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Abstract

The investigation of developmental trajectories is a central goal of educational science. However,

modeling and predicting complex trajectories in the context of large-scale panel studies poses

multiple challenges. Statistical models oftentimes need to take into account a) potentially non-

linear shapes of trajectories, b) multiple levels of analysis (e.g., individual level, university level)

and c) measurement models for the typically unobservable latent constructs. In this paper, we

develop a new approach, termed the multilevel latent growth components model (ML-LGCoM)

that can adequately address all three challenges simultaneously. A key feature of this new approach

is that it allows researchers to test contrasts of interest among latent variables in a multilevel study.

In our illustrative example, we used data from the National Educational Panel Study to model the

(non-linear) development of students’ satisfaction with their academic success over four years

while taking into account cluster- and individual-level trajectories and measurement error.
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Introduction

The investigation of developmental trajectories is a central goal of educational science.

Researchers are interested how a person’s competencies, attitudes, and motivation change,

and develop over a (long) period of time. Large-scale panel studies like the National

Educational Panel Study (NEPS) in Germany are designed to provide representative,

longitudinal data about educational processes. However, the statistical analysis of specific

research questions about changes in an outcome-of-interest is not straightforward using

data from large-scale studies. For example, investigating a research question like “Does

a change of major after the first year of studies improve students’ satisfaction with their

academic success sustainably?” requires a statistical model that considers three major

challenges: a) the potentially non-linear trajectories of satisfaction, b) the multiple levels

of analysis (i.e., the individual level, the university level etc.), and c) a measurement

model as satisfaction is a non-observable, latent variable (i.e., to account for measurement

error).

There exists a wide range of different methods to analyze longitudinal data. Proposed

methods include latent growth curve models (McArdle & Epstein, 1987; M. Meredith &

Tisak, 1990), hierarchical linear models (HLM, Goldstein, 2003), latent change score

models (McArdle & Hamagami, 2001; Raykov, 1999; Steyer, Eid, & Schwenkmezger,

1997), latent growth component models (Mayer, Steyer, &Mueller, 2012), and autoregres-

sive models with or without cross-lagged effects (Hertzog &Nesselroade, 2003; Jöreskog,

1979). McArdle (2009) provides an overview of some of these models. However, few

of them have been extended to explicitly deal with all the challenges of large-scale panel

studies identified above. Important steps in this direction are the extension of growth

curve models to include measurement models (multiple-indicator LGCMs, McArdle,

1988; Tisak & Tisak, 2000) and flexible shapes of trajectories (LGCMs with estimated

loadings, McArdle & Epstein, 1987; piecewise LGCMs, Bollen & Curran, 2006), the

extension of linear growth curve models to multilevel designs (Muthén, 1997), and the

extension of HLMs to handle three and more levels. We discuss the use of the latter two

models for the analysis of trajectories in large-scale panel studies.

Multilevel models for trajectories in educational panel studies

Multilevel latent growth curve models (ML-LGCM; Muthén, 1997) can be used to model

linear, quadratic or higher order polynomial change processes in multilevel designs.

These models allow for modeling individual as well as cluster-specific trajectories

in latent variables. The observed variables (e.g., satisfaction with academic success,

SAS) are decomposed into cluster-level variables (e.g., SAS at the university level) and

individual-level variables (e.g., individual deviations from university level SAS). Then,

linear trajectories of SAS are modeled with an intercept and a slope variable at both the

university level and the individual level. ML-LGCMs require researchers to impose a

prespecified functional form for all individual trajectories. This is, within ML-LGCMs

the trajectory of a students’ satisfaction with his academic success has to be assumed
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as, for example, linear or quadratic. For many dynamic outcomes of interest such as

SAS the linearity assumption is inappropriate, as a linear trajectory of satisfaction does

not allow to examine dynamic reactions to recent or critical events. For example, when

students change major, university or their level of academic degree (from Bachelor to

Master), it is very likely that individual trajectories have other functional forms or even

are discontinuous.

Hierarchical linear models for three (or more) level data (HLM, Goldstein, 2003) are

widely used in the context of educational studies. These models have been developed

to account for complex multilevel structures and can handle two or more levels. In our

example, HLMs need to be formulated as three-level models with time points nested

in individuals nested in universities, while the multivariate ML-LGCM formulation

only requires two levels (individual and university). HLMs can also be used to model

non-linear changes but they do not include measurement models for the latent variables.

That is, HLMs assume that there is no measurement error in the manifest variables used to

measure the latent constructs of interest. This assumption of perfectly reliable measures

for the outcomes is too strong in the context of educational trajectories and can lead to

biased point estimates and standard errors of the statistical model.

Nowadays, the boundaries between the SEM and the HLM framework have gradually

disappeared. For both frameworks there exist generalizations to include the strength

of the respective other, this is modern multilevel structural equation modeling (ML-

SEM, B. O. Muthén &Asparouhov, 2008) and the generalized linear latent and mixed

modeling (GLLAMM, Skrondal & Rabe-Hesketh, 2004). As a consequence, most models

can be formulated in both frameworks (for more details see Mehta & Neale, 2005 or

Rabe-Hesketh, Skrondal, & Zheng, 2012).

Latent growth component models

In this paper, we propose a comprehensive statistical model adequately addressing all

three challenges simultaneously and modeling the trajectory of an outcome-of-interest in

its full complexity. For this purpose, we build on an alternative to various kinds of growth

curve models for multilevel designs, namely the so-called latent growth component model

(LGCoM, Mayer et al., 2012). While the LGCoM has not yet been extended to multilevel

data, it has some key advantages for modeling educational trajectories compared to other

approaches: The LGCoM can be used to model non-linear contrasts of change and also

include adequate measurement models for latent variables. Measurement models are

an important feature in modeling educational trajectories, because constructs such as

SAS are not directly observable and are therefore measured by multiple indicators. The

relationship between these indicators and the latent variable of interest is then specified

in the measurement model. LGCoMs form the basis for the new approach that will be

developed in this paper.

To date, the shortcoming of classic LGCoMs is that they do not account for the com-

plex multilevel structure frequently encountered in educational panel studies, i.e., the
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non-linear contrasts are only applied at the individual level and not at the cluster level.

Ignoring the cluster level in education panel studies not only gives limited information

for policy makers but also leads to deflated standard errors. Taking into account the

multilevel structure in the analysis is important for both substantive and statistical rea-

sons. From a substantive point of view, it allows researchers to examine educational

trajectories on different levels simultaneously, for example, how students’ individual

satisfaction develops during their studies and how the average satisfaction develops on

an institutional level. Educational trajectories can be quite different at the individual

level and at the group/institution level. Ignoring such differences limits the information

that we get from our studies. In multilevel models, researchers can not only model the

trajectories on different levels but can also include covariates that predict educational

trajectories at different levels, i.e., individual-level covariates, institution-level covariates

and contextual covariates. Contextual covariates (sometimes also referred to as composi-

tional variables, for example, Hutchison, 2007) reflect the composition of cluster-level

units, for example, the average achievement level in an institution. The importance

of considering effects of such contextual covariates has long been discussed under the

keyword contextual effects (e.g., Raudenbush &Willms, 1995).

