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Abstract 

This paper presents an original model for evaluation of mathematical creativity. I describe different 

stages of the model's development and justify critical decisions taken throughout, based on the 

analysis of the model's implementation. The model incorporates an integrative theoretical frame-

work that was developed based on works devoted to both general and mathematical creativity. The 

scoring scheme for the evaluation of creativity, which is an important part of the model, combines 

an examination of both divergent and convergent thinking as reflected in problem solving processes 

and outcomes. The theoretical connection between creativity and divergent thinking is reflected in 

the multiplicity component of the model, which is based on the explicit requirement to solve math-

ematical problems in multiple ways. It is evaluated for fluency and flexibility. The connection 

between creativity and convergent thinking is reflected in the component of insight, which is based 

on the possibility to produce insight-based solutions to mathematical problems. I provide examples 

of the study in which the model is used to examine differences in creativity of students with differ-

ent levels of excellence in mathematics and different levels of general giftedness. 
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Background 

Creativity in mathematics and mathematics education 

The importance of creativity is difficult to overestimate. In a vastly changing world, in 

which technological and scientific advancements change social networks and individu-

als’ lives, creativity is needed both for adapting to this changing world and for continu-

ing these advancements. Mathematical creativity is a specific type of creativity whose 

importance is obvious. On the one hand, advances in different branches of mathematics, 

which research mathematicians bring to life, reflect human intellect. On the other hand, 

mathematics is one of the central scientific areas that allow sustaining social technologi-

cal and scientific progress in a variety of areas through offering scientists and Hi-tech 

specialists a powerful apparatus and models for the analysis of situations, prognoses and 

processes. School mathematics should provide each and every student with opportunities 

to get a taste of mathematical creativity and realize his/her creative potential in mathe-

matics.  

Haylock (1987) called for greater attention to be paid to creativity in the mathematics 

classroom. When reviewing the educational literature from 1966 to 1985, Haylock 

(1987) demonstrated that the subject of creativity is neglected in mathematics education 

research. Two decades later I reviewed publications from 1999 to 2009 in leading re-

search journals in mathematics education and in gifted education (Leikin, 2009a). This 

review demonstrated that very few publications were devoted to mathematical creativity.  

Fortunately, the mathematics education community has been devoting more attention 

lately to this issue (see examples in Leikin et al., 2009; Sriraman et al., 2009; Leikin & 

Pitta-Pantazi, 2013). Mathematics educators have established a new ICME-affiliated 

International Group for Mathematical Creativity and Giftedness (http://igmcg.org); the 

ICME and ERME conferences have been devoting the efforts of working groups to this 

topic with the purpose of raising the mathematics education community’s awareness of 

the fields of mathematical creativity, mathematical potential and mathematical gifted-

ness. Nevertheless, only a small number of empirical studies on creativity associated 

with mathematics have been carried out.  

Guilford (1967) considered the creative process to be based on the combination of con-

vergent thinking, which involves aiming for a single, correct solution to a problem, and 

divergent thinking, which involves generation of multiple answers to a problem or phe-

nomenon. Torrance (1974) suggested an operative definition of creativity based on four 

related components: fluency, flexibility, novelty, and elaboration. Fluency refers to the 

continuity of ideas, flow of associations, and use of basic and universal knowledge. 

Flexibility is associated with changing ideas, approaching a problem in various ways, 

and producing a variety of solutions. Originality is characterized by a unique way of 

thinking and unique products of mental or artistic activity. Elaboration refers to the 

ability to describe, illuminate, and generalize ideas. As creativity is usually viewed as a 

process that leads to generation of original ideas, the originality component is commonly 

acknowledged as the main component of creativity.  
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Another view on the combination of convergent and divergent thinking in creative think-

ing is found in Cropley (2006), who claims that creative thinking involves two main 

components: “generation of novelty (via divergent thinking) and evaluation of the novel-

ty (via convergent thinking)” (p. 391). Knowledge is of great importance in the creative 

process. From the point of view of divergent thinking that includes finding different 

solutions and interpretations, applying different techniques, and thinking originally and 

unusually, creativity is one of the learning outcomes (Leikin, 2011). At the same time, 

for convergent thinking knowledge is of particular importance as a source of ideas, 

pathways to solutions, and criteria of effectiveness and novelty (Cropley, 2006). 

