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The impact of design decisions on 
measurement accuracy demonstrated using 
the Hierarchical Rater Model 

Jodi M. Casabianca1,2 & Edward W. Wolfe2 

Abstract 

When humans assign ratings in testing contexts, concern arises about whether rater effects impact 
the accuracy of the resulting measures. Those who lead scoring efforts implement several activities 
and utilize various designs to minimize the impact of these rater errors. This article uses the Hierar-
chical Rater Model (HRM) to demonstrate how the magnitude of rater errors and numbers of rat-
ings associated with various measurement facets (e.g., raters & items) impact the accuracy of 
measures. Additionally, we demonstrate how the level at which decisions are made about the 
measures (e.g., test taker item scores, test taker total scores, test taker classifications) impact meas-
urement accuracy.  
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Judgments of the quality of an object are collected in numerous contexts, and the raters, 
frequently humans with a relevant expertise, utilize numerical or ordinal rating scales to 
depict the relative quality of a collection of artifacts being judged. In assessment con-
texts, raters employ rating scales to depict the quality of test taker responses to construct-
ed-response items that appear on educational and certification tests; in these scenarios, 
the artifacts are the test taker responses which may take the form of essays, mathematical 
proofs, or performances to name but a few potential response formats. The assigned 
ratings, sometimes referred to as subjective ratings, are then accumulated across multiple 
test items, perhaps even including scores assigned to objectively scored items, and the 
resulting total score is used to make educational and certification assessments regarding 
the test taker. Inherent in these contexts are decisions about the assessment design and 
the levels at which assessments might be used. The purpose of this article is to demon-
strate how various design decisions such as the number of ratings per response, may 
impact the quality of measures at different levels. We make this demonstration using the 
hierarchical rater model (HRM; Casabianca, Junker, & Patz, 2016; Patz et al., 2002), a 
multilevel item response theory (IRT) model used to scale individuals while also ac-
counting for rater severity and variability.  

We selected the HRM because it is a rater model that addresses the problem that comes 
about from complex ratings designs that include multiple items, multiple raters, and 
multiple ratings per item × test taker combination. That is, the hierarchical structure of 
the HRM explicitly models the natural hierarchy that exists in ratings data when there are 
multiple raters assigning multiple scores to the same responses. This is what Wilson and 
Hoskens (2001) called the “repeated rating” problem. As Mariano (2002) showed, the 
problem is that ignoring the hierarchical structure of the ratings data results in an infor-
mation accumulation problem. In models that ignore this hierarchy, there is a downward 
bias of standard errors with added raters’ ratings per item and a corresponding overesti-
mated reliability. Indeed, one of the most popular rater models, the Facets model (Lina-
cre, 1989), is one that ignores the nesting of multiple ratings within a test taker’s re-
sponse and considers the information from each rating as if it were an item contributing 
information. Most likely, it is widely used because it is straightforward to understand and 
well documented. However, researchers in the early 2000s introduced models for ratings 
that address this information accumulation issue – these models include the HRM, the 
model for multiple ratings (MMR) by Verhelst and Verstralen (2001) and the rater bun-
dle model (RBM) by Wilson and Hoskens (2001). More recently, DeCarlo, Johnson and 
Kim (2011) introduced a version of the HRM (HRM-SDT, or HRM-signal detection 
theory) that uses an expanded signal detection model for rater effects, resulting in richer 
information about raters compared to the Patz et al. (2002) version of the HRM.  

We use the Patz et al. (2002) HRM to discuss measurement at different levels because it 
is relatively simpler to use for demonstration purposes. The simplest level at which an 
assessment can be made about a test taker is at the item response level to which a rating 
is assigned. The rating constitutes a measure of the test taker’s performance on the item 
in question, as interpreted by the rater in question. We can improve upon the quality of 
that measure by collecting ratings from more than one rater and creating a composite 
measure of the test taker’s performance on that item. Furthermore, we can require the 
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test taker to respond to multiple items (e.g. multiple essay prompts), thus increasing the 
quality of the measure of the construct in question. That is, by making multiple observa-
tions of the test taker’s behaviors, we have begun to expand the scope of our considera-
tion beyond the test taker’s performance on an individual item and to the latent traits that 
the items jointly elicit. Often, the multiple ratings across the multiple items are scaled to 
create a total score, and those scaled scores define a continuum of measures that reveal 
whether two test takers differ in terms of their performance and also provide depictions 
of how much they differ. Those measures can be further collated to allow for considera-
tion of the relative performances of multiple groups of test takers (e.g., classrooms or 
schools in educational settings). Further, bands of scores can be combined to define 
levels of performance as is often done in educational (e.g., proficient/non-proficient) or 
certification (e.g., pass/fail) testing. 

As different levels of interpretation have implications for the degree to which rater errors 
will impact the accuracy of the interpretation of measures and because design choices 
that are geared toward reducing those errors have implications for the cost and feasibility 
of implementation, it is very important to take into account these various levels at which 
we may want to make assessments. Thus, the purpose of this article is to demonstrate 
how design choices impact the accuracy of measures that are estimated by the HRM. We 
specifically investigate how rater selection (and the associated magnitude of rater errors 
in the pool of raters), the number of ratings, and the number of items, relate to differ-
ences in measurement accuracy at different levels of the score (item vs. total vs. perfor-
mance category) and the test taker (individuals vs. groups).  

We address the following research questions: 

1. What is the impact of rater pool quality on measurement accuracy?  
2. What is the impact of multiple ratings per item response on measurement accuracy? 
3. What is the impact of test length on measurement accuracy? 
4. When considering the measurement of individuals, how robust are scores at differ-

ent levels (item, total, pass/fail) to the impact of these aforementioned design deci-
sions? 

5. How does the impact of these design decision differ when measuring individuals 
versus measuring groups of individuals? 

