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Abstract

The purpose of this article is to introduce the methods used and challenges confronted by the au-
thors of this two-part series of articles describing the results of analyses of measurement equiva-
lence of the short form scales from the Patient Reported Outcomes Measurement Information
System® (PROMIS®). Qualitative and quantitative approaches used to examine differential item
functioning (DIF) are reviewed briefly. Qualitative methods focused on generation of DIF hypothe-
ses. The basic quantitative approaches used all rely on a latent variable model, and examine param-
eters either derived directly from item response theory (IRT) or from structural equation models
(SEM). A key methods focus of these articles is to describe state-of-the art approaches to examina-
tion of measurement equivalence in eight domains: physical health, pain, fatigue, sleep, depression,
anxiety, cognition, and social function. These articles represent the first time that DIF has been
examined systematically in the PROMIS short form measures, particularly among ethnically di-
verse groups. This is also the first set of analyses to examine the performance of PROMIS short
forms in patients with cancer.
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Latent variable model state-of-the-art methods for examining measurement equivalence are intro-
duced briefly in this paper to orient readers to the approaches adopted in this set of papers. Several
methodological challenges underlying (DIF-free) anchor item selection and model assumption
violations are presented as a backdrop for the articles in this two-part series on measurement equiv-
alence of PROMIS measures.
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Introduction

Several methods for examining measurement equivalence were used in the papers in this
and a second issue of Psychological Test and Assessment Modeling. This set of articles
describes the results of analyses of short form scales from the Patient Reported Out-
comes Measurement Information System (PROMIS; Cella et al., 2007). The purpose of
this overview is to introduce briefly the approaches used to examine differential item
functioning (DIF) in these sets of analyses, identifying challenges and new directions.
Both qualitative and quantitative methods were used. Qualitative methods focused on
generation of DIF hypotheses. The basic quantitative approaches used all relied on a
latent variable model, and examined parameters either derived directly from item re-
sponse theory (IRT; Hambleton, Swaminathan, & Rogers, 1991; Lord, 1980; Lord &
Novick, 1968; Rasch, 1960) or from structural equation models (SEM; Joreskog &
Goldberger, 1975; Joreskog & Sorbom, 1996).

DIF is observed when the probability of item response differs across comparison groups
such as country, ethnic group, or language, after conditioning on (controlling for) level
of the state or trait measured, such as depression or physical function. Uniform DIF
occurs if the probability of response is consistently higher (or lower) for one of the com-
parison groups across all levels of the state or trait. Non-uniform DIF is observed when
the probability of response is in a different direction for groups compared at different
levels of the state or trait. For example, the response probability might be higher for
Spanish than for English-speakers at higher levels of a measure of depression state, and
lower for Spanish than for English speakers at lower levels of depression.

Many reviews of methods to assess DIF exist (Holland & Wainer, 1993; Millsap & Ever-
son, 1993; Potenza & Dorans, 1995; Teresi, 2006; Teresi & Jones, 2013; van de Vivjer &
Leung, 1997). PROMIS guidelines and standards provide several evidence-based meth-
ods that are recommended for DIF assessment (Reeve et al., 2007; http:/www.
nihpromis.org/science/publications); the use of these methods were illustrated by Carle et
al. (2011), and were those used in the analyses reported in the papers in this series.

These articles represent the first time that DIF has been examined systematically in the
PROMIIS short form measures. Some studies of DIF have been performed by PROMIS
investigators; however, the samples were not ethnically diverse, and were characterized
by individuals with higher educational levels. There are practically no studies of PRO-
MIS measures extant that focus on DIF in different racial and ethnic groups. This is also
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the first set of analyses to examine the performance of PROMIS short forms in patients
with cancer. Additionally, a key methods focus of these articles is to describe state-of-the
art approaches to the examination of measurement equivalence in health, mental health,
and cognition, including those based on IRT (Lord, 1980; Orlando-Edelen, Thissen,
Teresi, Kleinman, & Ocepek-Welikson, 2006; Teresi, Kleinman, & Ocepek-Welikson,
2000), multiple group confirmatory factor analyses (MGCFA; Joreskog, 1971; Meredith,
1964), multiple indicators, multiple causes (MIMIC; Joreskog & Goldberger, 1975;
Jones, 2006; Muthén, 1984) and ordinal logistic regression (OLR; Zumbo, 1999) using
latent variable models (Crane, Van Belle, & Larson, 2004). Also discussed are challeng-
es to applications of these methods, including selection of DIF-free anchor items that set
the metric for comparison groups on a common scale, model assumption violations and
missing data.

Qualitative methods

One of the initial steps in DIF analyses is the establishment of an a priori set of hypothe-
ses regarding potential group differences in item response by combining information
gathered via two methods: a) qualitatively, from ratings by a panel of content experts,
and b) from a review of the literature documenting prior research findings of DIF.

DIF hypotheses were generated by asking a set of clinicians and other content experts to
indicate whether or not they expected DIF to be present, and the direction of the DIF
with respect to several comparison groups: gender, age, race/ethnicity, language, educa-
tion, and diagnosis. A definition of DIF was provided, and instructions related to hypoth-
eses generation were given. An illustration of the definition is given using fatigue as the
example.

Differential item functioning means that individuals in groups with the same underly-
ing trait (state) level will have different probabilities of endorsing an item. Put anoth-
er way, reporting fatigue (e.g., limiting you at work, including work at home) should
depend only on the level of the trait (state), e.g., fatigue and not on membership in a
group, e.g., male or female or young or old. Very specifically, randomly selected per-
sons from each of two or more groups (e.g., males and females) who are at the same
(e.g., mild) level of fatigue should have the same likelihood of reporting limitations
working due to fatigue. If it is hypothesized that this is not the case, it would be hy-
pothesized that the item has gender DIF.

The PROMIS items were reviewed qualitatively by nine to twelve content experts re-
garding potential sources of DIF. The content experts were clinical or counseling psy-
chologists, public health professionals, gerontologists, epidemiologists, and clinicians.
Different sets of experts rated each domain. The experts were asked to rate individually
each of the items with respect to each of the socio-demographic groups and diagnosis.
They provided the hypotheses in terms of presence and direction of DIF. The goal was to
identify items that might have a different meaning or not be understood well and/or
equivalently by individuals of any of the groups referenced (Malida et al., 2008). A grid
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containing a row for each of the items and separate columns for each of the referenced
groups was distributed to the experts for completion.

Although qualitative prediction of content experts has not always been found to be relia-
ble in educational testing (Frederickx, Tuerlinckx, De Boeck, & Magis, 2010); genera-
tion of hypotheses for health and quality-of-life-related constructs may fare better be-
cause the item pool is smaller and limited, and the content narrow for a specific con-
struct, e.g., depression. Because the PROMIS measures were translated for this project
into languages other than English (Spanish and Mandarin), the hypothesis generation
step was considered important in the adaptation and DIF testing process (see also Ham-
bleton & Patsula, 1998, 1999).

Quantitative methods

An IRT-based approach with tests of parameter differences was used in several sets of
DIF analyses, namely the papers by Reeve and colleagues examining fatigue (this issue),
Fieo and colleagues (in press) examining cognition and Teresi and colleagues, examining
depression and anxiety (Teresi, Ocepek-Welikson, Kleinman, Ramirez, & Kim; this
issue a, b) and pain (Teresi et al., in press). A combined MGCFA MIMIC approach was
used in the paper by Jones, Tommet, Ramirez, Jensen, and Teresi, (in press) examining
physical function. Jensen and colleagues (in press) applied MGCFA followed by MIMIC
in the analyses of sleep (in press). Hahn and colleagues (in press) used ordinal logistic
regression with a latent conditioning variable to examine DIF in social function items.
Consistent with the PROMIS psychometric approach, Samejima’s Graded Response
Model (GRM; Samejima, 1969) was fit to the polytomous response data in the analyses
by all investigators except for Jones and colleagues (in press) and Jensen and colleagues
(in press) who used a different parameterization.

The primary statistical approaches for examining measurement equivalence used in the
analyses were: 1) Wald tests of item parameters from IRT 2) model-based tests of DIF
from the MIMIC approach 3) modification indices from MGCFA analyses comparative
models and 4) chi-square and pseudo R-square statistics from ordinal logistic regression
using latent variable conditioning models. All authors included examination of model
assumptions, and considered effect sizes and impact of DIF. Following a best practice
recommendation (Hambleton, 2006), most investigators used a purification process to
select anchor items that were free of DIF in order to obtain a relatively DIF-free set of
items with which to estimate the trait and link the groups studied. Finally, several inves-
tigators used an alternative secondary approach in sensitivity analyses.

IRT-based DIF tests

The graded response model (Samejima, 1969) is one of the methods used most often in
DIF applications in health, mental health, and many areas of psychology because it per-
mits modeling of polytomous data with multiple ordered response options reflecting
symptom severity. This model is the basis for DIF detection using two of the methods
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applied in these analyses, the Wald test and latent variable ordinal logistic regression.
Ordered responses, x=k and k=1,2,...m are assumed, in which g; is the discrimination
(slope) and by, the difficulty parameters for response category k:

PG=k) = P*(k) - P*(k+1) = 1/ 1 + exp[-a(0-bi)] - 1 / 1 + exp[-af0-bu-))].

P*(k) is the item characteristic curve (ICC) describing the probability that a response is
in category k or higher, for each value of # (see also Orlando-Edelen et al., 2006;
Thissen, 1991).