Mathematical creativity is a specific creativity that takes into account the logical deduc-

tive nature of the field (e.g., Piirto, 1999). As in the case of general creativity, providing 

a precise and broadly accepted definition of mathematical creativity is extremely difficult 

and probably impossible to achieve (Haylock, 1987; Leikin, 2009b, Leikin & Pitta-

Pantazi, 2013; Mann, 2006). Mann (2006) maintained that analysis of the research at-

tempting to define mathematical creativity demonstrates that the absence of an accepted 

definition for mathematical creativity hinders research efforts. 

Mathematical understanding and insight form the basis of mathematical creation 

(Ervynck, 1991). Mathematical creativity is one of the characteristics of advanced math-

ematical thinking, which is reflected in the ability to formulate mathematical objectives 

and find inherent relationships among them (Ervynck, 1991). Creative products, there-

fore, lead to the understanding of mathematical relationships and uncover hidden rela-

tionships. Not less important is the relationship between mathematical creativity and the 

beauty in mathematics (Dreyfus & Eisenberg, 1986; Mann, 2006). The mathematical 

mind seeks elegant products and processes that usually are extremely original and related 

to insight and, thus, the elegance and beauty of a solution is an indication of mathemati-

cal creativity.  

Naturally, creativity in school mathematics differs from that of professional mathemati-

cians (Leikin, 2009, Leikin & Lev, 2013). Mathematical creativity in high school stu-

dents is evaluated with reference to their previous experiences and to the performance of 

other students who have a similar educational history. I suggest that considering personal 

creativity as a dynamic characteristic (both personal and social) requires a distinction 

between relative and absolute creativity (Leikin, 2009). Absolute creativity is associated 

with discoveries that advance mathematics as a science. Relative creativity refers to 

discoveries by a specific person within a specific reference group. Obviously, school 

students can offer ideas which are novel with respect to the mathematics they have al-

ready learned and to the problems they have solved.  

Mathematical creativity and problem solving 

The dynamic perspective on mathematical creativity emphasizes the importance of tools 

that allow the evaluation and development of creativity. The importance of these tools 

follows from the argument that “the significance of creativity in school mathematics may 

be minimized because it is not formally assessed on standardized tests, which purport to 
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thoroughly measure mathematical learning” (Chamberlin & Moon, 2005, p. 42). Studies 

by Chiu (9002) and Kwon, Park, and Park (2006) suggested ways to evaluate mathemat-

ical creativity. Some limitations of the evaluation tools presented in these studies may 

be seen in the close connection between the evaluation tools and the type of activities the 

researchers considered to be creative. Consequently, these studies demonstrate that the 

recommended instructional activities are teachable. Livne, Livne, and Milgram (1998) 

proposed a universal questionnaire for measuring mathematical creativity that did not 

address the relative characteristics of creativity or its multidimensional structure.  

Following Torrance (1974), Silver (1997) suggested developing creativity through prob-

lem solving as follows: Fluency is developed by generating multiple ideas, multiple 

answers to a problem (when such exist), exploring situations, and raising multiple ideas; 

flexibility is advanced by generating new solutions when at least one has already been 

produced; and novelty is advanced by exploring many solutions to a problem and gener-

ating a new one.  

Ervynck (1991), who considered creativity to be a critical component of advanced math-

ematical thinking, stressed that mathematical creativity is based on the previous experi-

ences of an individual and requires “making a step forward in a new direction” (p. 42). 

He suggested that on the way toward creative activity there are at least two necessary 

stages: a preliminary, technical stage and an algorithmic activity stage. Ervynck identi-

fied three different levels of creativity. Level 1 contains an algorithmic solution to a 

problem; Level 2 involves modeling a situation and may include solving a word problem 

with a graph or a linear diagram; Level 3 employs sophisticated methods usually based 

on assumptions embedded in the problem, and makes use of the problem’s internal struc-

ture and insight. Since categorisation of types of solutions according the levels of crea-

tivity suggested by Ervynck (1991) is based on the connection between the solutions and 

solver's previous mathematical experiences, this categorisation fits the definition of 

relative creativity, in general, and of originality, in particular.  