In the remainder of this article, we discuss theoretically how different aspects of the 
assessment design can impact measurement accuracy and how the HRM can be used to 
score test takers and estimate rater effects. We then provide a demonstrative example to 
answer our research questions and close the article with discussion and conclusions.  

Impact of design decisions on measurement accuracy 

In addition to actions designed to reduce rater errors such as training, calibration, and 
backreading (see Wolfe, 2014), there are design considerations that may improve the 
measurement process in a more predictable fashion. Figure 1 provides a schematic that 
depicts how different design decisions can impact accuracy at different levels. In this 
study, as we will describe, we follow the framework of this figure and focus on how 
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design decisions impact item-level, total-level, and pass/fail level scores, as well as 
scores at the individual and at the group level. The design decisions include the number 
of ratings per response, the number of items on the assessment, and the selection criteria 
for raters and items, which relate to different levels of rating and item quality. Figure 1 
shows these design decisions in a funnel that yields varying levels of measurement accu-
racy depending on the decisions made. The generalizability theory framework allows us 
to predict the expected improvement in the “dependability” or the reliability of relative 
and/or absolute decisions about test takers (Brennan, 2001) when we increase or decrease 
the number of elements associated with a design facet in the measurement system (e.g., 
raters, items). In addition, one may wish to weigh the benefits of certain design decisions 
on scoring at different levels with the added implementation costs, if applicable. We 
show at the bottom of the funnel in Figure 1 the resultant measurement accuracy, which 
we know will vary by the score level and the test taker level. 

 
 

 
Figure 1: 

Considerations in developing rating designs and their impact on measurement accuracy at 
different levels 
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Constructed response (CR) items, such as essays, typically require more effort and re-
sponse time from the test taker, and therefore, we generally do not see tests with many 
CR items. With this being said, collecting responses from multiple items is by far the 
most effective way to improve measurement accuracy, assuming the items have adequate 
discriminating power3. The Spearman-Brown prophecy predicts the improved reliability 
of a test after adding parallel items (Brown, 1910; Spearman, 1910). The relationship 
between the number of items and reliability is not linear such that when the test reliabil-
ity is high, it will take many additional parallel items to approach the maximum value of 
1.0. However, in general, the addition of items, or in other cases, weighted parallel com-
ponents to make up a composite test, increases the reliability. The same is true under the 
IRT framework where item information quantifies the item-level reliability. With more 
items, the test will have greater test information. Practically, the administration and 
scoring of multiple items will cost more than doing so for just one item. However, the 
potential psychometric benefits of additional items may exceed the cost in some cases. 

Typically, rating designs incorporate some percentage of double-scored responses in 
order to perform a rater reliability check. In some instances, all of the responses will be 
scored by multiple raters, not to estimate rater reliability, but because it is believed that 
multiple ratings will yield a more accurate representation of the test taker’s quality of 
response. These multiple ratings may be summed or averaged with the hopes that any 
rater effects are “averaged away” by taking multiple measurements. Naturally, multiple 
ratings require more rater effort. This can be very costly, so it is important to determine 
whether or not these additional ratings contribute to measurement quality in a useful way 
and also understand how this impacts scores at different levels. For example, do im-
provements in test taker classification accuracy exist due to multiple ratings, or are the 
positive effects of this design decision lost at the item- or total-score level? Under the 
generalizability framework, we can study the effect of multiple ratings on scores, and 
while multiple ratings may improve reliability slightly, research has shown that increas-
ing the number of ratings does not significantly improve measurement accuracy (e.g. see: 
Brennan, Gao, & Colton, 1995; Kim & Wilson, 2009). When considering both raters and 
items as facets, adding more raters does not substantially reduce the residual variance, 
and certainly less so than adding items, as they make different contributions to residual 
variance. Therefore, while we may observe small improvements in observed scores due 
to additional ratings, they will not likely amount to the improvements due to additional 
items. Under the IRT framework, there are variations in the way multiple ratings of the 
same responses are treated. We discuss this later in this section. 

Design decisions about the test development process and the rating process may also lead 
to an improvement in measurement quality. Specifically, this relates to selection of items 
and raters. Informed selection of highly discriminating items that are also not overly 

                                                                                                                         
3
 Note that here we are referring to the situation in which there are actually multiple items or prompts 

eliciting multiple responses from a test taker. The situation may also be that there is one response to a 
single item / prompt but a rater is applying a rubric with multiple dimensions and thus assigns multiple 
ratings reflecting different evaluations of the test taker. For simplicity, we restrict our discussion to the 
former case.  
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difficult or easy and are not overly-subjective to score will yield better quality of meas-
urement by improving inter-item correlations and thus the overall quality of final 
measures. Similarly, data-driven selection of “high performing” raters, based on their 
accuracy rates and indices of their rater effects, will yield better ratings with reduced 
rater errors thereby improving the quality of response level observations. It is also im-
portant to consider raters who are responsive to training and feedback when they do 
make errors. The cost associated with these selection decisions are not as quantifiable as 
the other design decisions. The expense of writing and testing CR items is typically built 
into the assessment process. However, selecting high performing raters does require 
effort related to establishing performance indices, as well as the possible additional mon-
etary compensation these raters may require due to their expertise. 

As we alluded to earlier, when considering the impact of these decisions, we must con-
sider the level at which of decision-making will occur with respect to score interpreta-
tion. For example, how impactful are these decisions at the level of the item score versus 
the total score (average of CR item scores) versus classification in performance catego-
ries? How much of a difference do these decisions make when considering an individual 
test taker’s score versus a summary of a group’s overall score? Understanding the im-
pacts on these different levels and how they interact with measurement goals will moti-
vate design decisions, especially if cost is a deciding factor. 