The discrimination («;) parameter, proportional to the slope of the curve, characterizes
the strength of the relationship of the item to the underlying attribute measured and how
well the item discriminates among individuals at specific levels of that trait. It is equiva-
lent with algebraic manipulation to the factor loading. The severity (location or thresh-
old) parameter (b;) also known in educational testing as the difficulty parameter repre-
sents an inflection or cutting point between two adjacent response categories, and the b
parameters collectively indicate the difficulty or severity of the item. Using depression as
an example, items may be more or less severe indicators of depression. Admitting to
suicidal ideation is a more severe indicator as reflected in higher b parameters. There are
k-1 boundary response functions describing the cumulative probability of responding in
category k or higher. The degrees of freedom increase with the number of b parameters
estimated. There is one less b estimated than there are response categories. If tests of the
equivalence of the a parameters (indicative of non-uniform DIF) are not significant, tests
of group differences in the b parameters (indicating uniform DIF) are performed, con-
straining the a parameters to be equal.

Using anxiety as an example, the expectation is that respondents who are anxious would
be more likely than those who are not to respond in a symptomatic direction to an item
measuring anxiety. A person without anxiety is expected to have a lower probability
(than a person with anxiety) of responding in an anxious direction to the item. The item
characteristic curve relates the probability of an item response to the underlying state or
trait, e.g., anxiety, measured by the item set. According to the IRT model, an item shows
DIF if people from different subgroups but at the same level of anxiety have unequal
probabilities of endorsement. DIF is demonstrated by ICCs that are different for compar-
ison groups.

Testing item parameters using IRT log-likelihood ratio and Wald tests: The Wald statis-
tic is equivalent to Lord’s chi-square (Lord, 1980), which was extended for polytomous
data by Cohen, Kim, and Baker (1993). The Wald statistic is also asymptotically equiva-
lent to the likelihood ratio test (Thissen 1991; Thissen, Steinberg, & Wainer, 1993) used
in the item response theory likelihood ratio (IRTLR) method. This latter widely used
approach tests a series of IRT models established by fixing and freeing parameters. First,
a compact (or more parsimonious) model is tested with all parameters constrained to be
equal across groups for a studied item, together with the anchor items that are DIF-free
(model 1), against an augmented model (2) with one or more parameters of the studied
item freed to be estimated distinctly for the two groups. The procedure involves compar-
ison of differences in log-likelihoods (-2LL, distributed as chi-square) associated with
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nested models; the resulting statistic is evaluated for significance with degrees of free-
dom equal to the difference in the number of parameter estimates in the two models.

In contrast, the Wald test for DIF follows the model proposed by Lord (1977, 1980) in
which vectors of IRT item parameters are compared. The rationale is that if the vectors
of item parameters differ significantly across groups, then the item functions differently
for the groups. In the context of DIF testing, use of the Wald test based on Lord’s chi-
square permits testing DIF across multiple groups rather than two groups at a time, as is
the case with IRTLR. The final p values are adjusted using Bonferroni (Bonferroni,
1936) or other methods such as Benjamini-Hochberg (B-H; Benjamini & Hochberg,
1995; Thissen, Steinberg, & Kuang, 2002).

As summarized in Teresi, Kleinman, and Ocepek-Welikson (2000), Lord (1980, p. 223)

proposed a chi-square statistic, y” :v'z[_'vi testing simultaneously the hypotheses that
~i

the a’s and b’s of group 1 on item i are equal to the a’s and b’s of group 2, where Vv’ is
the vector { 15,.1—131,2,5,,1—&,,2} , and Zz_l is the inverse of the asymptotic variance-

covariance matrix for b, —b,and a, —a,, . Because a, and b, are independent of a,,
and b,, Z[:Z”+Zi2 , where Z“ is the sampling variance-covarance matrix of a;

and b, , and similarly for >
More advanced estimation procedures (Cai, 2008) were introduced by Langer (2008),
and incorporated into Flexible Multilevel Multidimensional Item Analysis and Test
Scoring (FlexMIRT; Cai, 2013; Houts & Cai, 2013) and Item Response Theory for Pa-
tient Reported Outcomes (IRTPRO; Cai, Thissen, & du Toit, 2012); the latter of which
has been compared to IRTLR (Woods, Cai, & Wang, 2013). There are two approaches to
the use of the Wald test: the Wald 1 method uses anchor items in DIF detection, while
the Wald 2 method does not select for anchor items. As introduced above, and discussed
in detail below, anchor items are DIF-free items used to set the metric for group compar-
isons. As an example, using the Wald test for examination of group differences in IRT
item parameters (Lord, 1980; Teresi et al., 2000; Thissen et al., 1993), an overall simul-
taneous joint test of differences in the a or b parameters is performed followed by step
down tests for group differences in the a parameters, followed by conditional tests of the
b parameters. Uniform DIF is detected when the b parameters differ and non-uniform
DIF when the a parameters differ. Severity (b) parameters are interpreted as uniform DIF
only if the tests of the @ parameters are not significant because tests of b parameters are
performed, constraining the a parameters to be equal. As discussed below in the section
on anchor items, the procedure is performed iteratively to obtain a purified anchor set.
Several sets of investigators (Fieo et al., in press; Reeve et al., 2016; Teresi et al., 2016-a,
2016-b) used IRT Wald tests in IRTPRO (Cai et al., 2012) as the primary DIF detection
method.
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MIMIC and MGCFA

Also used in this series was MIMIC, a parametric latent variable model related to IRT.
The model comes from the tradition of factor analyses and structural equation modeling
(see also Jones, 2006). Additionally, multiple group confirmatory factor analyses (CFA)
were performed. A unidimensional CFA model estimated for ordinal response data from
a matrix of polychoric correlation coefficients with uncorrelated measurement errors is
equivalent to a graded response IRT model (Joreskog & Moustaki, 2001; Mislevy, 1986).
The relationship and equivalence between factor analyses based on SEM and IRT has
been reviewed and illustrated widely (e.g., McDonald, 2000; Meade & Lautenschlager,
2004; Mellenbergh, 1994; Meredith & Teresi, 2006; Raju, Laffite, & Byrne, 2002; Reise,
Widaman, & Pugh, 1993; Takane & de Leeuw, 1987).

The measurement model can be represented by y*= An+e, where 77 represents one or

more latent variables underlying the item responses. Given a unidimensional model, 77
has the same meaning as @ in the IRT model. The model is linked to IRT as originally
proposed by Birnbaum (Lord & Novick, 1968) because the discrimination parameter can
be calculated using the factor loadings (lambda’s; see also Thissen et al., 1993; Jones,
2006). As reviewed by Jones (2006) and Teresi and Jones (2013, pg. 152), the outcome
variable vector, y*, contains latent response variables underlying the observed and dis-
crete responses, y. The y* and y variables have a threshold relationship, where y; is in
category c if y*; is greater than threshold 7. and less than or equal to 7. A contains a
matrix of linear regression parameters, A, that are on the scale of factor loadings when
the common and latent response variables have unit variance, and describe the per-unit
increase in y* per unit increase in 7. IRT discrimination parameters (a) can be deter-

Aj

JI-4;

under the standard normal latent trait assumption (see also Lord & Novick, 1968).

mined from the factor analysis results in a single factor model using a; =

Boundary (difficulty or severity) parameters are b, =—ch/1_;1 (Muthén & Asparouhov,

2002). Different parameterizations of the measurement model result in more complex
linking to IRT parameters, as discussed by Muthén and Asparouhov (2002).

An important point is that for the two methods to be equivalent, parameters must be set
in specific ways. In factor analysis, the metric of the latent variable can be set in one of
two ways: fixing a factor loading to a constant, usually 1 or fixing the latent trait vari-
ance (or residual variance) to a constant, usually 1.0. In MGCFA, the Mplus default is to
fix the first factor loading to 1.0 in all groups. Other SEM software packages also set the
metric by constraining the first factor loading to 1.0. The variance of the factor is freely
estimated. There is another parameter in Mplus categorical factor analysis, a so-called
scale parameter (symbolized delta) that does not exist in the IRT framework that must be
constrained to be equal across groups for the Mplus SEM model to replicate the IRT
model.

An equivalent model is one that estimates all factor loadings and constrains the variance
to 1.0. IRT software packages use this approach and assume the underlying latent trait
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has mean 0 and unit variance for the reference group, while the mean and variance are
estimated for the studied group. The equations in this paper that show the relationship
between factor analysis parameters and IRT parameters assume that the variance of the
latent trait is 1.0. Setting the metric by only constraining the first factor loading to 1.0 in
both groups in an MGCFA model will result in the two groups having non-overlapping
item response functions because the variances of the latent trait are different.

MIMIC: As presented above, the MIMIC latent trait model is a variant of the factor
analytic structural equation model, and except for differences in parameterization is
equivalent to an IRT model (Muthén & Muthén, 1998-2013), which assumes that all
items load on a single underlying latent attribute such as physical function. MIMIC mod-
els allow uniform DIF to be detected across e.g., ethnic/racial groups, after controlling
for covariates. A measure of DIF is the direct effect of a studied variable (such as ethnic
group membership) on the item response estimated from a model that includes (controls
for) the health or mental health status variable. As reviewed in Teresi and Jones (2013,
pg. 152) the measurement model, expanded to include direct effects of background vari-
ables is: y*= A7+ Kx+¢€ , and the structural equation model: 7=a+Tx+ ¢, where T’

contains regressions of the underlying trait, and describes the effects of covariates (stud-
ied group) on the underlying trait. Direct effects (K) are estimated from a regression of
individual test items’ latent response variables on covariates such as background varia-
bles (x). In the MIMIC model, a significantly non-zero value for K indicates uniform
DIF: an item difficulty shift for members of the group marked by x. Although traditional
MIMIC models assess only uniform DIF, with careful construction, the model above can
be expanded to include an interaction term for group by trait to capture non-uniform DIF
(Woods & Grimm, 2011). MIMIC has evidenced superior performance in DIF detection
compared with IRTLR methods, particularly with small studied group sample sizes
(Woods, 2009b). Variants of this model were used in the analyses presented in this series
of papers by Jones et al. (in press) examining physical function and by Jensen and col-
leagues (in press) examining sleep.