The current paper represents different steps in the design of a multidimensional model 

for the evaluation of mathematical creativity that takes into account the relative nature of 

creativity. It draws on the views of Ervynck (1991), Krutetskii (1976), Polya (1973), and 

Silver (1997) who claim that solving mathematical problems in multiple ways is closely 

related to personal mathematical creativity, and suggest evaluating mathematical creativ-

ity by means of multiple-solution tasks (MSTs). The model contains operational defini-

tions and a corresponding scoring scheme to evaluate creativity based on three dimen-

sions (originality, fluency, and flexibility), as suggested by Torrance (1974). To evaluate 

originality it uses Ervynck’s insight-related levels of creativity in combination with the 

conventionality of the solutions, which includes the students’ history of mathematical 

education. 

MSTs and solution spaces 

A multiple-solution task (MST) is an assignment in which a student is explicitly required 

to solve a mathematical problem in different ways. Solutions to the same problem are 
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considered to be different if they are based on: (a) different representations of some 

mathematical concepts involved in the task, (b) different properties (definitions or theo-

rems) of mathematical objects within a particular field, or (c) different properties of a 

mathematical object in different fields (see the definition and various examples of MSTs 

in Leikin, 2006, 2009) (see example in Figure 1). 

In Leikin (2007) I suggest the notion of solution spaces, which enables researchers to 

examine the various aspects of problem-solving performance using MSTs. Expert solu-

tion spaces include the most complete set of solutions to a problem known at a particu-

lar time. They can also be conceived as a set of solutions that expert mathematicians can 

suggest to the problem. In school mathematics, expert solution spaces include conven-

tional solution spaces, which are those generally recommended by the curriculum, as 

displayed in textbooks, and usually taught by the teachers. By contrast, unconventional 

solution spaces include solutions based on strategies usually not prescribed by the 

school curriculum, or which the curriculum recommends with respect to a different type 

of problem. Individual solution spaces are collections of solutions produced by an indi-

vidual to a particular problem. With respect to the ability of a person to find solutions 

independently, we distinguish between available individual solution spaces, which in-

clude solutions that individuals can present on the spot or with some effort without help 

from others, and potential solution spaces, which include solutions that solvers produce 

with help from others. Solutions derived from the potential solution spaces correspond 

to the personal ZPD (Vygotsky, 1978). Finally, collective solution spaces are a combi-

nation of the solutions produced by a group of individuals. Collective solution spaces are 

usually broader than individual solution spaces within a particular community, and form 

one of the main sources for the development of individual solution spaces. Both individ-

ual and collective solution spaces are subsets of expert solution spaces. 

Solution spaces are used here as a tool for exploring the students’ mathematical creativi-

ty and for the assessment of the potential of a task to evaluate mathematical creativity. 

 

 

Task 1: Solve the system in as many ways as possible: 








1032

1023

yx

yx
  

Solutions 

1. Algebraic solutions: 

1.1. Linear combination 

1.2. Substitution for x (y) 

1.3. Equalizing algebraic expressions for x ( y) 

2. Graphing 

3. Matrices 

4. Symmetry considerations 

Figure 1: 

MST example. 
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Modeling mathematical creativity with MST 

Runco and Acar (2012) stressed the significance of developing scoring systems for di-

vergent thinking tasks. In this section, I present in detail the development of the scoring 

scheme for the evaluation of creativity with MSTs. This scoring scheme also addresses 

convergent thinking as a key component of creativity by including insight as an indicator 

of convergent thinking. 

Initial 2-4-6 scoring scheme 

Based on the theoretical assumption and definitions that connect mathematical creativity 

with solving mathematical problems in multiple ways, Leikin and Lev examined differ-

ences in the creativity of gifted and non-gifted students who excel in mathematics (Lei-

kin & Lev, 2007). We developed a tool that contains a set of mathematical problems and 

a scoring scheme for evaluating the students’ problem-solving performance on MSTs. 