Scoring models treat ratings of constructed responses differently. In an observed score 
framework, scoring may include an aggregation of ratings. There are various scoring 
possibilities under a latent variable framework, including: (i) general IRT models assum-
ing no rater effects (e.g. 2-parameter logistic model, generalized partial credit model), 
(ii) IRT models with rater parameters (e.g. facets), and (iii) IRT rater models that incor-
porate the hierarchical structure of the rating design, or hierarchical rater models. The 
last type of scoring possibility includes the class of models that do not treat multiple 
ratings of the same response as additional information; the hierarchy is that there are 
multiple ratings which are a function of the “true” quality of the response along with 
rater error by way of rater parameters reflecting different rater effects. This article 
demonstrates the impact of different design decisions on the accuracy of scores at differ-
ent levels (as depicted by Figure 1) using the HRM. 

Using the Hierarchical Rater Model to estimate rater severity  
and unreliability 

Measurement error is introduced into test taker measures in several ways, but the intro-
duction of error due to raters and the rating process is of particular concern when re-
sponses are scored through a subjective decision-making process. When rater errors 
influence ratings in a consistent manner, recognizable patterns can be observed in the 
ratings, and those patterns are indicative of rater effects. Numerous rater effects exist, so 
we focus our attention on just two commonly observed effects that are captured by the 
HRM, severity and individual rater unreliability/inconsistency.  
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When raters assign ratings that are consistently lower or higher than a known-to-be-valid 
rating, we say that the rater exhibits severity or leniency. A severe rater assigns ratings 
that are too low, given the test taker’s true performance, and a lenient rater assigns rat-
ings that are too high. This results in underestimation of the test taker’s performance on 
the item by severe raters and overestimation of the test taker’s performance on the item 
by lenient raters.  

When raters assign ratings that consistently exhibit less or more random variability 
around known-to-be-valid ratings, we say that the rater is exhibiting an accurate or inac-
curate rating pattern. An accurate rater assigns ratings that are very similar to the true 
performances of the test takers, which is desirable. Hence, accurate ratings tend to be 
consistent with known-to-be-valid ratings. On the other hand, an inaccurate rater assigns 
ratings that exhibit a high level of random deviation from the true performances of test 
takers. This results in an accurate estimation of test taker performance by accurate raters 
and generally poor estimation of the performance of test takers regardless of their level 
of performance by an inaccurate rater’s ratings. As we will discuss, in the case of the 
HRM, a rater’s variability is somewhat related to accuracy, however the variability is 
captured around the known-to-be-valid rating offset by an individual rater’s bias.  

The HRM posits that a test taker's response to an item may be (hypothetically) judged to 
have some true rating or quality, we call this a test taker’s “ideal rating” on an item j  
(j = 1, …, J). Then, a series of R raters evaluate the responses, giving observed ratings 
based on their observations and their understanding of the scoring rubric. The HRM 
hierarchy connects this two-stage rating process with an IRT model and a signal detec-
tion model. Specifically, in the first stage, an IRT model defines the relationship between 
the ideal ratings and the latent trait. In the second stage, a “signal-detection-like'' model 
defines the relationship between the ideal rating of an indicator and multiple raters' ob-
served ratings.   

In the HRM, the first level of the hierarchy models the distribution of ratings given the 
quality of response (or ideal rating/response), the second level models the distribution of 
a test taker 's response (ideal ratings) given their latent trait, and the third level models 
the distribution of the latent trait θ. The hierarchical representation of the HRM is given 
by 
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Here, θi , the latent trait for test taker ( 1, , )= i i N  is normally distributed with mean 

θμ  and 2
θσ , ξij is the ideal rating for test taker i on item j, and ijrX  is the observed 

rating given by rater r for test taker i's response to item j. The model is estimated as a 
Bayesian model with Markov chain Monte Carlo (MCMC) estimation. Therefore, the 
model depiction in (1) assumes prior distributions for unknown parameters in the model 
including the precision of the latent traits ω, the difficulty parameters β jk  and step pa-

rameters γ jk  of the IRT model, and the rater parameters, 21 τ  and φ , which are rater 

precision and bias (severity/leniency), respectively. We will discuss this in more detail 
later in the next section which focuses on a simulated example. 

The ideal ratings, ξij , represent the quality of person i's response to item j and are latent 

variables modeled using a polytomous IRT model, such as the K-category partial credit 
model (PCM; Masters, 1982). With ideal rating ξij  and K possible scores ( 1, , )k K=  , 

the PCM is given by:  
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From the PCM component of the HRM we estimate β j , the item difficulty for the jth 

item, γ jk , the kth item step parameter for item j, and the latent traits, .θi  

 

 

Table 1: 
Matrix of Rating Probabilities in the SDM Component of the HRM 
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The signal detection model (SDM) in the HRM follows a matrix of rating probabilities 
(see Table 1). In this matrix, the probabilities are conditional on the ideal rating. For 
example, p

00r 
is the probability that rater r assigns a score of 0 when the ideal rating is 0. 

Thus, a separate table describes each rater’s rating probabilities conditional on ideal 
ratings. To model patterns of rating behavior per rater, the SDM in the HRM considers 
the probabilities in each row of the matrix to be proportional to a Normal density with 
mean ξ φ+ r  and standard deviation τ r : 

 ( ) 2

2

1
exp ( ) .