Multiple Group Confirmatory Factor Analysis: The CFA model can be expanded to test
for DIF in multiple groups (MGCFA) and among multiple dimensions using general
latent variable modeling approaches (Muthén, 2002). Covariates can also be entered into
MGCFA models (and could be called MG-MIMIC models). A measurement model can
be estimated separately, but simultaneously, in for example, Black, Hispanic and non-
Hispanic White groups. Model identification and measurement model calibration is
achieved by imposing equality constraints on the measurement model parameters and
variance parameters for the latent, e.g., physical or mental health state across groups.
Uniform DIF can be detected by relaxing equality constraints on threshold parameters
(7) and non-uniform DIF by relaxing equality constraints on factor loadings ( 4 ) across
groups (Muthén, 1989a). Changes in model modification indices (chi-square scaled
derivatives from the model fit function) are examined in DIF analyses (Jones, 2006;
Muthén, 1989a). A robust parameter estimation procedure is based on a mean and vari-
ance adjusted weighted least squares procedure (WLSMYV; Muthén, du Toit, & Spisic,
1997) incorporated into MPlus SEM software (Muthén & Muthén, 2013).
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Different levels of equality constraints (subject to model identification) across these
models constitute a hierarchy of factorial invariance (e.g., Meredith, 1993). Strong facto-
rial invariance is assumed if groups have equivalent t (threshold/difficulty) and A (factor
loading) values. Uniform DIF is assessed by relaxing assumptions of group equivalence
in the means for the latent response variables or thresholds for observed categorical
variables, and non-uniform DIF by relaxing equivalence assumptions for item factor
loadings. Further discussion of the levels (hierarchy) of factorial invariance is provided
in several reviews (Byrne, Shavelson, & Muthén, 1989; Cheung & Rensvold, 2003;
Gregorich, 2006; Mellenbergh, 1989; Meredith, 1993; Meredith & Teresi, 2006; Van-
denberg & Lance, 2000). The relationship between the MIMIC model and the MGCFA
approach is illustrated in Teresi and Jones (2013).

The analyses examining physical function and sleep were both conducted using a struc-
tural equation modeling approach. Jensen and colleagues (in press) used both MGCFA
(Meredith, 1993; Muthén & Asparouhov, 2002; Muthén & Lehman, 1985) and MIMIC
(Joreskog & Goldberger, 1975; Muthén, 1984) as the DIF detection methods in examin-
ing measurement invariance of the PROMIS sleep short forms. The measurement model
was tested with respect to 10 sleep short form items using confirmatory factor analysis.
Differential item functioning with respect to race/ethnicity (White, Black, Hispanic and
Asian) was assessed by fitting separate measurement models for each group. All parame-
ters were free to be estimated in the baseline (first) unrestricted model. The second mod-
el specified all factor loadings and thresholds (intercepts) to be constrained simultane-
ously to equality. Modification indices and expected parameter changes were used to
assess whether DIF was present. However, to achieve appropriate fit, four items from the
hypothesized model were removed, due to item content overlap. A method effect was
also identified due to the use of both positively and negatively worded items; residual
covariances were modeled for positively worded items. The factor loadings and inter-
cepts were freed for one item for one comparison group because of large group differ-
ences in the loadings, and the establishment of partial strong factorial invariance for the
sleep disturbance scale. Standardized residuals, correlations, modification indices, and
expected parameter changes were examined to arrive at the six item version that was
used for further analyses of race/ethnicity using multiple group CFA. This multigroup
CFA model was then extended into a MIMIC model to include age and sex.

The analyses by Jones and colleagues (in press) used a combined MGCFA MIMIC ap-
proach which allows thresholds and loadings to differ by group. An iterative multiple
group MIMIC analysis, adjusting for the effects of age, sex, race/ethnicity, and education
level as appropriate was performed using Mplus/WLSMV. Parameters were tested for
DIF. Separate models were constructed for a series of two-group tests contrasting the
reference group versus one focal group (e.g., White, Black, Asian, Hispanic). Simultane-
ous measurement models for two comparison groups were examined for differences in
factor loadings (discrimination) and item thresholds (difficulty or severity levels) across
a focal and a reference group. All models included adjustment for possible confounders
on the level of the latent trait. The MIMIC models include these (mean-centered) covari-
ates as adjustment factors but they were not evaluated for DIF.
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Logistic and ordinal logistic regression

The method used as the primary approach to DIF analyses in early studies of PROMIS
item banks was logistic regression (LR; Swaminathan & Rogers, 1990) and ordinal lo-
gistic regression (OLR; Zumbo, 1999) using an observed conditioning variable. For the
OLR formulation proposed by Zumbo (1999) and demonstrated by Gelin & Zumbo
(2003), the item response Y is specified as a latent continuously distributed random vari-
able. The formula for OLR as given by Zumbo (1999) is: logit [P(Y<k)] = a; + B, trait +
{3, group + PB; (trait * group), where Y denotes item response to category k.

Basically three nested models are examined:
Model 1: o + Bixg;

Model 2: o, + Bix; + Baxy;

Model 3: o+ Bix; + Boxy + Bs(xixa);

where x; is the trait variable, e.g., anxiety, and x, the group or studied covariate, e.g.,
race/ethnicity. B, is the coefficient for trait; j3, is the coefficient for the group or ordinal
studied covariate; and B; is the coefficient for the interaction of group * trait. After con-
ditioning on the trait, the main effect of the group variable is tested; this is a test of uni-
form DIF in the threshold parameters. The significance of the interaction term B;(x;x,) is
tested for evidence of non-uniform DIF. The OLR test for DIF uses the cumulative in-
formation of the ordinal responses by comparing the odds of endorsing a response less
than or equal to & versus a response greater than .

Different criteria are used by different investigators in order to identify DIF using OLR.
One rule (Gelin & Zumbo, 2003) examines uniform DIF by comparing the R’ values
between the second and first steps in order to measure the unique variation attributable to
the group differences over and above that of the conditioning variable. Tests of non-
uniform DIF involve the effect of both the group and the interaction, over and above the
disability score. Effect size measures are incorporated into the procedure. For example,
Jodoin and Gierl (2001) specify two criteria: the two degrees of freedom chi-square test
for DIF (testing for the group and interaction effects simultaneously) must have a p value
less than or equal to 0.01, accompanied by an R’ effect size value of at least 0.035.

This method is illustrated in the papers by Reeve et al. (this issue), and by Hahn et al. (in
press). However, Reeve and colleagues (this issue) used a standard observed variable
OLR approach in sensitivity analyses, while Hahn and colleagues (in press) used OLR
with the latent conditioning variable (IRTOLR), described below as the primary DIF
approach.

IRTOLR: A modification of the OLR approach, IR-TOLR (Crane et al., 2004; Crane,
Gibbons, Jolley, & van Belle, 2006) uses estimates from a latent variable IRT model,
rather than the traditional observed score conditioning variable, and incorporates effect
sizes into the uniform DIF detection procedure. The method allows OLR to be performed
with an iteratively purified IRT trait estimated as the matching criterion. A program,
lordif was developed (Choi, Gibbons, & Crane, 2011) to perform the analyses; this soft-
ware uses Itm in R (Rizopoulus, 2006, 2009) to obtain IRT item parameter estimates for
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the Graded Response Model (Samejima, 1969), and the Design package for OLR (Her-
rel, 2009).

DIF Flagging Rules: Incorporation of magnitude measures such as R* change in LR and
OLR can help to reduce flagging of non-salient DIF (Hidalgo, Gémez-Benito, & Zumbo,
2014). For example, Reeve and colleagues (in press) identified salient DIF using the
criteria of R*> 0.13 (Zumbo & Thomas 1997). Simulations by Meade, Lautenschlager,
and Johnson (2007) resulted in the recommendation to apply empirically derived DIF
cutoff (threshold) values using a Monte Carlo simulation approach. This approach has
been incorporated into the DIF detection software (lordif;, Choi et al., 2011) used in
PROMIS, and in the papers in this series on depression, anxiety, cognition, pain and
social function. The lordif software includes a number of DIF effect size measures based
on those described above: the change in Beta and pseudo R* from models with and with-
out DIF terms. Also estimated are several magnitude and impact indices (Kim, Cohen,
Alagoz, & Kim, 2007) described below, which are based on IRT parameters.

IRTOLR and lordif (Choi et al., 2011) were used in sensitivity analyses for the depres-
sion, anxiety, cognition and pain domains. Hahn et al. (in press) used IRTOLR and lordif
to examine DIF in social function items. These authors applied a magnitude cutoff of
McFadden pseudo-R’ change > 0.010. A series of hierarchical nested models permits
DIF evaluation. As presented earlier, the latent social function variable was entered in
Model 1; in Model 2 the studied group variable was added to the model (e.g.,
race/ethnicity, gender, language). Model 3 included social function, group and the inter-
action term for social function-by-group. Uniform DIF was detected by comparing Mod-
el 1 vs. Model 2 and non-uniform DIF by comparing Model 2 vs. Model 3.