We examined novelty of solutions according to their conventionality (see conventional 

and non-conventional solution spaces above), their availability, and repetition. The origi-

nality of the students’ individual solutions (produced without hints) was scored 2, 4, and 

6 according to the level of their conventionality, whereas the same solutions produced 

with hints received scores of 1, 2, and 3.  

Flexibility was evaluated by the number of non-repeating solutions in the available and 

potential individual solution spaces. Fluency was evaluated with respect to the time spent 

by the students to produce the solutions. Using this model and the 2-4-6 scoring scheme 

we demonstrated that the creativity of gifted students was higher than that of regular 

students on every type of task, and that their creativity differed from that of their expert 

non-gifted counterparts on non-routine tasks only. Similar scoring schemes for the eval-

uation of mathematical creativity with MSTs are used in Kontoyianni, Kattou, Pitta-

Pantazi, and Christou (2013). 

Limitations of 2-4-6 scoring scheme  

Deeper analysis of the results of the study by Leikin & Lev (2007) revealed the follow-

ing limitations of the suggested scoring scheme:  

When evaluating creativity using the originality, fluency, and flexibility components 

with a 2-4-6 scoring scheme, the score given for an individual solution space of a prob-

lem reflected the problem solving product, which did not allow for reproducing the flex-

ibility and originality of the problem-solving process. Thus, the objective was to develop 

a scoring scheme that would allow analysing both the problem-solving process and the 

problem-solving product based on the final score in flexibility and originality. 
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Refined model 

A refined model (Leikin, 2009) included a new scoring scheme and more precise defini-

tions of the creativity components. This model not only made it possible to evaluate the 

students’ personal mathematical creativity but also to estimate the efficiency of MSTs in 

evaluating creativity. The final score that students received reflected the flexibility and 

originality integrated in the problem-solving process as well as in the problem-solving 

product. The model allowed evaluation of creativity for individuals and groups of indi-

viduals, as well as for the tasks themselves. The creativity embedded in a task is evaluat-

ed based on its expert solution spaces. The model was implemented in a number of stud-

ies in which students’ creativity was evaluated in different research settings (Guberman 

& Leikin, 2013; Levav-Waynberg & Leikin, 2009, 2012; Leikin & Kloss, 2011; Leikin, 

Levav-Waynberg, & Guberman, 2011; Leikin & Lev 2013; Lev & Leikin, 2013). 

Through performance of these studies some additional modifications of Leikin's (2009) 

model were performed. In what follows I describe the most updated version of the mod-

el, addressing these latest adjustments.  

Fluency 

Fluency (N) is usually measured by the number of appropriate ways produced for solving 

a problem insofar as it reflects the pace at which solving proceeds and the switches tak-

ing place between different ways of solutions. A student's fluency on a written test is 

detected by the number of appropriate solutions in his/her individual solution space. The 

notion of appropriateness has replaced the notion of correctness (e.g., Leikin, 2009 vs. 

Levav-Waynberg & Leikin, 2012) to allow evaluation of reasonable ways of solving a 

problem that potentially lead to the correct solution outcome regardless of the minor 

mistakes made by a solver. The fluency embedded in an MST is the number of solutions 

in the expert solution space. 

Flexibility 

When evaluating flexibility (Flx) we refer to different groups of ways of solving (simple 

solutions) an MST. Two solutions belong to separate groups if they employ solution 

strategies based on different representations, properties (theorems, definitions, or auxilia-

ry constructions), or branches of mathematics. The flexibility embedded in an MST is 

evaluated based on the groups of solutions in the expert solution space. Flexibility of a 

student’s performance on an MST is evaluated based on the solution strategies in the 

individual solution space. We suggest using a decimal basis for evaluation of flexibility 

as follows: 1 10Flx   for the first appropriate solution. For each consecutive solution 

there are several scores: 10iFlx   if a solution belongs to a group of solutions different 

from ones to which the solution(s) performed previously belong (for example, Solution 2 

produced after Solution 1, Figure 1). 1iFlx   if the solution belongs to one of the previ-

ously used groups but has a clear minor distinction (for example, Solution 1.3 produced 

after Solution 1.1, Figure 1). 0.1iFlx   if the solution is almost identical with (one of 

the) previously performed solutions (for example, Solution 1.2 performed twice – for x 