2ξ ξ ξ ξ φ
τ

  = = = ∝ − − +   
  

kr ijr ij r
r

p P X k k   (3) 

The rater bias parameter, φr , indicates a rater's deviation from the ideal rating and re-

flects a consistent bias in the rater’s ratings. When φr  approaches 0, the rater has only a 

small deviation from the ideal rating. When φr  is negative, the rater exhibits a severity 

effect (or negative bias). Conversely, when φr  is positive the rater exhibits a leniency 

effect (or positive bias). Typically, values smaller than 0.5 in absolute value are not 
considered substantial because they lie within 1 score point from the ideal rating. Values 
beyond 0.5 in absolute value, however, indicate a tendency to score a full score point or 
more away from the ideal (Casabianca, Junker, & Patz, 2016; Patz et al., 2002). The 
spread parameter, τ r , indicates a rater's variability around ξ φ+ r ; values near 0 indicate 

high consistency or reliability in rating and high values indicate poorer consistency in 
rating. It is important to note that this parameter is interpreted in relation to a rater’s φr . 

If φr  is 0 and τ r  is small (< 0.5) then the rater consistently scores with no bias; their 

probability of scoring in categories above or below the ideal rating category is low. If φr  

is 0 and τ r  is larger (> 0.5) then the rater scores inconsistently around 0 bias. If φr  is 

1.25, for example, and τ r  is small (< 0.5), then the rater has consistent positive bias. 

Finally, if φr  is 1.25 and τ r  is large (for example, 1τ =r ), then the rater has positive 

bias but with a lot of variation, or inconsistency. The larger τ r , the more errors a rater 

will make relative to their own central tendency. In other words, the HRM captures rater 
inconsistency around the rater’s typical scoring behavior. As we mentioned earlier, this 
is different from the traditional definition of accuracy/inaccuracy (and the notion of 
random errors or variation around known-to-be-valid ratings), however, if the rater was 
fairly unbiased, then τ r could be a measure of inaccuracy/accuracy. 

Values of τ r greater than 0.5 indicate that a rater is scoring roughly consistently around 

ξ φ+ r  and values greater than this indicate raters are scoring with more variability and 

will perhaps assign ratings at the next score level (above or below). Based on this reason-
ing, for this study we decided to consider values greater than approximately 0.75 to be 
larger than desired, and certainly values larger than 1.0 to be large and a sign of rater 
unreliability. This criterion was selected in relation to the length of the score scale. If the 
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scale were longer, for example, if K = 9, then perhaps we would use a less stringent 
criterion for classifying a rater as unreliable. 

Demonstrative example 

Using simulated datasets we investigated our five research questions: (i) What is the 
impact of rater pool quality on measurement accuracy? (ii) What is the impact of multi-
ple ratings per item response on measurement accuracy? (iii) What is the impact of test 
length on measurement accuracy? (iv) When considering the measurement of individu-
als, how robust are scores at different levels (item, total, pass/fail) to the impact of these 
aforementioned design decisions? and (v) How does the impact of these design decisions 
differ when measuring individuals versus measuring groups of individuals? To answer 
these questions, we generated ratings data from the HRM for 1,000 test takers (N = 
1,000), for constructed response items each on a 5-point scale (K = 5) scored by R = 100 
raters. We selected this number of examinees and raters because this would be roughly 
the scenario in an administration of a large-scale assessment and it has also been used in 
other related simulation studies.  

To address research question (i), we varied the quality of the rater pools in the simu-
lated datasets. Specifically, we varied the type of rater pool quality (100% Normal, 
20% Unreliable, 20% Severe, which were defined by manipulating HRM rater parame-
ters as explained below). Unreliability and severity are two rater effects that impact 
ratings, and they are the two modeled by the HRM. We examined a sample with sever-
ity and another one with unreliability, but not one with a combination of the two; we 
decided to manipulate rater effects in isolation to be able to explain the results with 
clarity. The 20% prevalence of raters in the pool exhibiting the effect is similar to 
other studies. To address (ii) we varied the number of ratings per item (S = 2, 4, 8). 
Two ratings per item is a common rating design (“100% double-scored”). Having 4 or 
8 ratings per item is not common, but we included those levels in order to demonstrate 
what occurs as we add ratings. To address (iii), we varied the number of items (J = 2, 
4, 8) and selected 2, 4, and 8 item tests because typically a test made up of CR items is 
not very long due to the efforts required to respond to it and score it. Two-item CR 
tests may consist of two essays, for example, such as in TOEFL Writing where there 
are two separate writing tasks. These factors were completely crossed to yield 27 
(3*3*3) datasets to which the HRM was fitted and resulting parameter estimates eval-
uated for measurement accuracy. Note that this is an analysis of simulated datasets and 
that we analyzed only one simulated dataset per condition. 

Research questions (iv) and (v) were answered by analyzing the observed scores and 
estimated traits at different score levels (ratings level, composite level, pass/fail) and for 
individuals versus groups.  
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Ratings data generation 

To generate observed ratings from the HRM we used three sets of rater parameters, and 
Figure 2 graphically illustrates those three sets of parameters. The first set of rater pa-
rameters contained 100 raters with bias and variability within normal ranges (i.e., “nor-
mal” raters). We define normal raters, or raters who do not exhibit aberrant behavior, to 
have bias between 0.5 0.5φ− ≤ ≤r  and variability 0.75τ ≤r . Ratings data generated with 

these raters will have minimal noise and thus will not greatly impact measure estimates 
for test takers. The second set of rater parameters contained 80 raters with “normal” 
parameters and 20 raters with normal bias parameters but relatively large rater SDs, 
which simulates a situation in which 20% of raters exhibit an unreliablity rater effect. 
Note that in these cases, the raters all had absolute rater bias values less than 0.5 (i.e., 
none exhibited a severity or leniency rater effect). The third set of rater parameters con-
tained 80 raters with “normal” parameters and 20 raters with larger negative bias pa-
rameter values which simulates a situation in which 20% of raters exhibit a severity rater 
effect but no unreliability effect. 