From a statistical point of view, ignoring the cluster level in education panel studies

violates the assumption of independently sampled observations that many statistical

models require. In educational studies, observations are typically not independent,

because students from the same cluster (e.g., class or university) are more similar than

students from different clusters, and ignoring this fact would lead to deflated standard

errors of effect estimates. If studying the individual level only, a correction of the standard

errors and model fit measures may suffice (Stapleton, 2008). Multilevel modeling is

required if effects are examined at both the cluster- and the individual level. Another

statistical issue that arises when the multilevel structure is not adequately taken into

account is bias in effect estimates. The cluster variable itself and functions thereof like

contextual covariates can be confounding variables that need to be considered to obtain

correct estimates (Mayer, Nagengast, Fletcher, & Steyer, 2014).

Wewill use the multilevel structural equation modeling framework (ML-SEM,McDonald

& Goldstein, 1989) to extend the latent growth components approach (Mayer et al., 2012)

to multilevel designs. The new approach, a multilevel latent growth components model

(ML-LGCoM), will then be illustrated with an example from the NEPS datasets, where

we model trajectories of students’ satisfaction with their academic success (SAS) both at

the individual level and at the study program level. All models will be specified using the

lavaan package (Rosseel, 2012). The code is provided in the supplemental materials.

Multilevel latent growth components

In this section, we will explain step-by-step the constituting parts of a multilevel latent

growth components model (ML-LGCoM). We start with the multistate model (Steyer,
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Mayer, Geiser, & Cole, 2014) and show how growth components can be defined and

interpreted within the single-level LGCoM. In the last step, the expansion to themultilevel

framework is presented.

The multistate model

In longitudinal panel studies, we are oftentimes interested in trajectories of latent con-

structs. The constructs are measured at multiple time points and we use ηt to denote a
latent construct, such as students’ satisfaction with their academic success, measured

by multiple indicators Yit, i = 1, ..., I at time point t, t = 1, ..., T . In latent state-trait
theory (LST theory, Steyer, Ferring, & Schmitt, 1992; Steyer et al., 2014), which forms

the theoretical foundation for our work, the ηt variables are also called latent state vari-
ables, since they represent attributes of a person-in-a-situation. Multiple indicators per

time point are required to be able to distinguish measurement error influences and true

scores. A LST model that allows for partitioning the variance of the observed indicators

into measurement error variance and true score variance in longitudinal studies is the

multistate model. This model is the basis for the single-level latent growth component

model. We use a multistate model with a time-invariant measurement model (W. Mered-

ith, 1993; Widaman & Reise, 1997) resulting in the following model equations for a

specific time point t:

Y1t = 0 + 1 · ηt + ε1t

Y2t = λ20 + λ21ηt + ε2t

Y3t = λ30 + λ31ηt + ε3t

...

YIt = λI0 + λI1ηt + εIt .

In matrix notation, the multistate model is a special case of the measurement model used

in SEM:

y = ν +Λη + ε (1)

where y denotes the vector of observed variables, ν is the vector of time-invariant

intercepts λi0, Λ denotes a matrix of time-invariant loadings λi1, and η and ε denote
the vectors of latent state and measurement error variables, respectively. The multistate

model is one of the models that can be estimated within LST theory. It can be extended to

include traits (i.e., stable attributes of a person) or method factors (i.e., indicator-specific

components not shared with other indicators) if necessary. For an overview of different

ways to handle method effects see Geiser and Lockhart (2012).

Single-level latent growth component model

In the multistate model, the latent state variables ηt are allowed to covary and their
means are estimated without restrictions, but no trajectories or changes between them are
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modeled. The latent growth components model (LGCoM, Mayer et al., 2012) is a very

flexible approach that allows for the specification of non-linear contrasts and trajectories

of latent state variables. Thus, it can be used to test substantive hypotheses about changes

in educational trajectories. Relations or contrasts among the state variables are specified

and represented by so-called growth component variables. In the LGCoM the relations

among several ηt can easily be defined as contrasts. Contrasts basically transform the

latent state variables ηt into growth component variables πm, which then represent the

substantive hypotheses about non-linear changes in trajectories. For example, in a study

with four measurement occasions (and hence, four latent state variables) four possible

growth components are given by:

π0 = −1 · η1 + 0 · η2 + 0 · η3 + 1 · η4
π1 = −3 · η1 + (−1) · η2 + 1 · η3 + 3 · η4
π2 = −3 · η1 + 1 · η2 + 1 · η3 + 1 · η4
π3 = 0 · η1 + 0 · η2 + 0 · η3 + 1 · η4

The coefficients of this contrast equations can be comprised into the contrast matrix

C =


−1 0 0 1
−3 −1 1 3
−3 1 1 1
0 0 0 1

 . (2)

The first row represents a latent difference score between η1 and η4. The second row
represents a linear growth component. In the third row, we compare η1 to the mean of η2,
η3 and η4. This kind of growth component can be useful to model a sustainable change
after a critical life-event (for an example see Mayer, Geiser, Infurna, & Fiege, 2013).

The fourth row represents η4, i.e., the fourth growth component is identical to the fourth
state variable. Note that this procedure allows for a multitude of non-linear contrasts

among the latent state variables with or without a given functional form. More formally,

the vector of growth component variables π is defined as a function of the vector of

latent state variables η:

π = Cη (3)

This implies that the latent state variables can be computed as a function of the growth

components,

η = C−1π (4)

which we can use to extend our multistate model to a latent growth component model:

y = ν +Λη + ε (5)

η = C−1π , (6)
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The πm variables are a complete decomposition of the ηt variables, i.e., the addi-
tional structural model (Equation 6) is saturated. Hence, the model fit of the mul-

tistate model and the latent growth component model are identical. Note that the

LGCoM can also be written in a single equation by inserting Equation 6 into Equa-

tion 5: y = ν +Λ(C−1π) + ε.

Multilevel latent growth components model

The LGCoM accounts for measurement error and non-linear trajectories of latent state

variables – two of the three previously described challenges in analyzing non-linear tra-

jectories in large-scale educational studies. In this paper, we extend the LGCoM to multi-

level designs and propose the multilevel latent growth components model (ML-LGCoM).

Especially educational researchers often have to deal with nested data structures, for

example, students nested in classes, classes nested in schools, students in universities

and so forth.

We denote the cluster variable by C1 and will use the multilevel SEM framework for

our full ML-LGCoM. In this framework, the growth component variables, the latent

state variables and the manifest indicators are decomposed into within and between

components. For the growth component variables, this decomposition is given by:

π = πb + πw , (7)

where πb = E(π|C) and πw = π − E(π|C). For example, consider a simple growth
component π0 defined as the difference between the latent state variable satisfaction at

the first and at the second occasion: π0 = η2 − η1. In the multilevel extension, π0 is

decomposed into a between level component π0b, whose values reflect the change in

cluster-level satisfaction between the two time points, and π0w, whose values reflect

individual deviations from the cluster-level changes.