R. Leikin 392 

and for y). A score of 0.1, which is a negative (-1) power of 10, reflects the lack of stu-

dents' critical reasoning, which is essential for mental flexibility, and the inability to 

recognize the two produced solutions as being identical. A student’s total flexibility score 

on a problem is the sum of his/her flexibility on the solutions in the student’s individual 

solution space - 
1

N

ii
Flx Flx


  where N  is fluency score. 

The decimal basis we use for scoring flexibility reflects both the problem solving prod-

uct and the process. For example, if the total flexibility score for a solution space is 31.2, 

we know that it includes 3 solutions that belong to different solution groups, 1 solution 

that uses a solution strategy from one of the former groups exhibiting a minor but essen-

tial difference, and 2 solutions that repeat previous ones.  

Originality 

When evaluating originality we combine "relative" evaluation of originality with "abso-

lute" evaluation that refers to insight embedded in the solution strategy produced by the 

student. Relative evaluation of originality is performed with respect to the conventionali-

ty of a solution in a particular group of students with a similar educational history. For 

this purpose we compare individual solution spaces with the collective solution space of 

the reference group through calculation of the percentage (P) of the students in the group 

that produces a particular solution. Absolute evaluation, which is based on the level of 

insight involved in the solution process (c.f., Ervynck, 1991), prevents evaluation of an 

algorithmic solution (which is obviously a learned one) performed by a student as an 

original one, even if only one student in his/her reference group produced the solution. 

The insight-related originality reflects, to a great extent, the convergent reasoning of the 

individuals.  

As in the case of flexibility, we used a decimal basis for evaluation of originality as 

follows: Originality of a particular solution is scored with 10iOr   for an insight-based 

unconventional solution (e.g., Solution 4, Figure 1). Usually solutions of this type are 

produced by not more than 15% of students in a particular reference group. A score of 

1iOr   is given for a model-based solution or a solution which implies a solution strate-

gy learned in a different context (e.g., Solution 2, Figure 1). Relative evaluation of such 

kinds of solutions belongs to the domain of 15% 40%P  , where P is the percentage 

of students in the reference group who produced this kind of solution (e.g., Solution 1, 

Figure 1). Algorithm-based or conventional (i.e., definitely learned) solutions are scored 

with 0.1iOr  . Solutions of this kind are usually produced by over 40% of students in 

the reference group. A student’s total originality score on a problem is calculated as the 

sum of the student’s originality on the solutions in the student’s individual solution 

space. The total originality embedded in a task is the sum of originality scores of all the 

solutions in the expert solution space, 
1

n

ii
Or Or


  where n is the number of appropri-

ate solutions in the corresponding space. 

In the decimal basis we used in scoring, the total score indicates the originality of the 

solutions in the focal solution spaces. For example, a total originality score of 21.3 

means that the evaluated solutions space includes 2 insight-based/non-conventional 

solutions, 1 solution that is partly unconventional, and 3 algorithm-based solutions. The 
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decision regarding 15% and 40% as borderlines between the different levels of originali-

ty was based on previous experiments. We also compared the results of written tests with 

the students’ performance in individual interviews and classroom discussions. We found 

that on written tests these percentages (15% and 40%) match quite accurately the various 

levels of originality of solutions produced and presented both during the interviews and 

in the classroom discussion. 