Magnitude and impact for IRT-based DIF methods

Because significance tests alone are subject to chance findings, and with large sample
sizes, trivial differences in item functioning between groups may be significant; in addi-
tion to corrections for multiple comparisons, effect size or DIF magnitude measures are
often used in conjunction with statistical tests. Examination of magnitude and impact is
important when making decisions about whether to remove an item from a measure or to
consider providing separate calibrations for different groups in item banks (Teresi, Rami-
rez, Jones, Choi, & Crane, 2012). As reviewed above, the OLR approach incorporates
effect size measures into the DIF detection method. Most IRT- and SEM-based methods
examine magnitude and impact in separate procedures.

DIF Magnitude: The magnitude of DIF relates to the degree of DIF present in an item,
and is also referred to as an effect size. IRT-based indices of DIF magnitude are derived
from expected item score functions. The item-level expected score is the sum (over cate-
gories) of the probability of response in category k, weighted by the category score e.g.,
the ordinal code for the category, such as not at all (5), very little (4), somewhat (3),
quite a lot (2) and cannot do (1).

Several summary measures describe the magnitude of differences between or among the
item characteristic curves or expected item score functions for polytomous items. Intro-
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duced by Wainer, Sireci, and Thissen (1991) for binary items, these effect size measures
are used frequently for DIF magnitude assessment (See also Chang & Mazzeo, 1994;
Collins, Raju, & Edwards, 2000; Morales, Flowers, Gutiérrez, Kleinman, & Teresi,
2006; Orlando-Edelen et al., 2006; Steinberg & Thissen, 2006; Teresi et al., 2007). For
example, for binary items, the exact area methods compare the areas between the item
response functions estimated in two different groups; Cohen et al. (1993) extended these
area statistics for the graded response model. Expected item scores are also central in the
area statistics and the Differential Functioning of Items and Tests (DFIT) methodology
developed by Raju (Raju, 1990; Raju, 1999; Raju, Oshima, & Wolach, 1995a; Raju et
al., 2009; Raju, van der Linden, & Fleer, 1995b) and Flowers and colleagues (Flowers,
Oshima, & Raju, 1999) to examine the magnitude of the gap between the ICCs for com-
parison groups. The non-compensatory DIF (NCDIF; Raju et al., 1995b) effect size
measure is used widely. The NCDIF index is weighted by the focal (studied) group den-
sity such that more weight is given to differences in the region of the trait with the high-
est frequency in the targeted group. For item i, calculated is the average (expected value)
of the squared difference between expected item scores for individuals as a members of
the focal group and as a members of the reference group.

The average unsigned area difference (AUD) between the expected item response func-
tions weighted by the studied group density, evaluated at various quadrature (theta)
points provides another effect size measure (see Raju, 1988; Wainer, 1993; Woods,
2011). This AUD value is similar to NCDIF, but is not squared. Woods (2009a) studied
the AUD and found it was not affected by the number of anchor items. An issue is what
cutoff values to use for flagging salient DIF. Because of the sensitivity of cutoff thresh-
olds to the distribution of parameter estimates, simulations to derive cutoffs were con-
ducted to establish test-wide critical values to be used across studies and data sets (Flow-
ers et al., 1999). Another approach is to derive sample (data set)-specific cutoff thresh-
olds using Monte Carlo studies. This method has been incorporated into software such as
lordif (Choi et al., 2011). Methods such as item parameter replication (IPR; Oshima,
Raju, & Nanda, 2006) have also been used to develop empirically derived cutoffs for
application to specific data sets with polytomous item responses in the context of DFIT
(Raju et al., 2009). The IPR method does not require Monte Carlo studies, but relies on
parameter replications based on focal group item parameter variances and covariances
(Seybert & Stark, 2012).

The test-wide critical value method proposed by Flowers et al. (1999) produces cutoffs
which were used in the analyses presented in this series. This method was found in simu-
lation studies to perform similarly to (Seybert & Stark, 2012) or better than (Raju et al.,
2009) the IPR method in terms of power and type 1 error with polytomous data. Howev-
er, the method must be used under conditions of iterative linking in which equating con-
stants are purified iteratively. The linking process is repeated after removal of items with
DIF in previous steps, and new equating constants are derived and used in the DIF anal-
yses, as applied in several of the papers in this series. Details of these measures and
formulas are presented in an overview paper (Kleinman & Teresi, this issue) describing
magnitude and impact measures. For reviews of effect size measures and DIF detection,
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see also Steinberg and Thissen (2006) and Monahan, McHorney, Stump, and Perkins
(2007).

In the context of OLR, effect sizes are incorporated into the tests of DIF as described
above to reduce false DIF detection. In addition, if uniform DIF is observed, the odds
ratio can also be used to interpret the direction of the DIF; e.g., what the odds are of the
studied group, as contrasted with the reference group responding in a more disordered
direction to an item such as fearfulness after conditioning (matching) on overall symp-
tomatology, e.g., anxiety. Use of the delta log odds ratio in the context of binary items
was found to reduce false DIF detection (Hidalgo et al., 2014).

Aggregate Scale Impact: Impact refers to the influence of DIF on the scale score. Scale
level impact can be expressed as group differences in the total test (scale) response func-
tions. In the context of item response theory, differences in “test” response functions
(Lord & Novick, 1968) can be constructed by summing the expected item scores to
obtain an expected scale score. The test response function, also called the test character-
istic curve (TCC) relates average expected scale scores to theta (the estimate of health or
mental health). These latter functions show the extent to which DIF cancels at the scale
level (DIF cancellation). (Detailed formulas and calculations can be found in Collins et
al., 2000; Kim et al, 2007; Orlando-Edelen et al., 2006; Steinberg & Thissen, 2006;
Teresi et al., 2007; Wainer, 1993; Wainer, Sireci, & Thissen, 1991.) Several authors
examined the scale level impact of DIF using expected scale score functions for the
analyses presented in this series.

Several impact measures, based on examination of group differences in these functions
developed for binary items (Wainer, 1993) were expanded for polytomous items (Kim et
al., 2007). These impact measures include the expected impact of DIF on scores in terms
of absolute group differences between item true-score functions and density-weighted
differences between groups. The latter adjusts for the actual distribution of individuals; if
few respondents are located at the point where the differences are greatest, the weighted
impact will be less.

The DFIT Compensatory DIF index quantifies differences in expected scale scores and is
incorporated into the Differential Test Functioning (DTF) method (Fleer, 1993; Flowers
et al., 1999; Oshima, Kushubar, Scott, & Raju, 2011; Oshima et al., 2006; Raju et al.,
1995 a, b). This method has been evaluated (Meade, Lautenschlager, & Johnson, 2007)
and applied to cognitive assessment data (Morales et al., 2006; Teresi et al., 2000; Teresi
et al., 1995; Yang et al., 2011). Differential functioning at the test level (aggregated DIF
impact) is the sum of differential functioning at the item level, and indicates how much
each item's compensatory DIF (CDIF) contributes to differential test functioning of the
whole measure. DIF in one item can cancel out DIF in another item; CDIF includes
information about bias from other items. The DTF index (Oshima et al., 2011; Raju et
al., 1995) is a summary measure of these differences and reflects the aggregated net
impact. Plots (for each group) of the expected scale score against the measure of the state
or trait (e.g., depression) provides a graphic depiction of the difference in the areas be-
tween the curves, and shows the relative impact of DIF.
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More recent work on effect sizes is presented in Stark, Chernyshenko, and Drasgow
(2004); Steinberg and Thissen (2006); Kim, Cohen, Alagoz, and Kim (2007); and in the
article in this issue on magnitude and impact measures. Expected scale score functions
were examined in the analyses of PROMIS cognition, depression, pain and anxiety short
form data. Hahn and colleagues (in press) examined these plots and used lordif to obtain
mean group differences in theta scores, adjusting for DIF or not. ANOVA was used to
provide estimates of Cohen’s d (see Cook et al., 2011).

Impact can also be examined by comparing model-based DIF-adjusted mean scores in
the context of MIMIC and MGCFA. MIMIC models assess DIF magnitude through
direct effects, and impact by comparing the estimated group effects, i.e., indirect effects
in models with and without adjustment for DIF (Jones & Gallo, 2002; Jones, 2006). DIF
adjusted and unadjusted effect estimates can be converted to estimated differences in
mean scores on the latent variable (Jones, 2006). Jones and colleagues (in press) exam-
ined DIF impact by calculating the mean group difference on the underlying latent trait
(physical functioning) on a normal metric (i.e., the latent trait is constrained to a unit
normal distribution in the reference group). The mean differences were presented for
models with and without adjustment for detected DIF. The percent difference in the
mean scores was also estimated as a descriptor of DIF impact.

Individual Impact: In addition to aggregate level impact, individual impact can be as-
sessed in the context of latent variable models, by fixing and freeing parameters based on
findings of DIF and examining changes in trait score estimates. The unadjusted theta
estimates are produced from a model with all item parameters set equal for the two
groups. The adjusted thetas are produced from a model with parameters that showed DIF
based on the IRT results estimated separately (freed) for the groups. The capacity to fix
and free parameters based on DIF, and compare theta estimates is incorporated into
software packages such as MULTILOG (Thissen, 1991); IRTPRO (Cai et al., 2012);
FlexMIRT (Cai, 2013; Houts & Cai, 2013) and lordif (Choi et al., 2011), and can be
coded directly in structural equation modeling software. This method permits compari-
sons of trait (e.g., mental health status) measure estimates that are DIF free to those with
parameters estimated without DIF adjustment. This methodology has been used by sev-
eral authors to examine the individual impact of DIF (e.g., Kim, Pilkonis, Frank, Thase,
& Reynolds, 2002; Teresi et al., 2009), and was used in the articles on depression, anxie-
ty, cognition, pain and social function in this series of papers.