The extension of the LGCoM to a multilevel framework is based on a decomposition of

the manifest observed variables Y into a cluster- or between-level Yb and an individual-

or within-level part Yw, with a respective latent growth components model on each

level:

Yw = Λwηw + εw

ηw = C−1πw

Yb = ν +Λbηb + εb

ηb = C−1πb .

The between-part Yb is defined as conditional expectation of Y given a cluster variableC,
while the within-part is considered as residual. Thus, the expectation of the within-part is

1To be in line with previous research, we use the italicized C for the cluster variable and the bold faced C for

the contrast matrix in the LGCoM.
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zero by definition, i.e., E(Yw) = 0. The decomposition can generally be modeled in two
ways - either using the observed cluster means as estimator for the between-part (Enders

& Tofighi, 2007; Kreft, de Leeuw, &Aiken, 1995; Raudenbush & Bryk, 2002) or using

a latent approach correcting for sampling error in the observed variables (Lüdtke et al.,

2008). Throughout this article, we will apply the latent aggregation approach.

Predictors of growth components

Typically, researchers are not only interested in describing patterns of change but also in

predictors that may explain certain aspects of individual or cluster-level differences in

change. Within the ML-SEM framework, predictors Z = (Z1, Z2, . . . , Zk)
′ of growth

components π can be included using linear regressions,

E(πw|Zw) = β′
wZw (8)

E(πb|Zb) = β0 + β′
bZb , (9)

where Zw denotes the within-part and Zb denotes the between-part of the covariates Z,

and βw and βb denote the vectors of regression coefficients on each level respectively.

This extends the multilevel latent growth components model to

Yw = Λwηw + εw

ηw = C−1πw

πw = β′
wZw + υw

Yb = ν +Λbηb + εb

ηb = C−1πb

πb = β0 + β′
bZb + υb .

where υb and υw denote the regression’s residuum on the between- and within-level.

Empirical example: Students’ satisfaction

We use NEPS data to illustrate how a ML-LGCoM can be specified in the ML-SEM

framework and applied to answer substantive research questions in large-scale educational

studies. In our illustrative example, we focus on the core elements of ML-LGCoM and

additionally consider predictors of growth components on the cluster- as well as on

the individual level. We model a) the development of university students’ satisfaction

with their academic success (SAS) over four years, b) cluster- and individual-level

trajectories of SAS, c) measurement error in the items measuring SAS, and d) predictors

of trajectories on different levels.
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Substantive background

Study satisfaction The latent construct of students’ satisfaction with their academic

studies can be considered as one criterion of overall study success, which is a multidi-

mensional construct comprising both objective and subjective indicators (Kuh, Kinzie,

Buckley, Bridges, & Hayek, 2007). Students’ satisfaction has been found to be related

to, for instance, academic achievement (Wach, Karbach, Ruffing, Brünken, & Spinath,

2016) and retention (Schneider & Nelson, 2013). In the university context, students’

satisfaction with their academic studies can refer to different aspects (e.g., study contents,

organization of the study program, teaching quality). However, Wach et al. (2016) point

out that there is a lack of a commonly accepted definition of students’ satisfaction with

their academic studies. In this paper, we will refer to study satisfaction as students’

satisfaction with their own performance as it appears closely related to academic goal

achievement. We will use a part of the ”fulfillment of achievement expectations” scale

(Trautwein et al., 2007) to measure it2.

Trajectories of study satisfaction The transition from school to university can be a

challenging, yet exciting experiences for new students. In an analogy to what has been

called the “Honeymoon-Hangover Effect” (Boswell & Boudreau, 2005) in organizational

job-change research, one might expect the initial semesters are accompanied by an

increase in study satisfaction immediately following the transition (honeymoon effect),

eventually followed by some decline, thereafter (hangover effect). Alternatively, one

might refer to the general hedonic treadmill model of well-being adaptation processes

(Brickman & Campbell, 1971; Frederick & Loewenstein, 1999), which suggests that

the reaction to a positive (negative) event increases (decreases) well-being but that then,

after an adaptation phase, well-being returns to previous levels.

So far, there is little knowledge on the trajectories of study satisfaction of university

students. A study by Hiemisch, Westermann, and Michael (2005) with students of

medicine and dentistry showed their satisfaction to decline from the beginning of their

first term to their second term. Hiemisch et al. (2005) discuss this effect as reflecting

the elevated mood of students who are admitted to medical school, which is difficult

to achieve. This enthusiasm might then be attenuated as coping with the high demands

of the study program gets to the fore. Their study, however, did solely comprise two

measurement points, which makes it impossible to analyze (and speak of) trajectories

(see also studies by Wach et al., 2016; Singley, Lent, & Sheu, 2010). A study with three

measurement points was published by Schmitt, Oswald, Friede, Imus, and Merritt (2008):

On average, students showed a decline of academic satisfaction from the end of the first

semester to the end of the second semester, but no change from the end of the second to the

end of the third semester. Most importantly, based on latent growth models, Schmitt et al.

2In NEPS, there is also a nine-item scale (Westermann, Heise, Spies, & Trautwein, 1996) on student satis-

faction. However, this scale was only administered at two waves. Therefore it cannot be used to model

longitudinal trajectories.
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(2008) demonstrated that changes in students’ perceived fit between interest/skills and the

study programwere positively associated with changes in academic satisfaction. Recently,

Upadyaya and Salmela-Aro (2017) analyzed data from a five-wave longitudinal study

with two measurements during post-comprehensive education and three measurements

at university or vocational school. They used a questionnaire of work/study engagement

focusing on aspects such as dedication to study/work and enthusiasm about studies/work,

which can be seen as indicating study satisfaction. They showed, on average, increases

in satisfaction during the transition from post-comprehensive school to university/work.

In addition, they found cross-lagged effects from performance to this kind of domain-

specific satisfaction (as well as to general life satisfaction). A recent study by Janke,

Rudert, Marksteiner, and Dickhäuser (2017) showed declining satisfaction with studying

over time. However, the authors point out that their samples are not representative for

the German higher education system, as they were limited to students of one institution

or study program. In sum, partly in contrast to theoretical assumptions such as the

”honeymoon-hangover effect” and the ”hedonic treadmill”, previous studies revealed

evidence for a declining pattern of satisfaction, though there is also some support for

stabilizing trends.

Variability of SAS trajectories There are strong differences between study programs

with respect to basic characteristics of learning environments. Commonly, four dimen-

sions are used to distinguish the quality of a learning environment: structure, support,

challenge, and orientation (Bäumer, Preis, Roßbach, Stecher, & Klieme, 2011). Chal-

lenge, for instance, refers to the cognitive demands of a learning environment (e.g.,

difficulty of examinations). As study programs differ in these dimensions, it is unlikely

that SAS trajectories are identical across all study programs. Instead, it is plausible to

assume that there are differences in trajectories depending on the chosen study program.