We randomly drew rater parameter values from the distributions as listed in Table 2 and 
kept those true rater parameter values fixed across the conditions varying the number of 
items and ratings within the rater quality condition. The 1,000 true latent trait values  

 

 

 

Figure 2: 
True rater parameter values for each Rater Quality condition. The average rater bias was  
-0.007 for the Normal and Unreliable conditions and -0.232 for the Severe condition. The 

average rater SD was 0.255 for the Normal and Severe conditions and 0.518 for the 
Unreliable condition. The circled points are aberrant raters. (Note:  SD = standard deviation). 
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Table 2: 
Generating Rater Parameter Distributions for Simulated Data 

Rater 
Quality 
Condition 

Normal Raters Aberrant Raters 

Rater Bias Rater SD Rater Bias Rater SD 

100% 
Normal 

ϕ ~  
N(0,0.25) 

Log(τ) ~  
N(0.50, 0.13) 

N/A N/A 

20% 
Unreliable 

ϕ ~  
N(0,0.25) 

Log(τ) ~  
N(0.50, 0.13) 

ϕ ~  
N(0,0.25) 

Log(τ) ~  
N(1.2, 0.14) 

20% 
Severe 

ϕ ~  
N(0,0.25) 

Log(τ) ~  
N(0.50, 0.13) 

ϕ ~  
N(-1, 0.30) 

Log(τ) ~  
N(0.50, 0.13) 

Note. SD = standard deviation; ϕ = rater bias; τ = rater SD. 

 

 

were drawn from a N(0,1) distribution and were kept fixed across all datasets. Each test 
taker’s true pass/fail status was determined by their true θ value – if θ > 0 then they 
passed, otherwise they failed. We selected PCM parameters for eight items from the 
literature (Donoghue, 1994; Li & Baser, 2012) to use in our simulations and nested the 2-
item test within the 4-item test which were nested within the full 8-item test.  

Using the true latent trait values, true PCM item parameters, and true rater parameters, 
we generated observed ratings for a fully-crossed rating design in which all 100 raters 
scored all items. To manipulate the number of ratings per item, we trimmed the fully-
crossed data by randomly selecting either 2, 4, or 8 ratings per item. This generated 
incompletely-crossed datasets in which each response has only 2, 4 or 8 ratings (instead 
of 100 ratings, 1 rating from each of 100 raters). Since the ratings were removed random-
ly from the fully-crossed dataset, there is no relationship between the response (or test 
taker who gave the response) and the rater who assigned the rating to the response. Fur-
thermore, the number of ratings per response is uniform within a dataset. What did vary 
is the number of ratings each rater assigned within a dataset.   

We evaluated the utility of scores at different levels to reflect a test taker’s true ability. 
Thus we evaluated correlations between true θ values and item scores, HRM-based θ 
estimates, and pass/fail classifications derived from HRM-based θ estimates. A test taker 
was designated to have passed if that test taker’s estimated θ was greater than 0 and 
designated to have failed otherwise. We examined results at the individual test taker and 
the group level. 

Parameter estimation 

The HRM is a hierarchical Bayesian model with parameters estimated with MCMC 
methods which means that we must place priors on all estimated parameters (for more 
information on MCMC estimation in the IRT context and more specifically in the HRM 
context, see references such as: Patz & Junker, 1999ab; Patz. et al., 2002; Junker, Patz, & 
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Van Houdnos, 2016). On the rater bias parameters φr  we placed a N(0, 2
φσ =10) and on 

the rater precision parameters 21 τ r  we placed a Gamma(1,1). We placed a N(0,1) prior 

on the latent traits, item difficulties, and item step parameters.4 Using weakly informative 
priors such as these (versus uninformative priors, e.g., N(0,10), which provide less cer-
tainty about the likely values), contributes to efficient estimation but still provide enough 
flexibility for precise estimates. In general, using a truly informative prior may be too 
restrictive, and using an uninformative prior would allow the data to dominate the esti-
mation procedure. However, it is unnecessary to fully rely on the data since we know the 
likely range of values for all parameters.  

We used JAGS (Plummer, 2003) via the R2Jags package from R (Su & Yajima, 2012) to 
fit the HRM to the data. For each dataset we ran 3 chains, each with 20,000 iterations, 
and a burn-in of 10,000. To reduce autocorrelation we thinned the chains by keeping 
every 10th iteration resulting in 3,000 iterations in the final posterior sample (3 chains x 
1,000 iterations). We evaluated the convergence of chains according to the Gelman-

Rubin convergence diagnostic ( R̂ ; Gelman & Rubin, 1996); all R̂  values were below 
1.1 which is the criterion indicative of convergence.  

Results: Measurement accuracy at the individual level 

Presentation of our results focuses on how the decisions that we make about test takers 
based on the HRM estimates are impacted by four design decisions: (a) rater pool quality 
(i.e., rater selection), (b) the number of ratings per response, (c) the number of items on 
the assessment, and (d) the level at which we interpret test taker measures. We also dis-
cuss the impact of utilizing the HRM. In this section, we focus exclusively on interpreta-
tion at the levels of the test taker. We focus on group-level decisions in the following 
section.  

Table 3 presents correlations that illustrate the impact of design decisions regarding the 
number of items (2, 4, or 8), the quality of the rating pool (Normal, Unreliable, and Se-
vere), the number of ratings for each response (2, 4, or 8), and the level at which test 
taker measures are interpreted (Item, Total, and Pass/Fail classifications), on concord-
ance with true latent ability. Specifically, this table contains the correlations between gen-
erating latent trait values and observed/estimated parameter values. Item level correlations 
are between the true generating θs and the observed item scores. Item scores were comput- 
 

                                                                                                                         
4
 Note that, typically, identification of the PCM in the Bayesian context would entail constraining the 

location of the scale either by setting μ = 0 in the Normal prior on the latent traits or constraining the item 
difficulty parameters using either a hard or soft constraint (using priors). In addition, there is another 
location indeterminacy in the item step parameters. Thus, for purposes of identification, we did use a 
N(0,1) prior on the latent traits and we applied a sum-to-zero constraint on the item step parameters. We 
also used the same prior on both the difficulties and item step parameters since in some of these datasets, 
especially with the two-item test, there is not a lot of information/data to estimate all of the HRM parame-
ters. 
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Table 3:  
Correlations between True and Observed / Estimated Measures at the Individual-level 

 
Note. The item score correlations are based on the observed item scores (average of multiple 
ratings for an item) and the true latent trait values. The first total score column contains 
correlations between true latent traits and observed total test scores. The second total score 
column contains correlations between true and estimated latent traits. The pass/fail 
correlations are based on the classifications based on the estimated and true latent trait 
values. The pass/fail correlations are biserial correlations. HRM = hierarchical rater model; 
P/F = pass/fail. 