This general methodology was extended by Crane and colleagues (2007b); the difference
between scores unadjusted for DIF and those that account for DIF (with simultaneous
control of covariates) is calculated to examine the cumulative impact of DIF on individu-
al participants. The distribution of these difference scores is then examined; for individu-
al-level DIF impact, a box-and-whiskers plot of the difference scores is constructed. As
reviewed in Teresi, Ramirez, Jones, Choi, and Crane (2012), when a minimally im-
portant difference (MID) has not been established for the instrument, an approach used
in lordif is to plot the differences due to DIF against the median standard error of meas-
urement (SEM). Differences larger than that value are termed salient individual-level
DIF impact. Examples of these plots are shown, using the PROMIS Anxiety item bank
data (Choi et al., 2011), and with respect to PROMIS physical function items (Paz,
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Spritzer, Morales, & Hays, 2013) and in the articles in this issue on measuring impact by
Kleinman and Teresi (2016). This method was used by Hahn and colleagues (in press).
These authors used lordif software to fix and free parameters according to DIF results.
Adjusted scores were calculated using common (shared) item parameters for items with-
out DIF across all groups. Unique (group-specific) item parameters were used for items
with DIF. DIF impact at the score level was defined as the score difference, which is
equivalent to subtracting the adjusted score from the unadjusted score for individuals.

Challenges to accurate DIF detection

DIF detection can be compromised by several factors: lack of purification and improper
selection of anchor items; violations of model assumptions, e.g. unidimensionality and
local independence; small sample sizes for the number of parameters estimated; unequal
sample sizes in subgroups; skewed and sparse item level data; and differences in theta
distributions among groups. Differences in estimated mean disability and discrimination
distributions between groups can result in inflated type 1 error rates (Li, Brooks, & Jo-
hanson, 2012). The shape of the distribution can also affect DIF detection. For example,
Woods (2011) compared several non-parametric methods to IRTLRDIF when the latent
distributions were not normal for both groups; ordinal response data were examined. She
found that latent non-normality affected all procedures, but IRTLRDIF was more robust
to latent nonnormality than the nonparametric approaches. Increasing the number of
DIF-free anchor items had a mitigating effect on Type 1 error inflation for all methods.

Purification: Purification is the process of iteratively testing items for DIF so that final
estimation of the trait can be made after taking this item-level DIF into account. For
example, Mazor, Hambleton, and Clauser (1998) proposed a two-stage DIF evaluation:
first, all test items are examined for DIF; next, those items showing DIF are removed,
and the process is repeated. Such two-stage DIF detection methods were originally pro-
posed by Thissen, Steinberg and Wainer (1988). Stark et al. (2006) and Lopez Rivas,
Stark, and Chernyshenko (2009) also proposed DIF-testing using a two-step procedure,
first constructing a constrained baseline model in which all item parameters are fixed
equal and each of the studied item parameters are freed, followed in stage two by selec-
tion of a set of items that are DIF-free. The DFIT method requires purification at the
parameter estimation phase (using anchor items), and additional purification of the
equating constants through re-equating after items found to exhibit DIF at the first stage
are removed.

Simulation studies have shown that many methods of DIF detection are adversely affect-
ed by lack of purification. In one simulation comparing parametric methods (Finch,
2005), IRTLR was the most affected (in terms of false DIF detection) by lack of purifica-
tion and MIMIC least. However, Wang, Shih, and Yang (2009) found that purification
outperformed a standard MIMIC approach in terms of power and type 1 error under
conditions of low percent DIF for binary items and Wang and Shih (2010) found that a
pure anchor method was superior to standard MIMIC approaches for polytomous items.
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They recommend iterative purification. Purification is also recommended in the context
of logistic regression (French & Maller, 2007).

Anchor Item Selection: Item sets that are used to construct preliminary estimates of the
attribute assessed, e.g., depression usually contain items with DIF. Thus, estimation of a
person’s standing on the attribute may be incorrect, using this contaminated estimate.
Anchor items are those items found (through an iterative process or prior analyses) to be
free of significant DIF. These items are used to estimate theta, the conditioning variable
that links groups compared in terms of the underlying attribute, e.g., depression level. If
no prior information about DIF in the item set is available, initial DIF estimates can be
obtained by treating each item as a "studied" item, while using the remainder as "anchor"
items. The first step is to estimate the mean and variance for the target groups studied
(while setting the reference group mean to 0 and variance to 1). The anchor sets the
metrics of different groups on a common scale. Typically, multiple anchors are selected
in the context of IRT DIF methods, while only one may be used for SEM-based methods.
For example, in MGCFA, a single item may be selected to serve as the anchor to fix the
scale. However, setting the first item to have the same factor loading of 1.0 in two groups
is equivalent to setting an anchor item only if the variance of the latent trait is con-
strained to be equal across groups. Or, equivalently, the latent trait variance may be set to
1.0 in both groups and constraints relaxed on an item discrimination parameter to be
equal across groups.

Use of a reference anchor item or set has been found to improve type 1 error rates in DIF
detection for some models, e.g., MIMIC (Wang & Shih, 2010), IRTLR (Woods, 2009a)
and hierarchical generalized linear models (Chen, Chen, & Shih, 2013); however, the
way in which the item(s) are selected under conditions of differences in the trait distribu-
tions for the comparison groups can affect the accuracy of DIF detection (Chen et al.,
2013). Selection of the anchor items and the parameters to fix to some value, e.g., load-
ings and intercepts in order to set the scale can result in different parameter estimates
(Little, 2000).

Anchor Item Selection Methods: Best methods for selecting anchor items have been
reviewed (e.g., Kopf, Zeileis, & Strobl, 2015a, 2015b; Wang & Shih, 2010; Woods,
2009a), and are summarized briefly below.

1. All-other and all-other with purification

The method used in the analyses presented in several of the articles in this series is the
so-called “all-other” anchor method in which initial DIF estimates are obtained by treat-
ing each item as a "studied" item, one at a time, while using the remainder as "anchor"
items. This is the method used most often in IRTLR (Bolt, 2002; Kim & Cohen, 1998).
For each studied item, a model is constructed with all parameters constrained to be equal
across groups for the anchor items, with the item parameters of the studied item freed to
be estimated distinctly for the comparison groups. The studied item is included in the
analyses together with the anchor items. Because of the simultaneous estimation proce-
dures for the two groups, item equating is not required. The more items with DIF in the
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test, the less accurate this procedure will be. Purification is used to iteratively test for and
remove items with DIF from the anchor; however, purification is also affected by the
number of items with DIF (Wang, Shih, & Sun, 2012).

An example is embodied in the Wald 1 and Wald 2 test approach. The Wald 2 approach
proposed by Langer (2008) performs the all-other selection method without further itera-
tive testing using anchor items. With a single model, the scale is identified by setting the
reference group mean to 0 and the standard deviation to 1; parameters for anchor items
are fixed as equal and the studied item parameters freed. The Wald 1 test proposed by
Cai, Thissen, and du Toit (2012) specifies anchor items using the constant anchor meth-
od described below or an all-other (“sweep”) approach to arrive at an initial set of poten-
tial anchors for use in purification. Then the final iterative purification and DIF analyses
can be performed. The two methods have been compared recently (Woods et al., 2013)
and as with other approaches that do not use anchor items, Wald 2 resulted in inflated
type 1 error and is not recommended. Wald 1 and IRTLR were superior and performed
well.

Because there are so many (i * i-1 items) tests of DIF when using the IRTLR approach
(as many as 90 tests for a 10 item short form), the false discovery rate is inflated. Thus,
to avoid multiple tests, Stark et al. (2006) suggested selecting a single anchor based on a
non-iterative rule. Following a test of all items with all others as anchors, one item is
selected that has the highest factor loading among the (presumably unbiased) items. The
reasoning is that the anchor defines theta (the trait estimate) for the DIF analyses, so the
anchor should be highly related to theta. Often this approach is used in factor analyses in
selection of the most discriminating item to set the metric for the latent construct. In the
context of IRT, other investigators (Gonzalez-Betanzos & Abad, 2012) have recom-
mended selection as anchor items those with high discrimination parameters. IRTLR
tests have greater power when the discrimination parameter is larger (Ankenmann, Witt,
& Dunbar, 1999; Lopez Rivas, Stark, & Chernyshenko, 2009).

2. Constant anchor method

An alternative approach is the constant anchor method (Thissen, Steinberg, & Wainer,
1988; Wang & Yeh, 2003) in which selected items are chosen in advance to serve as
anchors. This method has been found to perform in a superior fashion in the presence of
large amounts of DIF, and longer anchors result in greater power, if they are DIF-free
(Thissen et al., 1988; Wang, 2004; Wang & Yeh, 2003). For example, Wang and Yeh
(2003) found that in the context of IRTLR a larger number of anchor items (four vs.
lower numbers) resulted in greater power for DIF detection. In general, it has been rec-
ommended that at least four anchor items be used for adequate power for DIF detection
(Wang, 2004; Wang et al., 2012) and for construct measurement integrity (Cohen, Co-
hen, Teresi, Marchi, & Velez, 1990).