Not only the study program contributes to heterogeneity in SAS trajectories, but there are

also interindividual differences in SAS trajectories. For some students, the first major

may have turned out to be dissatisfying – for other students the first major may rise hopes

and curiosity with respect to future social and academic integration. So the valence of the

transitional process is not unequivocal. Although the idea of well-being only fluctuating

around a biologically determined set point has been challenged, empirical research has

shown that some adaptation does occur but with considerable differences in how close

and fast individuals return to former well-being levels (e.g., Diener, Lucas, & Scollon,

2006).

Effects of change of major The lack of knowledge on the long-term development of

students’ satisfaction is even more evident with respect to the satisfaction trajectories

of those who quit or change majors. Clearly, not all students acquire degrees in the

study programs they had chosen. In Germany, the dropout from Bachelor programs at

universities is estimated to be about 33 percent (Heublein, Richter, Schmelzer, & Sommer,
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2014). Though, reliable official estimates of major changes are surprisingly rare. For

university students, a change of major represents a serious non-normative transition.

From a content point of view, we approach the topic of changing major by asking whether

and how this change affects student well-being in terms of young people’s temporal

pattern of study satisfaction. As students who change their major will most likely do so

to optimize the (so far low) fit between interest/abilities and the contents/requirements

of a study program, this should have beneficial performance effects, including being

satisfied with this performance.

Effects of burden of examination According to previous studies (Nauta, 2007; Apen-

burg, 1980; Wach et al., 2016), the (perceived) difficulty (in terms of academic achieve-

ments) of a study program is strongly related to students’ satisfaction with their academic

success. However, one would expect differential effects between our levels of analysis.

On the one hand, a study program characterized by a high examination burden, raises the

probability of dissatisfying events among students, for example, poor or failed exams.

This might lead to lowered satisfaction in demanding study programs. On the other

hand, individuals might perceive high demands of their study program (e.g., examination

burden) as motivating and, therefore, increase their efforts to succeed (Wach et al., 2016).

This effect has been described using the framework of goal-setting theory (Locke &

Latham, 2002). With respect to well-being of working adults, it has been shown that

progress in career goals led to well-being increase solely if perceived goal difficulty had

been high (Wiese & Freund, 2005). Accordingly, a specific high goal is stated to have

a positive linear relationship with task performance and to affect one’s satisfaction, as

it serves as evaluative standard. Vice versa, a student underestimating the demands of

his study program is likely to put less effort into learning, possibly resulting in lower

grades.

Research questions

In this paper, we will use the newly developed multilevel latent growth components

approach to model and predict trajectories of students’ satisfaction with their academic

success. Specifically, we examine if the trajectories follow, on average, a non-linear form,

characterized by an initial increase in satisfaction, followed by a return to the initial level

of satisfaction. And we test whether the size and direction of the non-linear changes varies

between study programs and between individuals. Finally, we will look at the effects

of a change of major and examination burden on the trajectories. In concrete terms, we

hypothesize that the more burdensome the examinations of a study program are perceived,

the more the average levels of students’ satisfaction with their academic success will

decrease over time. Based on goal-setting theory, we expect to find the opposite effect at

the student level, i.e., we expect a positive relationship between individual perceptions

of the examination burden and the development of individual satisfaction with academic

success. With respect to students who change their major after the first year of studies,
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we expect lower satisfaction levels in the first year compared to the remaining years of

studies.

Method

Sample

To illustrate the ML-LGCoM, we use data from the National Educational Panel Study

(NEPS) study in Germany (Blossfeld, Roßbach, & von Maurice, 2011). NEPS is a

multi-cohort longitudinal study aimed at examining lifelong educational processes. For

our example, we use data from the Starting Cohort 5 (first-year students). Within the

first-year students cohort, students’ satisfaction with their academic success was assessed

four times, each about one year apart (i.e., after the first, second, third and fourth year

of studies). The initial sample size in this four waves was N1 = 14610 and dropped to
N4 = 8629 in the fourth wave. We used listwise deletion for the analysis. The available

sample size for the complete model with all predictors isN = 2054. In this article, we do
not present a comprehensive analysis of the NEPS first-year students cohort. Instead, the

primary goal of our paper is to illustrate the ML-LGCoM approach as a means to model

and predict non-linear trajectories in educational processes. For didactic purposes, we

restrict ourselves to students’ satisfaction as outcome, to an exploratory set of non-linear

contrasts, and to a limited set of predictors (perceived examination burden and change

of major).

Measures

Students’ satisfaction with their academic success The scale ”students’ satisfaction

with their academic success” consists of three items from the ”fulfillment of achievement

expectations” scale (Trautwein et al., 2007):

Y1t : My academic achievements (grades) are better than I had originally expected.

Y2t : I have fully met my own expectations for my performance and grades in these

studies.

Y3t : I am satisfied with my performance in the studies.

The items are coded on a Likert scale ranging from 1 = does not apply at all to 4 =

applies completely and t denotes the measurement occasion with t = 1, ..., 4. We used

these three positively worded items as indicators of a common latent state variable ηt
using a η-congeneric measurement model. Note that all individuals are first assessed
in their first semester, this is, the time variable t represents time since the start of the
study program. The time variable at the institution level corresponds to the individual

level. Therefore the time variable t on both levels always corresponds to a specific wave
of the NEPS study. The reliability of the satisfaction with academic success scale was

McDonald’s ωH = .81.



Multilevel latent growth components 201

Study programs For the first-years students cohort in NEPS, clusters of all students

enrolled in a certain field of study at a particular higher education institution were drawn.

For example, all students studying social sciences at the (public) University of Bamberg

in the first wave form one cluster. In total, study programs are summarized into 60

different fields of study, for example, architecture, mathematics, psychology, educational

science and so forth. Within each cluster, all students are surveyed. In our analyses we

used this cluster variable C as level-2 units representing study programs in Germany.

Note, that this variable only captures the study program at the first wave and does not

account for possible changes of study programs in the following years.

Predictors Every year, students were asked if they had changed their major since the

last survey. We used this dichotomous item Z1 to explain interindividual variability in

change of satisfaction after the first year of studies. Additionally, an item asking to what

extend the study program is characterized by a high examination burden (coded from 1

= very little to 5 = a lot) was used to explain differential trajectories of change among

study programs (Z2b) and individuals (Z2w).

Statistical models

We directly use a multilevel multistate model as starting point for our analysis (skipping

the single-level models in our presentation of the statistical models). Next, we specify and

add the latent growth components and, finally, the predictors of growth components.

Multilevel multistate model

We first formulated a multilevel multistate model of students’ satisfaction with their

academic success using lavaan 0.6-1.1183 (Rosseel, 2012; code provided inAppendix C).

The latent state variables η were specified with a time- and level-invariant measurement
model. To deal with correlated measurement error variables across time points between

the three SAS indicators, we had to add method factors to the multilevel multistate model

as suggested by Pohl, Steyer, and Kraus (2008). The within and between measurement

model for the multilevel multistate model with method factors are shown in Figure 1.

The complete model equations are shown in Appendix A.



