.871  1.283 

2 0.331  0.397  0.308  0.444  1.038  1.110  0.862  1.199 

3 0.341  0.415  0.326  0.466  1.000  1.200  0.974  1.245 

4 0.331  0.396  0.293  0.400  1.003  1.104  0.899  1.095 

5 0.310  0.388  0.285  0.396  0.905  1.088  0.900  0.972 
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scores of the previous administration were a covariate for ζ. Finally, in Model 5, the 
latent variable pertaining to the previous administration was a covariate for ζ, while this 
latent variable was measured by the item response on the previous administration. Model 
4 is expected to produce better results than the models 2 and 3, since this model can be 
seen as a combination of the two previous models. Further, Model 5 is expected to do 
even better. However, this expectation may be jeopardized by the increasing numbers of 
parameters in the models and the related increase in estimation errors.  

The results are given in Table 6. For the MHC, the models 2 through 5 all created a 
substantial decrease in MAE from the baseline in Model 1. For instance, in the uniform 
condition with 30% missing data, the MAE decreased from 0.826 in Model 1 to 0.310 in 
Model 5. Model 3 produced the smallest decrease while Model 5 produced the highest 
decrease. For the MHC, this pattern was visible in all conditions. In general, the pattern 
was as expected: adding information decreased the effect of the violation of ignorability. 
Further, Model 2 was always slightly better than Model 3, so using the total score on the 
previous administration worked slightly better than invoking a latent variable for the 
pattern of missingness. Model 5 using the complete observations on the previous admin-
istration, always worked best, but overall it must be concluded that the differences be-
tween the performances of the models 2 through 4 were small.  

For the BSI, the pattern was far less clear. Model 5 did produce a decrease of MAE com-
pared to Model 1, but the decrease was small. Further, in some conditions the MAE 
actually increased. So here accounting for the violation of ignorability was far less suc-
cessful. A tentative explanation may be related to the low average score on the BSI and 
the highly skewed distribution of responses across response categories with most re-
sponses in the zero categories. This seriously harms the precision of the item parameter 
estimates. So a conclusion here is that the effectiveness of the methods proposed here 
depends on the characteristics of the data. 

Discussion 

This article is meant as a contribution to the growing literature on modeling nonignorable 
missing item responses. This field of research is very broad and therefore, this article has 
several limitations. First of all, the focus is on the estimates of the item parameters. This 
topic is of interest when the item parameters are of interest, for instance in the calibration 
of an item bank for a computerized adaptive test or a large-scale education survey. 
Equally interesting are the consequences of violation of ignorability for the estimates of 
the person parameters, especially when these estimates have serious consequences for 
the tested persons. This topic deserves further study.  Further, the study was limited to 
the generalized partial credit model, while other models such as the graded response 
model (Samejima, 1969) and the sequential model (Tutz, 1990) are also often used in 
educational and psychological measurement. The problems addressed in this article are 
definitely also relevant in non-parametric IRT (Sijtsma, 1998). However, it is well 
known that results obtained using different models and approaches to modeling poly-
tomously scored item responses do not produce very different results (see, for instance, 
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Verhelst et al.), so the approach advocated here is expected to be relevant for these mod-
els also. 

The next remark pertains to the implications of the presented methods for practitioners. 
All computations were done by MML using public domain software (MIRT, Glas, 
2010b). However, this is not essential. The computations can be also done with the 
much-used computer program Mplus (Muthén & Muthén, 2012) or in a Bayesian frame-
work using the computer program OpenBugs (Lunn, Spiegelhalter, Thomas & Best, 
2009). Therefore, after adding missing data indicators to the data file, practitioners can 
perform all needed analyses within the well-known framework of latent variable and IRT 
modeling. The global fit of MAR and NONMAR models can be compared using the 
well-known statistics such as likelihood ratio statistic and its modifications, the AIC and 
BIC. However, also local, item oriented fit statistics dedicatedly developed for IRT mod-
els (see, for instance, Glas, 2005) can be used to evaluate the appropriateness on the 
models. If adding a response propensity model, possibly with covariates, leads to a sub-
stantial improvement of model fit, taking the propensity model into account is highly 
recommended. A final remark pertains to the fact that the simulations presented here 
show that applying model-based corrections to violations of ignorability can work in 
data-analyses with polytomously scored items, and that the propensity models can in-
clude multidimensional IRT and observed covariates.  However, what the, admittedly 
limited, empirical study also shows, is that there is no guarantee that the approach is 
always effective. A tentative conclusion drawn from the empirical simulation was that 
unfavorable characteristics of the data, such as poor support for parameter estimates, 
may seriously threaten the procedure.  
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