Item Total Total P / F

2 .685 .797 .797 .835

4 .686 .795 .796 .836

8 .686 .795 .796 .836

2 .666 .783 .802 .827

4 .676 .791 .807 .833

8 .684 .799 .806 .834

2 .672 .788 .799 .834

4 .681 .794 .800 .833

8 .686 .799 .800 .833

2 .672 .876 .877 .921

4 .672 .875 .878 .922

8 .676 .878 .878 .922

2 .634 .856 .875 .879

4 .654 .868 .880 .882

8 .666 .875 .881 .881

2 .640 .859 .875 .892

4 .653 .864 .876 .883

8 .661 .869 .876 .884

2 .665 .924 .927 .939

4 .666 .924 .927 .948

8 .666 .924 .927 .942

2 .634 .916 .928 .946

4 .656 .923 .930 .947

8 .664 .925 .930 .947

2 .639 .920 .928 .943

4 .648 .921 .928 .941

8 .654 .924 .928 .943

Number of 
Items

2

Normal

Unreliable

Severe

Score Levels

Observed Scores HRM-based ScoresNumber 
of Ratings

Rating       
Quality

Unreliable

Severe

8

Normal

Unreliable

Severe

4

Normal
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ed as the average of the observed ratings for an item for each test taker, or 
1=D

ijrr X D  

where D is the number of ratings of test taker i’s response to item j (in this study, D = 2, 4, 
or 8). The observed item scores are values that reflect a test taker’s item-level performance, 
taking into account all raters’ ratings. Because each test taker responds to at least two items, 
we computed correlations (one per item) separately and then averaged the correlations 
across items within a condition to prevent dependencies from artificially inflating the corre-
lations. For example, in the conditions with two items and two ratings per item, we com-
puted the correlation between the true θ and the item score for item 1 (average of the two 
ratings) and the correlation between the true θ and the item score for item 2. We applied a 
Fisher transformation (Fisher, 1915) to each correlation and computed the mean correlation 
on the z scale. We then transformed the mean back to the correlation scale. Those values 
appear in the column labeled “Item” in Table 3. There are two “Total” columns in this table 
that describe the relationship between the true θ value and scores summarizing total test 
performance. The “Total” column under “Observed Scores” contains Pearson correlations 
between the generating θ values and the observed total test score, computed as the sum of 
the item scores. The “Total” column under “HRM-based Scores” contains Pearson correla-
tions between the generating θ values and the estimated θ values. We provided both to 
demonstrate the difference between explicitly modeling rater severity and unreliability in 
the latent trait context versus the observed score framework. The “P / F” column (where “P 
/ F” is for Pass/Fail) contains biserial correlations describing the relationship between the 
pass or fail classification based on the estimated θs and the true θ values. Thus, all correla-
tions in Table 3 describe the relationship between scores observed at different levels and 
the true underlying ability. 

Impact of rating quality & effect of utilizing HRM 

We manipulated rating quality by generating ratings based on a rating pool with or with-
out aberrant raters. The HRM is a model that explicitly estimates rater severity and unre-
liability and thus controls for these effects in the resulting latent trait estimates. For this 
reason, we would not expect to see a large impact due to rating pool quality on the latent 
trait estimates (i.e., HRM-based total scores). In other words, we expect to see similar 
correlations across the rating quality conditions because the model corrects for those 
effects. Indeed, this is the case. That is, for the HRM-based total scores, when comparing 
the correlations across the rating quality conditions (with the same number of items and 
the same number of ratings), the differences in the correlations were generally very small 
(< .011). 

The similarities in correlations observed across rating quality conditions under the HRM-
based total score correlations are not as apparent in the observed score correlations, 
indicating the usefulness of the HRM. Comparing the two total score correlations, we see 
essentially no differences in correlations in the Normal conditions – that is, the correla-
tions based on observed total test scores and estimated latent traits are the same when the 
rater pool contained only Normal raters. However, in the Unreliable and Severe condi-
tions, the correlations between the observed total test score and the generating latent trait 
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values were weaker. The Unreliable conditions, matching the number of items and raters, 
had correlations approximately .005 to .019 lower when correlating the observed score 
with the true latent trait values. The Severe conditions, also matching the other factors in 
the study, had correlations approximately .001 to .016 lower. These differences across 
score types (observed vs. estimated) relate to differences in the scoring mechanisms’ 
capacities to reflect true abilities under less than optimal rating quality conditions; 
though they are relatively small (maximum difference of .02) they are potentially impact-
ful in high-stakes situations. 

Overall, across the four score levels, comparisons between Normal, Unreliable, and 
Severe rating quality conditions with the same number of items and ratings reveal a 
largest absolute difference of only .042 (comparing the P/F correlations for Normal rat-
ing quality for 4 items and 2 ratings, .921, to the correlation for Unreliable rating quality 
for the same number of items and ratings, .879). This suggests that at least in this study, 
with these data and under these modeling strategies, the existence of rater effects only 
has a small impact on the accuracy of the parameter estimates. It is worth noting that the 
larger differences tend to appear when comparing Normal rating quality to Unreliable 
and Severe rating quality and that larger differences tend to appear when making com-
parisons at the P/F score level and, to some degree, at the item score level. In addition, 
most of the largest differences occur when there are 4 items on the test.  