202 C. Kiefer, Y. Rosseel, B. S. Wiese &A. Mayer

V
2
1

Y
1
1

Y
3
1

Y
1
2

Y
2
2

Y
3
2

Y
1
3

Y
2
3

Y
3
3

Y
1
4

Y
2
4

Y
3
4

O
b
servab

les

Y
2
1
b

Y
1
1
b

Y
3
1
b

η
1
b

Y
2
2
b

Y
1
2
b

Y
3
2
b

η
2
b

Y
2
3
b

Y
1
3
b

Y
3
3
b

η
3
b

Y
2
4
b

Y
1
4
b

Y
3
4
b

η
4
b

M
F
1
b

M
F
2
b

L
evel

2

Y
2
1
w

Y
1
1
w

Y
3
1
w

η
1
w

Y
2
2
w

Y
1
2
w

Y
3
2
w

η
2
w

Y
2
3
w

Y
1
3
w

Y
3
3
w

η
3
w

Y
2
4
w

Y
1
4
w

Y
3
4
w

η
4
w

M
F
1
w

M
F
2
w

L
evel

1

1
λ
1

λ
2

1
λ
1

λ
2

1
λ
1

λ
2

1
λ
1

λ
2

1
1

1
1

1
1

1
1

1
λ
1

λ
2

1
λ
1

λ
2

1
λ
1

λ
2

1
λ
1

λ
2

1
1

1
1

1
1

1
1

F
ig
u
re

1
:

P
ath

d
iag

ram
fo
r
th
e
m
u
ltilev

el
m
u
ltistate

m
o
d
el
w
ith

m
eth

o
d
facto

rs.



Multilevel latent growth components 203

Multilevel growth components

Next, we specified a contrast matrix C to define the latent growth components according

to our research questions:

π0w = 1 · η1w
π1w = −3 · η1w + 1 · η2w + 1 · η3w + 1 · η4w
π2w = −2 · η2w + 1 · η3w + 1 · η4w
π3w = −1 · η3w + 1 · η4w ,

and equivalently for the between part:

π0b = 1 · η1b
π1b = −3 · η1b + 1 · η2b + 1 · η3b + 1 · η4b
π2b = −2 · η2b + 1 · η3b + 1 · η4b
π3b = −1 · η3b + 1 · η4b ,

resulting in the contrast matrix:

C =


1 0 0 0
−3 1 1 1
0 −2 1 1
0 0 −1 1


The values of the first growth component initial level π0 are the true scores of students’

satisfaction after the first year of studies (i.e., the values on η1). This variable serves
as an intercept variable that reflects the initial true level of students’ satisfaction. The

latent variable overall change after first year π1 represents a contrast between the true

satisfaction scores of the first occasion and the average of the true scores of the following

three years. A negative score on this growth component would mean that the satisfaction

level in the years 2 to 4 was overall lower than in the first year of studies. This growth

component therefore reflects a sustainable change, averaging across annual fluctuations.

Accordingly, the growth components overall change after second π2 and third year π3

reflect the overall change in students’ satisfaction levels after the second and the third

year of studies. These growth components examine (sustainable) changes in later stages

of studies, when adaption to the study program has already taken place.

As described above, the inverse of the contrast matrix C is needed in the structural model

to specify the latent growth components models.

C−1 =


− 1

3 − 1
6 − 1

2 1
0 − 1

2 − 1
2 1

0 0 −1 1
0 0 0 1


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The resulting equations for the within and between structural parts of the model are:
η1w
η2w
η3w
η4w

 =


− 1

3 − 1
6 − 1

2 1
0 − 1

2 − 1
2 1

0 0 −1 1
0 0 0 1



π0w

π1w

π2w

π3w



η1b
η2b
η3b
η4b

 =


− 1

3 − 1
6 − 1

2 1
0 − 1

2 − 1
2 1

0 0 −1 1
0 0 0 1



π0b

π1b

π2b

π3b


Finally, we included the covariates Z1 (change of major), Z2b (average perceived exam-

ination burden), and Z2w (individual perceived examination burden) to examine their

influence on trajectories of students’ satisfaction. The growth components were regressed

on the covariates on their respective level. A path diagram for the full model is shown in

Figure 2.

Results

Multilevel multistate model

First, we fitted a multilevel multistate model with time- and level-invariant measurement

models and two method factors using the maximum likelihood (ML) estimator in lavaan.

The multilevel multistate model showed an adequate fit χ2(106, N = 2076) = 233.566,
RMSEA = .024, CFI = .989, SRMRw = .017, SRMRb = .033. Detailed results for
this model are shown in Table 1. Descriptively, the means of the latent state variables

went up and down over time, ranging from M(η1) = 2.295 to M(η2) = 2.416. The
inter-cluster differences in the latent satisfaction scores were highest at the first and the

fourth time point, while interindividual differences dropped between the first and second

year and remained stable then, which is reflected by the variances of the latent state

variables.

Multilevel latent growth components

In the next step, we added the growth components to the multistate model with method

factors to obtain more detailed information about changes in satisfaction across time.

Since the growth components represent a saturated decomposition of the latent state

variables, the growth component model and the multistate model with method factor have

the same model fit. The estimated means and variances of the growth components are

shown in Table 2. Note that the mean and variance of the growth components π0w and

π0b are identical with the corresponding parameters of the latent state variables η1b and
η1w in the multistate model with method factors, as we defined the growth components

that way.
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Table 1:

Results for the between-level multistate model with method factors

Between-Level

Estimate SE Estimate SE

Means Residual

Variances

M(η1b) 2.295 0.024 V ar(ε11b) 0.000

M(η2b) 2.416 0.021 V ar(ε21b) 0.000

M(η3b) 2.383 0.023 V ar(ε31b) 0.000

M(η4b) 2.409 0.023 V ar(ε12b) 0.000

M(MF1b) 0.376 0.085 V ar(ε22b) 0.000

M(MF2b) -0.110 0.112 V ar(ε32b) 0.000

Variances V ar(ε13b) 0.000

V ar(η1b) 0.042 0.011 V ar(ε23b) 0.000

V ar(η2b) 0.028 0.008 V ar(ε33b) 0.000

V ar(η3b) 0.040 0.011 V ar(ε14b) 0.000

V ar(η4b) 0.044 0.011 V ar(ε24b) 0.000

V ar(MF1b) 0.003 0.002 V ar(ε34b) 0.000

V ar(MF2b) 0.012 0.005

Within-Level

Estimate SE Estimate SE

Variances Residual

Variances

V ar(η1w) 0.402 0.017 V ar(ε11w) 0.192 0.010

V ar(η2w) 0.344 0.014 V ar(ε21w) 0.214 0.010

V ar(η3w) 0.369 0.016 V ar(ε31w) 0.150 0.011

V ar(η4w) 0.364 0.015 V ar(ε12w) 0.204 0.009

V ar(MF1w) 0.144 0.011 V ar(ε22w) 0.201 0.009

V ar(MF2w) 0.214 0.017 V ar(ε32w) 0.143 0.009

V ar(ε13w) 0.189 0.009

V ar(ε23w) 0.173 0.008

V ar(ε33w) 0.141 0.008

V ar(ε14w) 0.196 0.009

V ar(ε24w) 0.185 0.008

V ar(ε34w) 0.156 0.010

Note: Model fit: χ2(106, N = 2076) = 233.566, RMSEA = .024, CFI = .989,
SRMRw = .017, SRMRb = .033. Covariances between all latent variables were

included but are not shown. The measurement error variances at the between level

V ar(εitb) have been set to 0.0001.