Note here that a more recent adjustment has been performed for the evaluation of origi-

nality. In Leikin and Lev (2013) and Lev and Leikin (2013) we discovered the essentiali-

ty of the combination of relative evaluation of originality suggested earlier in Leikin 

(2009) and used in earlier studies (e.g., Levav-Waynberg & Leikin, 2012) with evalua-

tion of insight embedded in the solution strategy produced by the student. When evaluat-

ing originality of solutions in our latest study we observed that in some mid-level classes 

of students, when a problem was generally solved by less than 15% of students, their 

originality score produced by relevant evaluation was high (Or = 10) even though this 

solution was algorithm-based. Thus, we argue that evaluation of originality requires both 

relative (quantitative) and absolute (qualitative) examination of the solutions.  

Creativity 

The creativity ( Cr ) of a particular solution is the product of the solution’s originality 

and flexibility: i i iCr Flx Or  . We use the product of the flexibility and originality 

scores to evaluate creativity based on the following consideration: Suppose that a student 

(Tom) produces a solution flexibly ( 10kFlx  ), in other words the solution k is the first 

solution or belongs to a new group of solutions. If Tom produces an original solution  

( 10kOr  ) flexibly ( 10kFl x ), then his creativity on this solution is scored  

100kCr  . A solution (in the same group) that is similar to one of the previously per-

formed solutions cannot be considered as a creative act. Thus, when Tom performs an 

original solution ( 10mOr  ) that is similar to one produced earlier, his flexibility is 

scored 1mFlx  or 0.1mFlx  . The creativity score is then 10mCr  or 1mCr  , a score 

that indicates a different level of creativity for the solution process. When a student pro-

duces an unoriginal solution ( 1nOr  or 0.1nOr  ) flexibly ( 10nFlx  ), it results in a 

creativity score that expresses a medium or low level of creativity ( 10nCr  or 1nCr  ). 

Repeating unoriginal solutions scores Cr = 0.1 or Cr = 0.01 and indicates that a student 

does not see the similarity between the solutions and produces only solutions learned in 

the classroom. 

The total creativity score on a MST is the sum of the creativity scores on each solution in 

the individual solution space of a problem: 
1

n

i ii
Cr Flx Or


  .  

The decision to evaluate the creativity of a solution as the product of flexibility and orig-

inality scores and to consider the total score as the sum of the scores on different solu-

tions helped us in the decision to evaluate the flexibility of the first solution to a given 

problem as 1 10Flx   (see also Leikin, 2009). We assumed that the creativity of two 

individual solution spaces that contain identical sets of solutions should be scored equal- 
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 Flu- 

ency 

Flexibility Originality Creativity 

Scores 

per 

solution 

1  101 Fl x  

for the first solution 

 10iFl x  

solutions from a 

different group of 

strategies 

 1iFlx    

similar strategy but a 

different 

representation 

 1.0iFl x  

the same strategy, the 

same representation 

 10iOr    

for insight/ 

unconventional solution 

or 15%P   

 1iOr   

for model-based/ partly 

unconventional solution 

or 15% 40%P   

 0.1iOr   

for algorithm-based/ 

conventional solution or 

40%0.1i POr   

i iFlx Or  

Total 

score 

n  


n
i iFl xFl x

1  
1

n

ii
Or Or


  

1

n

i ii
Flx Or


  

Final 

creativity 

score 

 1

n

i ii
Cr Flx Or


   

n  is the total number of appropriate solutions  

100%( )
j

P nm  where
j

m  is the number of students who used strategy j  

Figure 2: 

Evaluation of creativity in different contexts. 

 

 

ly. Suppose we assigned a score of 1 1Flx  . If on a particular problem a student (Tom) 

produces two solutions that belong to two different groups, his flexibility is scored 

1 21, 10Flx Flx  . Suppose that the originality scores of these two solutions are

1 21, 10Or Or  . Then Tom’s total creativity score is 101Cr  . If another student (Har-

ry) performs the same two solutions but in a different order, for him 1 21, 10Flx Flx 

and 1 210, 1Or Or  , and his total creativity score is 20. Tom’s and Harry’s individual 

solution spaces are identical and, therefore, their creativity should also be scored as 

equal. This conflict may be solved by scoring the flexibility of the first solution 

1 10Flx  . In this case both Tom and Harry receive a total creativity score of 110. More-

over, we liked the idea that if a student produced only one solution but it was an original 

one, his or her creativity should be scored 100. 
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Implementation of the Model – an example 