Impact of number of ratings 

The results indicate no significant improvements in agreement with the true latent trait 
due to the inclusion of more ratings, a result that is consistent with prior research con-
ducted within a generalizability theory framework (for example, see Brennan, Gao, & 
Colton, 1995). That is, if you compare the values of the correlations when the rating 
quality and number of items is the same within each score level column, the differences 
are generally very close to 0. A few exceptions to this trend exist at the Item score level, 
but the absolute differences are about .03. Most notably, in the Unreliable conditions at 
the Item score level, the greatest improvements in agreement with the true latent traits 
occur for 4 and 8 items when increasing the number of ratings from 2 to 8 (e.g., for 4 
items, 2 ratings produces a correlation of .634 while 8 ratings produces a correlation of 
.666). There are also some differences in the correlations between the total observed 
score and the true latent traits, mainly in the Unreliable and Severe rating quality condi-
tions. For example, the same condition that exhibited sensitivity to the number of ratings 
based on item scores also revealed the same sensitivity based on observed total test 
scores, but slightly less so. The difference between the correlation in the 4-item, Unrelia-
ble condition with 2 ratings and 8 ratings was .019. The corresponding difference in 
correlations based on the true and estimated θs was .006. Importantly, these findings are 
valid only within the context of the conditions in this study, namely, two, four and eight 
ratings per response. 
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Impact of the number of items 

The results associated with comparisons between rows that contain the same rater effect 
and the same number of ratings but different numbers of items reveals what one would 
expect – more items results in better recovery of the test taker’s true ability, but only at 
the Total and P/F score levels. Generally, the correlations for the Item score level were 
around the average value of .67. However, at the Total and P/F score levels, the typical 
correlations were roughly .80 to .83 for 2 items to about .88 to .90 for 4 items to about 
.93 to .94 for 8 items. That is, at these two levels, correlations increased by a value of 
more than .10, on average, when comparing a 2 item test to an 8 item test. 

Impact of score level decision 

The results for the score level reveal another expected result – as we decrease the granu-
larity of the score we interpret (Item --> Total --> P/F), the score's representation of 
underlying ability is improved. Specifically, the average correlation at the Item score 
level average was about .67, while the average correlations at the Total score and P/F 
levels equal .86 and .89, respectively. That is, when you make decisions based on a 
broader scope, your depictions of the test taker’s ability are more accurate. 

Results: Measurement accuracy at the group level 

Yet another level of analysis is at the group level. Table 4 summarizes statistics that 
demonstrate the impact of focusing on a group of test takers rather than individual test 

takers. Specifically, Table 4 provides the mean of the ability estimates ( )θ̂M , the mean 

deviation of ability estimates from true abilities ( )ˆθ θ−M , the mean of the standard 

errors of the ability estimates ( )θ̂ 
  

M SE , and the standard error of the mean of the 

ability estimates ( )θ̂ 
  

SE M . Generally, the mean of the ability estimates and the biases 

are all close to the expected value of 0.00, and they do not vary much across any of the 
three factors that we varied, although the values of the mean of the estimates do tend to 
approach zero more consistently when there are 4 or 8 items rather than only 2.  

Two comparisons that are revealing have to do with the mean of the standard errors of the 
estimates and the standard error of the mean of the estimates. First, note that the mean of 

the standard errors of the estimates ( )θ̂ 
  

M SE  decrease as the number of items increase. 

That is, the mean for 2 items equals 0.61, the mean for 4 items equals 0.49, and the mean 
for 8 items equals 0.37. This reinforces the observation made in the previous section that 
the only design decision that has a significant impact on our results is the number of items  
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Table 4: 
Summary Statistics for Estimated Traits Describing Measurement Accuracy at the Group 

Level 

 
Note. Means and mean deviations of estimated θs (from true θs) reveal no 
differences across conditions. An effect due to the level of decision making is 
shown when comparing the mean of the SEs to the SE of the mean, indicating 
higher precision at the group level. θ = true latent trait; θ̂ = estimated latent trait; 
M = mean; SE = standard error. 

2 -0.004 -0.002 0.610 0.025

4 -0.003 -0.003 0.606 0.025

8 -0.002 -0.004 0.607 0.025

2 -0.002 -0.004 0.618 0.024

4 -0.003 -0.003 0.605 0.025

8 -0.002 -0.004 0.605 0.025

2 -0.004 -0.002 0.612 0.025

4 -0.003 -0.003 0.606 0.025

8 -0.003 -0.003 0.606 0.025

2 -0.001 -0.005 0.487 0.027

4 -0.001 -0.005 0.485 0.027

8 -0.002 -0.004 0.485 0.027

2 0.001 -0.007 0.497 0.027

4 0.001 -0.007 0.487 0.027

8 0.001 -0.007 0.487 0.027

2 0.000 -0.006 0.493 0.027

4 0.000 -0.006 0.489 0.027

8 -0.001 -0.005 0.489 0.027

2 0.000 -0.006 0.374 0.029

4 -0.001 -0.005 0.372 0.029

8 -0.001 -0.005 0.373 0.029

2 -0.001 -0.005 0.379 0.029

4 0.000 -0.006 0.372 0.030

8 -0.001 -0.005 0.372 0.030

2 -0.001 -0.005 0.371 0.028

4 -0.001 -0.005 0.369 0.028

8 0.001 -0.007 0.369 0.028

2

Normal

Unreliable

Severe

Number 
of Items

Rating 
Quality

Number 
of 

Ratings

4

Normal

Unreliable

Severe

8

Normal

Unreliable

Severe
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administered to test takers. As one might expect, not only does an increase in the number of 
items improve the correlation between estimates and true abilities (Table 3), but the esti-
mates are more precise with the increase in the number of items (Table 4). Note that rating 
quality and the number of ratings assigned by raters have no impact on the precision of the 
estimates under the HRM. Second, comparing the two rightmost columns reveals that, 
when decisions are made at the group level rather than the individual level, the precision of 

the statistic in question is higher. On average, the standard error of the mean ( )θ̂ 
  

SE M  

equals 0.03, and its value does not vary significantly across any of the conditions that we 

explored. Note that ( )θ̂ 
  

SE M does get marginally smaller when decreasing the number 

of items, however this relates to an underestimation of the true variance of the latent trait 
distribution and should not be confused with improved precision. 