The mean of the initial between-level growth component π0b reflected the average level of

students’ satisfaction after the first year,M(π0b) = 2.295 (SE = 0.024). The mean of
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Table 2:

Means and variances of latent growth components

Estimate SE Estimate SE

M(π0b) 2.295 0.024 V ar(π0b) 0.042 0.011

M(π1b) 0.323 0.043 V ar(π1b) 0.045 0.025

M(π2b) -0.039 0.025 V ar(π2b) 0.018 0.009

M(π3b) 0.025 0.012 V ar(π3b) 0.001 -

V ar(π0w) 0.402 0.017

V ar(π1w) 1.574 0.103

V ar(π2w) 0.476 0.035

V ar(π3w) 0.109 0.008

Note: Model fit: χ2(106, N = 2076) = 233.565, RMSEA = .024, CFI = .989,
SRMRw = .017, SRMRb = .033

the between-level growth component π1b wasM(π1b) = 0.323(SE = 0.043) indicating
an increase of average satisfaction scores on the cluster-level. In order to calculate the

average increase of satisfaction, we have to divide 0.323 by three (0.323/3 = 0.108).
This is because the growth component π1b has been defined in such a way that the sum

of the satisfaction scores of the last three occasions is compared to three times the score

at the initial occasion. Accordingly, the means of the other two growth components

M(π2b) = −0.039(SE = 0.025) and M(π3b) = 0.025(SE = 0.012) indicated that
average satisfaction did hardly change after the second year on the between-level.

The variance of the initial between-level growth component was V ar(π0b) = 0.042
indicating differences in the initial satisfaction levels among study programs. The

variances of the first between-level growth component V ar(π1b) = 0.045 reflected some
noticeable differences of average satisfaction change between clusters. However, these

differences decrease over time, as is indicated by V ar(π2b) = 0.018 and V ar(π3b) =
0.001.

Interindividual differences in change of satisfaction after the first year were quite large

V ar(π1w) = 1.574, while the interindividual variability of change after the second and
third year decreased, i.e., V ar(π2w) = 0.476 and V ar(π3w) = 0.109.

Effects of predictors on growth components

We included predictors in the complete model by simultaneously estimating the regression

of the growth components on the predictors change of major Z1, between-level examina-

tion burden Z2b and within-level examination burden Z2w. Table 3 shows the results

for regression analyses. The model fit for the complete model is χ2(146) = 479.735,
RMSEA = 0.033, CFI = .972, SRMRb = 0.059, SRMRw = 0.043.

Students’ who changed their major after the first year of studies, were significantly

less satisfied with their academic success than those who continued with their major
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(β10w = −0.240, p < .001). However, the change of major predicted a sustainable gain
in satisfaction (β11w = 0.695, p < .001) after the first year, while later changes were
not significantly predicted by the change of major after the first year.

On the between-level, there was no significant relation between the perceived burden of

examination of a study program and the average level of students’ satisfaction after the

first year (β20b = −0.127, p = .099). However, burden of examination was negatively
linked to change of students’ satisfaction (β21b = −0.502, p = .002), indicating that
the decrease of satisfaction was higher in study programs high in perceived burden of

examination. This effect was still significant for changes after the second year (β22b =
−0.297, p = .001). In contrast, on the individual level, perceived burden of examination
was negatively related to students’ satisfaction at first (β20w = −0.133, p < .001),
but the sustainable changes after the first (β21b = 0.267, p < .001) and second year
(β22b = 0.061, p = .038) were both positively related to this perception.

Table 3:

Regressions with predictors

Between-level

E(π0b|Z2b) E(π1b|Z2b) E(π2b|Z2b) E(π3b|Z2b)
Estimate SE Estimate SE Estimate SE Estimate SE

Burden of examination -0.127 0.078 -0.502 0.164 -0.297 0.095 0.015 0.047

Within-level

E(π0w|Z1, Z2w) E(π1w|Z1, Z2w) E(π2w|Z1, Z2w) E(π3w|Z1, Z2w)
Estimate SE Estimate SE Estimate SE Estimate SE

Burden of examination -0.133 0.019 0.267 0.048 0.061 0.029 0.006 0.015

Change of major -0.240 0.063 0.695 0.157 -0.124 0.096 0.020 0.049

Note: Model fit: χ2(146) = 479.735, CFI= 0.972, RMSEA= 0.033, SRMRb = 0.059, SRMRw = 0.043

Discussion

In this article, we showed how to define latent growth components in a multilevel struc-

tural equation modeling framework. The decomposition of the manifest indicators, the

latent state variables, and the latent growth component variables into within and between

components in the newly developed ML-LGCoM allows for considering contrasts of

interest at different levels. It makes it possible, for example, to model the development

of the cluster-level averages of a level 1 construct and the development of the individual

deviations from the cluster-level averages separately. This is particularly interesting

when there are considerable differences between the two levels. In addition, covariates

at both levels can be used to predict the within and between parts of the latent growth

components.

In our empirical example, we used data from four waves of the National Educational

Panel Study to look at changes in students’ satisfaction with their academic success both

at the study program level and on the level of the individual student. Three different

growth components were constructed to contrast latent state variable at the first, second,
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and third wave with the subsequent wave(s). At the study program level, we found

that latent satisfaction increases significantly after the first wave and remains relatively

constant afterwards on average. There is variation in this pattern both between study

programs and between individuals. A significant predictor was change of major after the

first year, which predicted a sustainable gain in satisfaction. At the study program level,

burden of examination of the study program was negatively linked to change of students’

satisfaction, indicating that the decrease of satisfaction was higher in study programs

high in perceived burden of examination.

Further developments of the ML-SEM framework will likely yield additional options

for the application and development of multilevel latent growth components models. In

particular, accounting for cross-classified multilevel structures in multilevel structural

equation models would be a major improvement. By cross-classified structure, we refer

to a multilevel structure, which is not strictly hierarchical (e.g., when students change

from one study program to another; for details and two examples of a cross-classified

structure, see Raudenbush, 1993). In addition, the consideration of interindividual time

heterogeneity and thus, different meanings of time on the institutional and the individual

level (e.g., a student in his third semester at university, but the first semester in a new

study program) would be insightful (for details on modeling of individual time points

see Blozis & Cho, 2008).