The model was implemented in a number of studies in which students' creativity was 

evaluated in different research settings (Guberman & Leikin, 2013; Levav-Waynberg & 

Leikin, 2009, 2012; Leikin & Kloss, 2011; Leikin, Levav-Waynberg, & Guberman, 

2011). I present here the latest implementation performed in collaboration with Miri Lev 

(Lev & Leikin, 2013). One of the study goals was to examine relationships between 

mathematical creativity, general giftedness, and mathematical excellence. Task 1 (Figure 

1) was included in the test. In addition to the evaluation of creativity components accord-

ing to the scoring scheme (Figure 2), we examined correctness of the solutions with 25 

points for a complete solution. 

A sample of 191 (students subdivided into four experimental groups  – see Table 1) was 

chosen out of a population of 1200 10
th

 and 11
th
 grade students (16-17 years old). The 

sampling procedure was directed towards investigating the effect of General Giftedness 

and Excellence in Mathematics (G and EM factors).  

G factor: Students for G groups were mainly chosen from classes for gifted students (IQ 

> 130). Additionally, the entire research population was examined using Raven’s Ad-

vanced Progressive Matrix Test (RPMT) (Raven, Raven, & Court, 2000). 

EM factor: All 1200 students studied mathematics at high and regular levels (HL, RL). 

The level of instruction is determined by students’ mathematical achievements in earlier 

grades. Instruction at HL differs from that at RL in terms of the depth of the learning 

material and the complexity of the mathematical problem-solving involved. Additionally, 

excellence in mathematics is examined using the SAT-M (Scholastic Assessment Test in 

Mathematics, adopted from Koichu, 2003).  

 

 

Table 1:  

Target population. 

  Gifted (G) 

IQ > 130 

Raven > 27/30 

Non-Gifted (NG) 

Raven < 26/30 

Total 

 

Excelling in Math (EM)  

SAT-M > 26 or  

HL in mathematics with math score > 92  

G-EM 

n = 38 

NG-EM 

n = 51 

87 

Non-excelling in Math (NEM)  

SAT-M < 22 and 

RL in mathematics with math score > 90 or  

HL in mathematics with math score < 80.  

G-NEM 

n = 38 

NG-NEM 

n = 57 

29 

Total 76 108 381 
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Results 

Multivariate analysis of variance tests (MANOVAs) were used to compare the scores on 

each component of creativity that participants received for each problem. Between-

subject differences were examined for each one of the problems and each one of the 

creativity components for G factor, EM factor and interactions between G and EM fac-

tors. Within-subject differences were examined for performance on the different tasks. 

Table 2 presents the percentage of students with different levels of fluency (the number 

of appropriate solutions produced by a student) and flexibility (the number of solutions 

from different groups). We learn from these data that students in all the groups were 

successful, fluent and flexible in solving the system of equation. From Table 2 we learn 

that though there is connection between fluency and flexibility in students' problem 

solving performance, they measure different kinds of mental ability. Production of mul-

tiple solutions does not mean production of different multiple solutions. Clearly students 

from the G-EM group differed meaningfully in their flexibility when solving both prob-

lems. Participants from the G-EM group differed from participants of all other groups in 

the fluency and flexibility of their problem solving performance.  

Table 3, which presents the Means and SD that we obtained for all the examined criteria 

on both problems, provides additional support for the observation of the specific qualities 

of mathematical reasoning in G-EM students. Only G-EM students produced insight-

based solutions; this means that only students from this group received a high-level (10) 

originality score.  

 MANOVAs demonstrate effects of EM and G factors on all the examined criteria (Table 

4). A significant main effect of the G factor was found for all the criteria, while the EM 

factor has a significant main effect on flexibility only. We also found an interaction 

between EM and G factors with respect to students' flexibility related to solving the 

system of equations. G factor strengthens the effect of EM factor; that is G-EM students 

are significantly more flexible than their NG-EM counterparts, whereas no significant 

differences appear in flexibility of EM and NEM students among NG students (see also 

Table 3).  