Discussion & Conclusions 

The design of constructed response scoring systems requires many choices that inherent-
ly impact the quality of the collected ratings, resulting scores, and decisions made about 
test takers. We examined how rater selection (rating quality), the number of items, and 
the number of ratings per item per test taker impact scores at different levels under IRT 
scoring with the HRM. There are several levels of evaluation possibly resulting from an 
assessment. Diagnostic information about an individual may be gleaned from a single 
rating on a single response to an item. Summative information about an individual’s 
overall ability on some domain may be gathered from a total score based on multiple 
items. Information on whether or not a candidate achieves a sufficient score to show 
mastery on a domain may be gathered by applying an established cutpoint to a total 
score. Furthermore, these three score levels may be considered at the individual test taker 
level, or at the group level when performing item or test analyses. Our goal in this article 
was to study how different design decisions impact the information about individuals and 
groups at these various score levels. 

The HRM is a multilevel IRT model for ratings which explicitly models and therefore 
accounts for rater bias (severity and leniency) and rater variability. Scores computed 
from the HRM are latent trait estimates that have been refined to account for the rater 
bias and unreliability detected by the model. In addition, the multilevel component of the 
HRM includes a nesting of observed ratings assigned by human raters within ideal rat-
ings. By including this hierarchy, the model acknowledges that multiple ratings of the 
same work should not add information to the measurement (only additional items should 
contribute to the test information).  

Our results demonstrate six things about the impact of the measurement model and de-
sign decisions on the accuracy of score interpretation. First, we demonstrated that em-
ploying the HRM improves the accuracy of score interpretation when compared to inter-
pretation of observed scores. The HRM accomplished this by removing the influence of 
rater severity and unreliability on test taker measures. In the simulation, we observed that 
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the correlation between observed scores and true ability is lower than the correlation 
between HRM estimates and true ability, indicating that HRM estimates more closely 
approximate truth. Second, we demonstrated that rater severity and unreliability as mod-
eled by the HRM have only a small impact on the accuracy of test taker measures. In our 
simulations, the maximum difference in correlation between true and estimated abilities 
was about .04 when comparing normal to unreliable raters, showing that the model did a 
good job of recovering truth, even when observed ratings contained more error. Third, 
we demonstrated that the number of items on the test has the biggest impact on the accu-
racy of test taker measures. In our example, the correlations between true and estimated 
abilities were different by more than .10 when comparing a 2 item test to an 8 item test. 
Fourth, we demonstrated that the number of ratings per response whether there were two, 
four, or eight ratings per response, had virtually no impact on the accuracy of test taker 
measures. Fifth, our simulations demonstrated how the granularity of decisions impacts 
the accuracy of score interpretation. For example, focusing on the test taker’s scores on a 
single item resulted in correlations of about .67 between estimated and true ability while 
focusing on pass/fail decisions resulted in a correlation of about .87. Sixth, focusing on 
the group of test takers, rather than individual test takers, also produced more accurate 
decisions. For example, the average standard error of latent trait estimates equals 0.49, 
while the average standard error of the mean of the latent trait estimates equals 0.03.  

Our conclusions from this study may be summarized into the following points: 

− Rater selection is important for ensuring quality scores. Raters with experience, who 
are reactive to feedback, and who have shown minimal aberrant behavior are pre-
ferred for selection. However, given the potential limitations involved with hiring, 
training, and selecting raters, using the HRM for scoring provides a method by 
which to mitigate some of their errors. Even still, the HRM does not mitigate all 
rater effects. Generally, there are consequences to ignoring rater effects when using 
observed scores or scoring with IRT models that do not model these effects (Hom-
bo, Donoghue, & Thayer, 2001). 

− Collecting multiple ratings of the same work is a design component that may appear 
to provide better measurement, however, the payoff is not great, if any payoff exists 
at all. Under the HRM, there were no notable differences related to the number of 
ratings at the individual or group level, at least not under the conditions we studied.  

− Test length is very important in measurement at the individual level. Our simula-
tions supported what was already widely known about the advantages of longer 
tests. There is no benefit to a longer test when considering measures of this type at 
the group level. 

 

Our results are based on a series of simulated datasets, and thus multiple replications 
would be the best way to derive more stable conclusions. However, combining our 
knowledge of psychometrics and our observations from this simulated example we are 
still able to make some high-level suggestions. For the design of CR assessments and 
scoring systems we suggest using multiple items whenever possible and applying a scor-
ing model that accounts for the specific rater effects that have been found in ratings. 



The impact of design decisions on measurement accuracy 491

While the costs associated with multiple items are likely higher than costs associated 
with multiple ratings of fewer items because there is less training involved, the psycho-
metric payoff is likely to be greater. It is important to note that not all IRT rater models 
will be appropriate in all situations. The ratings collected within the scoring system may 
reveal different rater effects and thus preliminary descriptive analyses may be helpful in 
determining which model is most appropriate to be applied to mitigate those errors.  
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