Wang (2004) compared the constant anchor method to the all other. The all-other method
did not perform well unless the difference in mean item difficulties between groups
approached 0. The constant anchor method yielded unbiased parameter estimates, well-
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controlled type 1 error and high power of DIF detection regardless of large differences in
the mean item difficulties between groups and high percent of items with DIF.

Stark et al. (2006) showed in the factor analytic setting that the free-baseline model (a
constant anchor method) was superior to the constrained (parameters set equal) baseline
model (all-other) method for both IRT-based and confirmatory factor analytic methods.
This finding was confirmed by Shih and Wang (2009) for the MIMIC model and binary
items. These authors found that use of a constant anchor following iterative identification
of DIF-free items yielded high power and low type I error. Under the constant method,
the more anchor items, the higher the power for detecting DIF with MIMIC; however the
increase in power diminished with more than four anchors and was trivial after 10 (Shih
& Wang, 2009).

Wang et al. (2012) proposed a DIF free then DIF (DFTD) procedure, which is two-step.
First, four items are selected as an anchor or 10% to 20% of the items that are less likely
to have DIF are selected. Then other items are tested against this anchor. This is similar
to the method used by Orlando-Edelen, Thissen, Teresi, Kleinman, and Ocepek-
Welikson (2006), in which items are tested iteratively until a minimum number of items
without DIF are identified as anchors. Then the remaining items are again tested for DIF.

Based on a simulation study of IRTLR (Lopez Rivas et al., 2009), it was found that in
the context of small samples, selection of three to five items without significant DIF and
with the largest discrimination parameters was optimal. This result was confirmed by
Meade & Wright (2012). However, selection of this subset of items that are DIF-free
remains a challenge in many settings. The method of selecting a minimal number of DIF-
free items is only practical if there are enough items without DIF. Shorter measures, such
as those examined here may not yield enough DIF-free items. Selection of anchor items
iteratively may not protect against false positives if there are many items with DIF.

3. Rank order and iterative rank order with purification

Woods (2009a) investigated several anchor methods for use with IRTLR analyses. She
recommended selecting anchor items based on a log-likelihood ratio (LR) rank test in
order to avoid inflated type 1 error resulting from multiple hypothesis tests. The ratio of
likelihood ratio statistics to the number of free parameters (f, the degrees of freedom) is
calculated from the first all-other model. Items are rank-ordered based on this LR/f ratio
and because a large LR indicates DIF; items with small values of this ratio are those
selected as anchors. Then IRTLRDIF procedures are performed again with the new an-
chors and the B-H procedure is used in adjustment for final selection. Woods (2009a)
found this method to have lower type 1 error rates than the all-other iterative backward
method for polytomous items and relatively large sample sizes. However, as expected,
the rate of accuracy (type 1 error and power) decreased with greater percentages of items
with DIF. With smaller sample sizes (reference group n = 600; studied group n = 200),
power was poor with the use of only one anchor. Although research reviewed above has
shown that the use of one anchor is sufficient for larger samples, e.g., 1500 and 500; use
of only one anchor item is not recommended for smaller samples and there is the danger
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of construct meaning drift. Group sample sizes for the analyses presented in this series of
papers were relatively large, approaching 500 in the studied groups; however such sizes
are rare in practice outside of educational testing.

The IRTLR all-other procedure can be used as a first step in selection of anchor items
and final DIF tests can be obtained in analyses using the Wald test procedure, as was
done with respect to several analyses presented in this series. This approach is similar to
the Wald 1 procedure recommended by Cai et al. (2012), in which anchor item selection
is incorporated into DIF testing. Final parameter estimates are obtained after the final run
and based on the DIF results that inform which parameters can be estimated as equal
(DIF free) or separately because of DIF. If there is DIF in any parameter, all parameters
are estimated separately.

Because the use of IRTLR with the rank based method of Woods (2009a) is less accu-
rate in the presence of many items with DIF, another method proposed by Wang et al.
(2012) is a rank-based scale purification method (RB-S). The all-other method is per-
formed iteratively with purification and the rank order method applied to select a con-
stant anchor set. The procedure is applied to all items until the same set of items are
identified with DIF in two consecutive steps. Then anchor items with the smallest LR/df
ratio are selected: either four or some percentage of items. This method, investigated
using IRTLRDIF for binary items, yielded high power and adequate type 1 error control.
Applying purification reduced type 1 error and increased power, and was superior to
rank order alone in terms of type 1 error under conditions of a large amount of DIF
(Wang et al., 2012).

Setodji, Reise, Morales, Fongwam, and Hays (2011) investigated a method for selection
of anchor items in the context of the likelihood ratio test. These authors used a semi-
parametric permutation test to obtain the empirical distribution of difference statistics.
Estimates of differences between parameters obtained from models with parameters
constrained as contrasted with those with parameters set free are obtained. Respondents
are randomly assigned to two groups, and the randomization repeated a sufficient num-
ber of times to obtain the permutated empirical distribution, which is used to obtain a
two-sided test statistic. Items with p values > 0.05 are candidate anchor items. However,
this method has not been investigated in comparison to other anchor item selection pro-
cedures.

4. Iterative forward selection with threshold or significance level criteria

Kopf, Zeileis, and Strobl (2015b) developed and examined several anchor item selection
methods in the context of Rasch (Rasch 1960, 1980; see also Glas & Verhelst, 1995;
Mair & Hatzinger, 2007) binary item models. These authors investigated various anchor
selection strategies to arrive at the first DIF-free anchor. Typically items are selected in
an iterative backward procedure, removing items identified with DIF; however, Kopf,
Zeileis, and Strobl (2015a) proposed an iterative forward selection method in which
items are tested one at a time against a single anchor, using a Wald test of differences in
the b parameters. Using this single item, all items are tested for DIF against the single
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anchor and DIF-free items are added iteratively to the anchor. Anchor item selection
strategies include ranking the absolute mean of the DIF test statistics or the number of
significant results. With the latter approach, the items corresponding to the lowest num-
ber of test statistics above the test statistic threshold are chosen as anchors. Their new
method, using a threshold criterion outperformed standard methods of selection (Kopf et
al., 2015a).

Anchor item methods used in the articles in this series

The anchor item selection method used in many of the papers in this series applies a
combination of the first three approaches reviewed above. For example, the analyses
examining cognition, depression, anxiety, and pain used a hybrid approach to arrive at a
constant anchor. Iterative procedures were used with the goal of identifying a minimum
of four items that are DIF-free. The all-other approach was used; however, if very few
items were DIF-free the rank-order method was used to select a starting anchor set. The
iterative rank order method similar to that described above (Wang et al., 2012) was also
used to identify the four items with the least DIF, and this result was examined in sensi-
tivity analyses for consistency. Iterative purification was performed such that the final
anchor set contained only items without DIF. The difference between the methods de-
scribed above and the analyses presented in this series is that although the goal was to
have at least four, it was not always possible to have a set number of anchor items. Ra-
ther, all items without DIF were selected after the original purification step. However,
items that converted from DIF to non-DIF during the iteration process were not added
back into the anchor set. Only those items that were consistently DIF-free throughout
purification were retained.

As an example, the all-other method in IRTLRDIF (Thissen, 2001), accompanied by
tests of LR/f was used to select items for iterative purification. IRTPRO option 3, which
permits the all-other approach for the multiple group case was used. While IRTLRDIF
permits comparison of only two groups at a time, IRTPRO option 3 is an all-other meth-
od that can be used with multiple groups, but requires separate runs for each item tested.
This procedure is performed iteratively in a purification procedure, such that the analyses
are repeated using the final subset of items (at least four if possible) identified as free of
DIF as the “purified” anchor set. This (Wald-type) procedure is more robust than just
relying on the all-other anchor procedure, and may take several iterations.

In the case of smaller sample sizes and when most items were identified with DIF, as
was the case with many of the analyses presented here, the Woods (2009a) rank-order
method has been recommended; it has been found that the number of anchor items did
not affect adversely the effect size estimates (Egberink, Meijer, & Tendeiro, 2015),
which are central to detection of salient DIF. A tradeoff is that too few anchor items
compromises power for DIF detection; on the other hand, including items with DIF in
the anchor results in inflated type 1 error (false DIF detection). As illustrated in the arti-
cles on depression and anxiety, it was not possible to obtain the desired number of an-
chor items for some subgroup comparisons. Thus, sensitivity DIF analyses were per-
formed to determine the effects of varying sets of anchors on the results.
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Although Kopf and colleagues (2015b) found that variants of the all-other approach just
described were suboptimal in the context of a Rasch model with binary items, to our
knowledge there is no evidence to support this finding in the context of the graded re-
sponse model. Moreover, DIF detection methods proposed and used in the analyses
described in this series incorporate sensitivity analyses and magnitude measures to miti-
gate false DIF detection.

Testing model assumptions

Dimensionality: Several investigators used exploratory factor analyses (EFA; As-
parouhov & Muthén, 2009) and confirmatory factor analysis, respectively to examine the
assumption of unidimensionality of the cognition (Fieo et al., in press), social function
(Hahn et al., in press), pain (Teresi et al., in press), fatigue (Reeve et al., 2016), depres-
sion and anxiety (Teresi, Ocepek-Welikson, Kleinman, Ramirez, & Kim, 2016-a, 2016-
b) item sets. The weighted least squares with adjustments for the mean and variance
(WLSMYV) estimation procedure in Mplus (version 7.1, Los Angeles, CA) was applied to
the ordered categorical response data. Unidimensional models were examined within
each group for several sets of analyses, and the model was identified by fixing the first
item to 1 and constraining (fixing) the mean of the trait to 0 for the sample. Random
halves of samples were used to examine exploratory and confirmatory models for some
analyses (Fieo et al., in press; Reeve et al., 2016; Teresi et al., 2016, a,b; Teresi et al., in
press).