We hypothesize that in the fluency-flexibility-originality triad, fluency and flexibility are 

of a dynamic nature, whereas originality is a "gift". We demonstrate that originality 

appears to be the strongest component in determining creativity.  

The strength of the relationship between creativity and originality can be considered as 

validating our model, being consistent with the view of creativity as an invention of new 

products or procedures. At the same time, our studies demonstrate that this view is true 

for both absolute and relative creativity. Based on the research findings, we hypothesize 

that one of the ways of identifying mathematically gifted students is by means of origi-

nality of their ideas and solutions. Systematic research should be performed to examine 

our hypotheses.  
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Table 2: 

Fluency and Flexibility. 

No. of solutions (Flu)  

/ No. of groups of solutions (Flx) 

0 3 9 1 4 9 6 

G-EM (n = 38) Flu 0 0 9.2 93 93   

Flx 0 63 96 31    

G-NEM (n = 38) Flu 9.1 0 9.1 68 36 9.6 9.6 

Flx 9.1 89 31     

NG-EM (n = 51) Flu 9 9 2.8 98 9.8   

Flx 9 24 1.2     

NG-NEM (n = 57) Flu 3.8 34 34 63 9 3.8  

Flx 3.8 23 9     

 

 

Table 3:  

Means and SD. 

 G-EM G-NEM NG-EM NG-NEM 

N n = 38 n = 38 n = 51 n = 57 

 Mean SD Mean SD Mean SD Mean SD 









1 434

1 443

yx

yx
 

Cor 99 0 91.68 9.699 94.93 1.903 91.99 4.192 

Flu 1.31 0.992 1.31 3.939 9.88 0.691 9.61 0.218 

Flx 36.49 6.248 39.91 4.992 33.93 9.999 33.91 1.919 

Or 1.38 9.094 3.66 1.123 0.68 3.244 0.282 9.693 

Cr 10.02 90.999 34.94 14.38 9.01 32.609 8.924 99.94 

 

 

Table 4: 

Effects of G and EM factors 

Between-Subject Effects G -factor EM-factor G×EM 

 F(3,183) F(1,183) F(1,183) F(1,183) 









1 434

1 443

yx

yx
 

Cor 3.041 .114 9.299 .914  

Flu 1.611*  8.193** .219 .219  

Flx 33.099***  38.429*** 9.696** 2.931** 

Or 4.823**  30.461** 3.903 1.462 

Cr 4.810**  30.084** 3.994 1.643 
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Summary 

This paper presents a model for evaluation of mathematical creativity. I describe the 

evolution of the model and justify its structure. The theoretical connection between crea-

tivity and divergent thinking is reflected in the multiplicity component of the model, 

which is based on the explicit requirement to solve mathematical problems in multiple 

ways. The scoring scheme for evaluation of creativity, which is a part of the model, 

refers to the fluency, flexibility and originality of students' mathematical thinking re-

flected in the problem-solving strategies they use. The ability to produce insight-based 

solutions is an intrinsic requirement of the mathematical problems that can and should be 

used for the evaluation of creativity using the model. The usefulness of the model is 

exemplified in the study by Lev and Leikin (2013). 

Other studies that were performed using the model also demonstrate its usefulness in 

evaluating the development of students' creativity in different educational frameworks 

(Guberman & Leikin, 2013; Levav-Waynberg & Leikin, 2012). These studies demon-

strate that both high achievers and mid-achievers in mathematics significantly improve 

their problem-solving accuracy, fluency and flexibility in an instructional environment 

that is directed towards development of mathematical creativity. At the same time, the 

improvement of fluency and flexibility is significantly greater for the high level partici-

pants. We also demonstrate that an increase in flexibility is accompanied by a decrease in 

originality on the group level, while only a small number of participants increase their 

originality on the individual level (Levav-Waynberg & Leikin, 2012). Following these 

findings, we question the possibility of developing originality and hypothesize that in the 

originality-fluency-flexibility triad, fluency and flexibility are of a dynamic nature, 

whereas originality is of the “gift” type.  
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