Throughout our paper, we always examined the between- and within-part of a single

contrast variable π. In general, the model also allows for examining different contrasts
on each level, which might be useful if the meaning of time differs among levels. Con-

ceptually, this would imply the use of two contrast matrices C1 with growth components

π = πb + πw, and C2 with growth components ζ = ζb + ζw. Researchers could then
choose to study πw or ζw on the within-level and πb or ζb on the between-level. Thus,
there would be a slight change in notation to clarify that between- and within-parts of

two distinctly defined growth components are inspected.

The ML-LGCoM is a very flexible model with broad applications in large-scale edu-

cational studies and other studies with a multilevel design. In the future, the growth

components constructed within the ML-LGCoM can also be used as predictors of an

outcome-of-interest. This would open up new options to examine the long term effects of

a specific change pattern. For example, our approach can be used to investigate whether

students who show a steep early increase in study satisfaction also have better grades

at the end of their curriculum or finish earlier compared to students with a less steep

increase. The ML-LGCoM currently is designed for modeling contrasts between latent

state variables, which contain both trait-specific aspects and situational fluctuations. In

designs with more occasions of measurement, the ML-LGCoM could also be extended

to model contrasts between latent trait variables, in a similar manner as the approach

presented by Eid and Hoffmann (1998).
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A. Model equations for the multistate model


Y11w

Y21w

Y31w

...

Y34w

 =


1 0 0 0 0 0
λ1 0 0 0 1 0
λ2 0 0 0 0 1
...

0 0 0 λ2 0 1




η1w
η2w
η3w
η4w
MF1w
MF2w

+


ε11w
ε21w
ε31w
...

ε34w


and 

Y11b

Y21b

Y31b

...

Y34b

 =


0
0
0
...

0

+


1 0 0 0 0 0
λ1 0 0 0 1 0
λ2 0 0 0 0 1
...

0 0 0 λ2 0 1




η1b
η2b
η3b
η4b
MF1b
MF2b

+


ε11b
ε21b
ε31b
...

ε34b



B. From contrast matrix to code

For our illustrative example, we used the contrast matrix

C =


1 0 0 0
−3 1 1 1
0 −2 1 1
0 0 −1 1


to define the latent growth components.

The inverse contrast matrix is

C
−1 =


1 0 0 0
1 1

3
− 1

3
0

1 1
3

1
6

− 1
2

1 1
3

1
6

1
2


and represents how the latent state variables are computed from the latent growth components,

this is

η1 = 1 · π0 + 0 · π1 + 0 · π2 + 0 · π3

η2 = 1 · π0 +
1

3
· π1 +−1

3
· π2 + 0 · π3

η3 = 1 · π0 +
1

3
· π1 +

1

6
· π2 +−1

2
· π3

η4 = 1 · π0 +
1

3
· π1 +

1

6
· π2 +

1

2
· π3

Hence, the first column gives the coefficients of π0 measured by the latent state variables ηt. This
yields the resulting code in lavaan (e.g., for the within level):
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1 pi1w =~ (1)*eta1w + (1)*eta2w + (1)*eta3w + (1)*eta4w
2 pi2w =~ (0)*eta1w + (.33333)*eta2w + (.33333)*eta3w + (.33333)*eta4w
3 pi3w =~ (0)*eta1w + (−.33333)*eta2w + (.16667)*eta3w + (.16667)*eta4w
4 pi4w =~ (0)*eta1w + (0)*eta2w + (−.5)*eta3w + (.5) *eta4w

The first column of C−1 yields the coefficients for the first row of code, the second column for the

second row and so on.

C. lavaan input

1 # Model Specification on the Within−Level

2 level : 1

3

4 # Definition of the Latent State Variables eta

5 ## Loadings la2 and la3 are time−invariant

6 eta1w =~ 1*tg53211_2 + la2*tg53212_2 + la3*tg53213_2
7 eta2w =~ 1*tg53211_4 + la2*tg53212_4 + la3*tg53213_4
8 eta3w =~ 1*tg53211_6 + la2*tg53212_6 + la3*tg53213_6
9 eta4w =~ 1*tg53211_8 + la2*tg53212_8 + la3*tg53213_8
10

11 # Inclusion of two method factors to deal with correlated uniqueness across time

points

12 mf1w =~ 1*tg53212_2 + 1*tg53212_4 + 1*tg53212_6 + 1*tg53212_8
13 mf2w =~ 1*tg53213_2 + 1*tg53213_4 + 1*tg53213_6 + 1*tg53213_8
14

15 # Variances of the Latent State Variables are Fixed to Zero

16 # Because the Variables are Completely Decomposed into the Growth Components

17 eta1w ~~ 0*eta1w; eta2w ~~ 0* eta2w; eta3w ~~ 0*eta3w; eta4w ~~ 0*eta4w
18

19 # Growth Components Defined via the Latent State Variables

20 # Using the Inverse Contrast Matrix C

21 # For More Details How to get from C to these coefficients see Appendix B

22 pi1w =~ (1)*eta1w + (1)*eta2w + (1)*eta3w + (1)*eta4w
23 pi2w =~ (0)*eta1w + (.33333)*eta2w + (.33333)*eta3w + (.33333)*eta4w
24 pi3w =~ (0)*eta1w + (−.33333)*eta2w + (.16667)*eta3w + (.16667)*eta4w
25 pi4w =~ (0)*eta1w + (0)*eta2w + (−.5)*eta3w + (.5) *eta4w
26

27 # Regressions of Growth Components on the Predictors

28 # tg51300_4 is the change of major before the second wave

29 # t245403_2 is the perceived burden of examination

30 pi1w ~ tg51300_4 + t245403_2

31 pi2w ~ tg51300_4 + t245403_2

32 pi3w ~ tg51300_4 + t245403_2

33 pi4w ~ tg51300_4 + t245403_2
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34

35

36 # Model Specification on the Between−Level

37 level : 2

38

39 # Definition of the Latent State Variables eta

40 ## Loadings la2 and la3 are time− (and also level−) invariant

41 eta1b =~ 1*tg53211_2 + la2*tg53212_2 + la3*tg53213_2
42 eta2b =~ 1*tg53211_4 + la2*tg53212_4 + la3*tg53213_4
43 eta3b =~ 1*tg53211_6 + la2*tg53212_6 + la3*tg53213_6
44 eta4b =~ 1*tg53211_8 + la2*tg53212_8 + la3*tg53213_8
45

46 # Inclusion of two method factors to deal with correlated uniqueness across time

points

47 mf1b =~ 1*tg53212_2 + 1*tg53212_4 + 1*tg53212_6 + 1*tg53212_8
48 mf2b =~ 1*tg53213_2 + 1*tg53213_4 + 1*tg53213_6 + 1*tg53213_8
49

50 ## On the between−level, means of the method factors are also included

51 mf1b ~ 1; mf2b ~ 1

52

53 # Variances of the observed variables (measuring eta ) are fixed to (almost) zero

54 ## These variables show little variance on the between−level

55 ## If this variance is decomposed into Var(eta ) and Var( epsilon ) ,

56 ## the variance of the measurement error is often estimated to be negative

57 ## To deal with this estimation problem, Var( epsilon ) is fixed .