Selection of the best methods and criteria for cutoff values for goodness of fit statistics is
an area of controversy (e.g., Cook, Kallen, & Amtmann, 2009). Model fit statistics and
criteria for goodness of fit (Bentler, 1990; Chou & Bentler, 1990; Chou & Wang, 2010)
included the comparative fit index (CFI; Bentler, 1990; CFI > 0.95), Tucker-Lewis Index
(TLI; Tucker & Lewis, 1973; TLI > 0.95), standardized root mean residuals (SRMR <
0.08), and the root mean square error of approximation (RMSEA < 0.06). Jensen and
colleagues (in press) and Hahn and colleagues (in press) also applied a CFA approach,
specifying a single underlying latent construct. Overall fit was evaluated using the chi-
square test, RMSEA and the CFI. Following recommendations of Reise (2012), a bifac-
tor model was also examined by several investigators to inform about dimensionality.

Jones and colleagues (in press) examined unidimensionality using permuted parallel
analysis (Buja & Eyuboglu, 1992; Horn, 1965). Parallel analysis compares observed
eigenvalues from a correlation matrix to eigenvalues that would be expected from a
random set of variables. Random eigenvalues were generated by randomly shuffling
responses across individuals, and estimating a correlation matrix. The procedure was
performed multiple times to generate a permutation distribution for eigenvalues under
the assumption of no association. The observed eigenvalues were then compared to the
permutation distribution, and a p-value for each eigenvalue obtained.

Dimensionality and Reliability Coefficients from Factor Models: An index of dimen-
sionality, the explained common variance (ECV) was calculated. IRT-based reliability
estimates, conditional on the trait were estimated. Additionally, McDonald’s (McDonald,
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1999) Omega Total (®,), a reliability estimate that is based on the proportion of total
common variance explained was estimated; ECV and McDonald’s omega, generated
from exploratory and confirmatory factor analyses, as well as several others recommend-
ed by Revelle and Zinbarg (2009) are contained in the “Psych” package that they devel-
oped in R (Revelle, 2015; www.R-project.org; R Development Team, 2008).

Cronbach’s alpha (Cronbach, 1951) is the most widely used estimate of reliability, al-
though it has significant limitations (e.g., Bentler, 2009; Sijtsma, 2009). This index is
based on an unweighted sum score, and is typically calculated using observed response
models and Pearson correlations; such values will generally be lower than McDonald’s
omega under conditions of unidimensionality (Zinbarg, Revelle, Yovel, & Li, 2005). A
more appropriate estimate of internal consistency for ordinal data is an ordinal version of
alpha (Zumbo, Gradermann, & Zeisser (2007) using polychoric correlations. The poly-
choric correlation is scaled differently and assumes an underlying unobserved continuous
response variable. Polychoric correlations, typically used with polytomous items can be
estimated using SEM packages such as MPlus (Muthén & Muthén, 2013). Ordinal alpha
estimates will be higher than Cronbach’s alpha and more similar in magnitude to
McDonald’s omega. Because McDonald’s omega is typically derived from a latent bifac-
tor model (e.g., Reise, 2012), it is arguably more invariant than values based on observed
response models (see also Bentler, 2009). The code for the ordinal version with poly-
chorics given in the R software package was used in the analyses of cognition, depres-
sion, anxiety, and pain. (A detailed description of its use can be found in Gadermann,
Guhn, & Zumbo, 2012.)

Local Dependency (LD): Local independence requires that all pairs of item responses be
independent, conditional on the latent trait. As reviewed in Houts and Edwards (2013),
local dependencies can result in biased estimates of theta (Zenisky, Hambleton, & Sireci,
2002) and item parameters (Chen & Thissen, 1997), poor estimates of the parameter
standard errors (Junker, 1991) and overestimation of information and coefficient alpha
(Sireci, Thissen, & Wainer, 1991). Because local dependencies can result in inflated
slopes (Houts & Edwards, 2013) sensitivity analyses were performed by several authors
of articles in this series, examining the effects of DIF detection after removal of items
with LD.

Numerous methods of LD detection have been proposed. These include for example tests
of residuals estimated based on the difference between response and the modeled proba-
bility of response conditional on theta (Yen, 1984). A widely used method incorporated
into software such as IRTPRO is Chen and Thissen’s LD chi-square statistic (Chen &
Thissen, 1997). This is based on a comparison of observed and expected frequencies
derived from item by item two-way cross-tabulations; the likelihood ratio statistic (G”)
resulting from this comparison is chi-square distributed. These values are approximately
z-scores (computed by subtracting the degrees of freedom from the chi-square-
distributed statistics and dividing by the square root of 2df); higher values are indicative
of violations (IRTPRO manual, Cai et al., 2012). The LD statistic is derived from the
residual correlation among a pair of items, given a single factor model. The authors of
the papers on depression, anxiety, pain, cognition, and fatigue used this approach. In the
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analyses presented in these papers, it was observed that the LD statistics were affected by
sample size, and increased in value with increased sample size.

In the context of IRT binary data models, Liu and Maydeu-Olivares (2012) examined
several LD statistics and identified the score tests (Glas & Sudrez-Falcén, 2003; Liu &
Thissen, 2012, 2014) and standardized bivariate residuals as the most powerful method
of evaluating LDs. In the context of the graded response model, Houts and Edwards
(2013) found that the best performing methods for detecting LD were the G’ index (Chen
& Thissen, 1997) described above and Jackknife Slope Indices (JSL; Edwards & Cai,
2008). This latter method examines the differences between slope estimates (which are
inflated by high LD) before and after removal of the item studied. The modification
indices from the structural equation model comparisons of restricted and unrestricted
models (after freeing residual correlations for item pairs) evidenced a high type 1 error
rate, and were considered as poor measures of LD detection.

Jones and colleagues (in press) although observing a well-fitting unidimensional model
without residual covariances, examined possible violations of local independence by
estimating residual correlations. Using Mplus, these authors examined two methods of
parameterization: delta and theta. Jones and colleagues (in press) discuss that the delta
parameterization method specifies a secondary latent variable common to both items in a
pair. The theta specification permits estimation of the residual variance/covariance ma-
trix. The delta method is appropriate if one views LD as an indicator of an unmeasured
trait (such as response style) rather than content overlap. For example, in the bifactor
model formulation, the second factor captures shared residual variance not accounted for
by the general factor; the presence of such secondary factors may result in inflated slope
(discrimination) parameters (see DeMars, 2014). Delta may also be preferred for ease of
translating to the IRT metric, but does not allow access to the off-diagonal elements of
the theta parameter matrix capturing the residual variance/covariances for items which
can be freed for estimation.

Using a theta parameterization in Mplus, a single common factor model is specified and
residual covariance parameters are fixed at zero, and freed iteratively one at a time, based
on examination of corresponding modification indices that indicated model misfit. In the
formulation of Meredith (1993), loadings and thresholds are first tested for invariance,
followed by tests of residuals. This is the logic for the theta parameterization. With the IRT
formulation, residuals are assumed to be invariant. However, heterogeneity in residual
variances could occur, for example if patients with cancer who are in pain are more prone
to variability in response due to distraction than are other groups studied. Woods and Har-
pole (2015) examined violations of this assumption of homogeneous residuals on DIF
detection across several methods, including logistic regression and IRT-log-likelihood ratio
tests for binary items. The logistic regression DIF detection method was more affected than
was IRT-LR overall; however, both were affected in terms of power.

LD may result from highly similar content as was evidenced in the analyses of sleep,
fatigue, and pain. Methods effects such as header/contingency formats in which respons-
es to other items are contingent on the response to a header item may result in LD and
require different (partial independence) IRT models (Carle et al., 2014; Reardon &
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Raudenbush, 2006). Finally LD may result from lack of unidimensionality (Chen &
Thissen, 1997; Houts & Edwards, 2013). In the analyses of physical function, depres-
sion, anxiety, and pain, despite strong evidence of unidimensionality, LD was observed.
In the cases of depression and anxiety and pain, given that the Cronbach’s alpha
(Cronbach, 1951) estimates were lower than those of McDonald’s omega, additional
support for unidimensionality was observed; however, slight multidimensionality may be
present, leading to a slightly elevated risk of false DIF detection.

Reeve and colleagues (this issue) found that the assumption of unidimensionality was met
in the analyses of fatigue; however, some item pairs evidenced local dependency. These
authors found two item pairs that showed potential LD; these items were removed from
each LD pair and the discrimination parameter change examined. The result was a reduc-
tion in discrimination parameter values for the LD-paired item. Removal of the item did not
affect the DIF results. Teresi and colleagues (this issue-a, this issue-b) performed sensitivi-
ty analyses removing items from pairs with high LD values and (resulting) high discrimina-
tion parameters. Discrimination parameters for remaining items were reduced for depres-
sion and DIF results did not change. However, in the analyses of anxiety, some small
changes were observed in the results of DIF, none of high magnitude. In the analyses of
pain, one item was removed from the analyses due to very high LD values with other items.

Model fit

IRT model fit was evaluated by several authors using the generalization of Orlando and
Thissen’s S-X* indicator for polytomous-response data (Orlando & Thissen, 2003).
Reeve and colleagues (2016) found an item that did not fit because it was worded in a
positive direction in contrast to other items. The IRT model was then fit to the full sam-
ple for the 13 remaining items; however, the S-X* indicator showed significant p-values
(indicating lack of fit) for nearly all items. The authors posited that the S-X” statistics
were inflated by the large sample size, such that item-level model fit could not be as-
sessed adequately.