58 tg53211_2 ~~ 0.0001*tg53211_2
59 tg53212_2 ~~ 0.0001*tg53212_2
60 tg53213_2 ~~ 0.0001*tg53213_2
61

62 tg53211_4 ~~ 0.0001*tg53211_4
63 tg53212_4 ~~ 0.0001*tg53212_4
64 tg53213_4 ~~ 0.0001*tg53213_4
65

66 tg53211_6 ~~ 0.0001*tg53211_6
67 tg53212_6 ~~ 0.0001*tg53212_6
68 tg53213_6 ~~ 0.0001*tg53213_6
69

70 tg53211_8 ~~ 0.0001*tg53211_8
71 tg53212_8 ~~ 0.0001*tg53212_8
72 tg53213_8 ~~ 0.0001*tg53213_8
73

74 # Means of observed variables (measuring eta ) fixed to zero

75 # in order to examine the means of the latent variables

76 tg53211_2 ~ 0*1
77 tg53212_2 ~ 0*1
78 tg53213_2 ~ 0*1
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79 tg53211_4 ~ 0*1
80 tg53212_4 ~ 0*1
81 tg53213_4 ~ 0*1
82 tg53211_6 ~ 0*1
83 tg53212_6 ~ 0*1
84 tg53213_6 ~ 0*1
85 tg53211_8 ~ 0*1
86 tg53212_8 ~ 0*1
87 tg53213_8 ~ 0*1
88

89 # Means of latent state variables eta fixed to zero

90 # in order to examine the means of the growth components

91 eta1b ~ 0*1
92 eta2b ~ 0*1
93 eta3b ~ 0*1
94 eta4b ~ 0*1
95

96 # Variances of the Latent State Variables are Fixed to Zero

97 # Because the Variables are Completely Decomposed into the Growth Components

98 eta1b ~~ 0*eta1b
99 eta2b ~~ 0*eta2b
100 eta3b ~~ 0*eta3b
101 eta4b ~~ 0*eta4b
102

103

104 # Growth Components Defined via the Latent State Variables

105 # Using the Inverse Contrast Matrix C

106 # For More Details How to get from C to these coefficients see Appendix B

107 pi1b =~ (1)*eta1b + (1)*eta2b + (1)*eta3b + (1)*eta4b
108 pi2b =~ (0)*eta1b + (.33333)*eta2b + (.33333)*eta3b + (.33333)*eta4b
109 pi3b =~ (0)*eta1b + (−.33333)*eta2b + (.16667)*eta3b + (.16667)*eta4b
110 pi4b =~ (0)*eta1b + (0)*eta2b + (−.5)*eta3b + (.5) *eta4b
111

112 # Include the means of the growth components

113 pi1b ~ 1; pi2b ~ 1; pi3b ~ 1; pi4b ~ 1

114

115 # Regressions of Growth Components on the Predictors

116 # t245403_2 is the perceived burden of examination

117 pi1b ~ t245403_2

118 pi2b ~ t245403_2

119 pi3b ~ t245403_2

120 pi4b ~ t245403_2
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D. Mplus input

The model command in the Mplus (L. K. Muthén & Muthén, 1998-2012) input for the complete

model including predictors is:

1 MODEL:

2 %Within%

3

4 eta1w by tg53211_2@1

5 tg53212_2 ( la2 )

6 tg53213_2 ( la3 ) ;

7

8 eta2w by tg53211_4@1

9 tg53212_4 ( la2 )

10 tg53213_4 ( la3 ) ;

11

12 eta3w by tg53211_6@1

13 tg53212_6 ( la2 )

14 tg53213_6 ( la3 ) ;

15

16 eta4w by tg53211_8@1

17 tg53212_8 ( la2 )

18 tg53213_8 ( la3 ) ;

19

20 mf1w by tg53212_2@1

21 tg53212_4@1

22 tg53212_6@1

23 tg53212_8@1;

24

25 mf2w by tg53213_2@1

26 tg53213_4@1

27 tg53213_6@1

28 tg53213_8@1;

29

30 eta1w@0 eta2w@0 eta3w@0 eta4w@0;

31

32 pi1w by eta1w@1 eta2w@1 eta3w@1 eta4w@1;

33 pi2w by eta2w@0.33333 eta3w@0.33333 eta4w@0.33333;

34 pi3w by eta2w@−0.33333 eta3w@0.16667 eta4w@0.16667;

35 pi4w by eta3w@−0.5 eta4w@0.5;

36

37 pi1w on t245403_2

38 tg51300_4;

39 pi2w on t245403_2

40 tg51300_4;

41 pi3w on t245403_2

42 tg51300_4;
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43 pi4w on t245403_2

44 tg51300_4;

45

46 %Between%

47

48 eta1b by tg53211_2@1

49 tg53212_2 ( la2 )

50 tg53213_2 ( la3 ) ;

51

52 eta2b by tg53211_4@1

53 tg53212_4 ( la2 )

54 tg53213_4 ( la3 ) ;

55

56 eta3b by tg53211_6@1

57 tg53212_6 ( la2 )

58 tg53213_6 ( la3 ) ;

59

60 eta4b by tg53211_8@1

61 tg53212_8 ( la2 )

62 tg53213_8 ( la3 ) ;

63

64 mf1b by tg53212_2@1

65 tg53212_4@1

66 tg53212_6@1

67 tg53212_8@1;

68

69 mf2b by tg53213_2@1

70 tg53213_4@1

71 tg53213_6@1

72 tg53213_8@1;

73

74 [mf1b* mf2b*]
75

76 tg53211_2@0;

77 tg53212_2@0;

78 tg53213_2@0;

79

80 tg53211_4@0;

81 tg53212_4@0;

82 tg53213_4@0;

83

84 tg53211_6@0;

85 tg53212_6@0;

86 tg53213_6@0;

87

88 tg53211_8@0;
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89 tg53212_8@0;

90 tg53213_8@0;

91

92 [tg53211_2@0

93 tg53212_2@0

94 tg53213_2@0];

95

96 [tg53211_4@0

97 tg53212_4@0

98 tg53213_4@0];

99

100 [tg53211_6@0

101 tg53212_6@0

102 tg53213_6@0];

103

104 [tg53211_8@0

105 tg53212_8@0

106 tg53213_8@0];

107

108 [eta1b@0];

109 [eta2b@0];

110 [eta3b@0];

111 [eta4b@0];

112

113 eta1b@0 eta2b@0 eta3b@0 eta4b@0;

114

115 pi1b by eta1b@1 eta2b@1 eta3b@1 eta4b@1;

116 pi2b by eta2b@0.33333 eta3b@0.33333 eta4b@0.33333;

117 pi3b by eta2b@−0.33333 eta3b@0.16667 eta4b@0.16667;

118 pi4b by eta3b@−0.5 eta4b@0.5;

119

120 [pi1b* pi2b* pi3b* pi4b*];
121

122 pi1b on t245403_2;

123 pi2b on t245403_2;

124 pi3b on t245403_2;

125 pi4b on t245403_2;
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