Jensen and colleagues (in press) investigated four short form models, none of which fit
the data. There were positively and negatively worded items, and the authors posit that
respondents were not always paying attention to the switch in the response scale from
negative to positive wording, leading to a method effect. There was content overlap as
well; e.g., “I tried hard to get to sleep” and “I had difficulty falling asleep.” A two-step
solution was applied. Items with content overlap were removed. The method effect was
controlled by allowing the residual covariances of negatively worded items to covary.
Ultimately, several items required removal.

Missing Data

Although little missing data were observed, most investigators treated missing data by
removing subjects with 50 % or more missing items, and used individual imputation and
prorating algorithms for the remainder of the items with missing data. For example, Fieo
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et al., (in press) used this approach. Jensen et al. (in press) used a hybrid approach. All
participants with more than half of the items missing were excluded, and then a pairwise
deletion approach (Asparouhov & Muthén, 2010) was applied to missing data from the
remaining respondents using Mplus (available from: http://www.statmodel.com/ down-
load/GstrucMissingRevision.pdf). Most software packages also permit estimation with
inclusion of all available data by using maximum likelihood procedures and applying the
expectation maximization algorithm. Respondents responding to as few as one item may
be included; however, use of one item may not result in the best estimate of the underly-
ing attribute for those individuals.

Discussion

Methods effects and model assumption violations: Moderate-level methodological chal-
lenges were encountered in the analyses of the PROMIS short forms. These included
methods effects and local independence assumption violations. As reviewed in this arti-
cle, local dependencies can result in inflated slope parameters and type 1 error (false DIF
detection). Methods factors arose from 1) type of response category 2) combining differ-
ent type of response categories, e.g., frequency and amount 3) inclusion of mixed mode
of response, e.g., positively and negatively worded items 4) content overlap and possibly
5) response fatigue.

Model Assumption Violations: Local dependencies were observed for most of the short
forms, often resulting in inflated a (discrimination) parameters. The LD was due to posi-
tively and negatively worded items, content overlap and more DIF in items measuring
frequency as contrasted with amount of a symptom (e.g., Jensen et al., in press; Reeve et
al., this issue). For example, Jensen and colleagues (in press), examining sleep items
found that the unrestricted model resulted in very poor fit, due in part to multiple re-
verse-scored (positively and negatively worded items), changing response options and
item overlap. The reverse-scoring was observed primarily in the sleep domain; the fa-
tigue domain had only one reverse-scored item. Model fit improved by removing items
with too much content overlap and allowing the residual variances of positively worded
items to covary. Introducing a methods factor or residual correlations under these cir-
cumstances is not optimal; however, few options were available. A pair of items that are
redundant, but reverse coded will have high LD values but the item set as a whole may
be essentially unidimensional. Item pairs with high LD will contribute to poor fit
(RMSEA too high), as was observed in the analyses of sleep.

Although Jones and colleagues (in press) found only the first eigenvalue significant (p <
0.01) after using the permutation test, suggesting that the physical function items were
essentially and strongly unidimensional, there was substantial local dependence ob-
served, which these authors did not model. Thus their findings of numerous items with
DIF could have been affected by local dependency, resulting in false DIF detection.
However, the impact was trivial for most analyses. For most comparisons, the mean
differences in the estimates of the physical function latent trait (assumed normal with a
mean of 0, and standard deviation of 1 in the reference group) with and without control
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for DIF did not exceed 0.03. The exception was for the Hispanic-reference group com-
parison, where larger differences were observed.

The analyses of depression, anxiety, and cognition domains, although providing evidence
for essential unidimensionality, also showed evidence of high LD values. In addition,
Cronbach’s alpha coefficients estimated with Pearson correlations had lower values than
the McDonald’s omega total coefficients. However, when estimated with ordinal alpha
and polychoric correlations, these values were aligned better. As discussed, alpha values
will be lower than McDonald’s omega under conditions of unidimensionality and heter-
ogeneous loadings (Zinbarg et al., 2005), perhaps providing additional indirect evidence
in support of the essential unidimensionality of the item sets.

As reviewed, local dependencies can result in poorly estimated and inflated discrimina-
tion parameters. In the analyses of depression and pain, higher discrimination parameters
than expected were observed, and one item with a high LD was in part the cause. Simi-
larly, Reeve and colleagues noted that the IRT item discrimination parameters for the
first seven fatigue items (which use a frequency response scale) ranged from 2.45 to 3.98
and for the last six items (which use an amount response scale) ranged from 4.58 to 6.44.
Removing an item from an LD pair typically resulted in a reduced discrimination param-
eter for the other item (e.g., from 6.3 to 5.1). Reeve and colleagues also noted that items
on a frequency scale (never to always) evidenced more DIF than did those on a magni-
tude metric (not at all to very much). Additionally, the items that were on the magnitude
metric had higher discrimination parameters (after adjusting for inflation due to local
dependencies), indicating a better relationship to the underlying attribute.

The effects of contextual factors on item performance are well-known (Chen & Thissen,
1997; Steinberg, 2001; Thissen, Bender, Chen, Hayashi, & Wiesen, 1992). These prob-
lems were handled by a) deletion of items b) modeling and ¢) sensitivity analyses to
examine the effects of violations on DIF detection. In general, DIF findings were robust
to most of the violations. However, item removal was necessary for some analyses (fa-
tigue, sleep, and pain).

Response Styles: Jones and colleagues (in press) in studying physical function short form
items noted that the group comparison resulting in the greatest DIF impact (just below
threshold for high impact) was for the groups: Hispanic vs. non-Hispanic White. Paz and
colleagues also found DIF of high magnitude and impact for Spanish speakers vs. Eng-
lish speakers for the physical function item bank. They note that the some category was
problematic in that Spanish speakers were much more likely to select response categories
with the word some. They speculate that Spanish-speakers may prefer the middle catego-
ry. This is contrary to most findings reviewed by McHorney and Fleishman (2006) in
which they note that Hispanics were more likely to use extreme response categories;
however, this may vary across the domains studied and the ethnic composition of the
Hispanic group, which may not be homogeneous (Yang, Cazorla-Lancaster, & Jones,
2008). The extreme response style might be more prevalent in measures of psychological
distress than physical function (see Teresi, Ramirez, Lai, & Silver, 2008). Response
styles such as acquiescence and tendencies toward selection of extreme categories if
consistent across items may not be detected easily and may affect the scale latent means
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and variances (Little, 2000). Such extreme response styles can render invalid cross-
national comparisons and may require modeling. However, if the effect is observed only
for some items, as is the case here, DIF analyses will most likely identify the problematic
items. Otherwise external measures of response style may be required. However, an
alternative strategy is to model the extreme responses. Bolt and Newton (2011) devel-
oped a multidimensional, nominal response model in order to model simultaneously the
substantive trait, e.g., depression as well as the extreme response style trait. For the
PROMIIS physical function item set, there did not appear to be differences in response
style from non-Hispanic White or Black groups; however, across most items, the Asians/
Pacific Islanders tended to have an extreme response endorsement pattern, in that they
were more likely to report the lowest level of impairment. Given that some authors iden-
tified more DIF (depression, anxiety, fatigue, and pain) among the Asians/Pacific Is-
landers as contrasted with other groups, the effects of extreme response style on the
results cannot be ruled out.

DIF Methods: In terms of tests of DIF, as reviewed earlier there are two approaches to
the Wald test for polytomous items. The first approach Wald 1 assumes that iterative
purification and anchor items are used. The second approach, Wald 2 does not rely on
anchor items, and uses the all-other approach for identification of DIF. Both Wald tests
have the advantage of testing DIF for more than two groups. The Wald 2 test has the
theoretical advantage of requiring only one model and is thus less computationally inten-
sive than other DIF methods. However, Wald 2 is not recommended because of poor
performance in comparison with Wald 1 which requires iterative purification and anchor
items. In general, the evidence (Woods et al., 2013) appears to favor Wald 1 over IRTLR
and Wald 2; thus the overall efficiency of Wald 2 may be compromised by elevated type
1 error. An advantage of both Wald tests is that there are fewer model comparisons that
might inflate type 1 error rates. However, the Wald test relies on the IRT model and
associated assumptions as well as robust estimation of item parameters and their error
covariance matrix. Additionally, magnitude tests are required as separate steps.

The observed score OLR method relies on fewer assumptions than latent variable mod-
els; however, it is less efficient because it tests one item at a time, and may be less accu-
rate. Reeve and colleagues when applying the observed OLR approach in sensitivity
analyses found many items to evidence DIF, and the results were not always consistent
with those observed using the Wald test. Observed score methods with short tests are less
reliable, resulting in false DIF detection (DeMars, 2010). Use of such a method may
require as many as eight DIF-free anchor items in order to obtain well-controlled type 1
error (Shih, Liu, & Wang, 2014). As reviewed above, carefully selected anchor items are
generally required for more accurate DIF assessment, and latent variable OLR models
incorporating magnitude measures are recommended.

Summary: Latent variable model state-of-the-art methods for examining measurement
equivalence were introduced briefly in this paper to orient readers to the approaches
adopted in this set of papers. Several methodological challenges underlying anchor item
selection and model assumption violations were presented as a backdrop for the articles
on measurement equivalence of PROMIS measures appearing in this and a second issue
of Psychological Test and Assessment Modeling
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