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Higher-order models versus direct hierarchical models:
g as superordinate or breadth factor?

GILLES E. GIGNAC'

Abstract

Intelligence research appears to have overwhelmingly endorsed a superordinate (higher-order
model) conceptualization of g, in comparison to the relatively less well-known breadth conceptualiza-
tion of g, as represented by the direct hierarchical model. In this paper, several similarities and distinc-
tions between the indirect and direct hierarchical models are delineated. Based on the re-analysis of five
correlation matrices, it was demonstrated via CFA that the conventional conception of g as a higher-
order superordinate factor was likely not as plausible as a first-order breadth factor. The results are
discussed in light of theoretical advantages of conceptualizing g as a first-order factor. Further, because
the associations between group-factors and g are constrained to zero within a direct hierarchical model,
previous observations of isomorphic associations between a lower-order group factor and g are ques-
tioned.
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A non-negligible amount of research has accumulated over the last couple of decades
relevant to the examination of the associations between group-factors of intelligence and g.
Overwhelmingly, this area of research has tended to employ a higher-order modeling strat-
egy within a structural equation modeling (SEM) framework. Much, if not all, of this factor
analytic research has neglected to examine specifically the possibility that a breadth concep-
tualization of g, as represented by a direct hierarchical model, may be more consistent with
the data than a superordinate conceptualization of g, as represented by a higher-order model.
Consequently, in this paper, what is referred to as a direct hierarchical model (described
more fully below) will be suggested as a plausible alternative to the more conventional
higher-order model representation of cognitive abilities. In addition to the theoretical impli-
cations of a breadth conceptualization of g, the consequences of finding empirical evidence
in favour of the direct hierarchical model over the higher-order model may be viewed as
counter evidence against contentions that a lower-order group-factor is isomorphic with g
(e.g., Colom et al., 2004; Gustafsson, 1984; Gustafsson, 2001), as the associations between
group-factors and g are constrained to zero within a conventional direct hierarchical model.
Prior to testing the superordinate versus breadth conceptualizations of g empirically, several
of the various terms used to represent particular multi-factor models in intelligence research
will be described. In particular, the similarities and distinctions between the higher-order
model, the indirect hierarchical model and the direct hierarchical model will be expounded.

Multi-Factor Modeling: some history and nomenclature

Although a specific review of the literature does not appear to have ever been conducted,
it would probably be accurate to suggest that the vast majority of factor modeling research in
the area of intelligence has implicitly or explicitly endorsed a higher-order factor conceptu-
alization of intelligence. In Thurstone’s (1947) Multiple-Factor Analysis, an early and influ-
ential factor analytic text in America, a second-order factor conceptualization of g was spe-
cifically endorsed: “...a general second-order factor is likely to be of more fundamental
significance for the domain in question than a general orthogonal first-order factor,” because
the second-order factor is a “participant in the definition of the other [lower-order] factors”
(p. 418). More recently, a preference for a higher-order conceptualisation of intelligence
persists. For example, Borsboom and Dolan (2006) wrote, “The evidence for the existence of
g as a source of individual differences, or, equivalently, as a source of variance, is estab-
lished by means of factor analysis of a wide variety of IQ test scores, in which g is identified
with the common factor at the apex of a hierarchical common factor model” (p. 434).

An early detractor of the view of g as a higher-order factor was Humphreys (1962) who
much preferred what he (and others) referred to as a ‘hierarchical model’. Humphreys (1962)
preferred a hierarchical model over a higher-order model for two primary reasons. First, he
believed a hierarchical model solution was easier to interpret, because all of the factors were
defined by observed variables (i.e., cognitive ability subtests): “Second-order factors are
mysterious because they are defined, not by tests, but by first-order factors. Third-order
factors are completely incomprehensible” (p. 476). Guilford (1954) shared a similar sceptical
view of higher-order factors: “The writer reserves judgment with respect to the psychologi-
cal validity of factors higher than the first-order factors” (p. 521). The second reason Hum-
phreys (1962) preferred a hierarchical model conceptualization of intelligence was because
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he believed the key element underpinning the g factor was its breadth rather than its su-
perordination, where breadth represented the number of variables which defined a factor and
superordination referred to an order greater (“higher”) to that of another.

It will be noted here, however, that when Humphreys (1962) wrote that he preferred a hi-
erarchical model over a higher-order model, his preference was in fact not for a distinct
model, per se, but a transformation (or reparameterization) of the conventionally conceived
higher-order model. In fact, when Humphreys (1962) used the term ‘hierarchical model’ he
was referring to the Schmid-Leiman (1957) transformation, which is a procedure that is
completely dependent upon the higher-order model solution for its computations (see
Gignac, 2007a, for example). McDonald (1999) referred to a Schmid-Leiman transformed
solution as an ‘indirect hierarchical model’, which can be distinguished from a ‘direct hierar-
chical model’. There are two known approaches to estimating a direct hierarchical model
solution. The first method was developed within an unrestricted (“exploratory”) factor ana-
lytic framework by Holzinger and Swineford (1937) and is known as the ‘bi-factor method’.
The second approach to estimating a direct hierarchical model was developed within a re-
stricted (“CFA”) factor analytic framework and was first referred to as a ‘nested factor
model’ (Gustafsson and Balke, 1993).2

Although previous researchers such as Thurstone, Humphreys, and others have endorsed
particular approaches to estimating and/or interpreting multi-factor models/solutions, the
scientific value of these approaches may be questioned, as their preferences were not based
on any objective or statistical criteria. That is, because a higher-order model and an indirect
hierarchical model (i.e., Schmid-Leiman transformation) are simply alternative representa-
tions of the same model (Gignac, 2007a), it is impossible to choose one model over the
other, statistically. In contrast, a higher-order model (or indirect hierarchical model) and a
direct hierarchical model can be distinguished, statistically (Yung, Thissen, & McLeod,
1999). To help understand why this is the case, it may be beneficial to explain in more detail
(and non-technically) the distinctions between a higher-order model and a direct hierarchical
model.

Higher-order models and mediation

Yung, Thissen, and McLeod (1999) proved analytically that a higher-order model is a
model that implies full mediation. That is, a conventional higher-order model implies that the
association between a higher-order factor and the observed variables is mediated fully by the
lower-order factors. Model 1a (see Figure 1) depicts a typical higher-order model with a
second-order general factor and two first-order factors (VIQ and PIQ), each defined by four
observed variables. The mediational nature of higher-order models is perhaps more easily
recognized when displayed in a left to right format, rather than the top to bottom format
typically used to display higher-order models, graphically. From this perspective, Model la
specifies that the association between the latent g variable and the eight indicators is implied

% This assertion is made within the context of intelligence research. Technically, direct hierarchical models
have been used as far back as 1970 within the context of CFA multitrait-multimethod analyses (e.g., Werts
& Linn, 1970).
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Model 1a Model 1b

Model 2a Model 2b

Figure 1:
Comparable indirect (Models 1a & 1b) and direct (Models 2a & 2b) hierarchical models.

to be mediated fully by the intervening VIQ and PIQ latent variables. Model 1b is an alterna-
tive method of displaying the same higher-order model displayed as Model 1a. The differ-
ence is that the direct links between g and the observed variables have been included in the
model; however, they have been all constrained to zero. In mediation testing parlance, the
conventional higher-order models displayed as Model 1a and Model 1b imply that the direct
effects between the g factor and the observed variables are all equal to zero, within sampling
fluctuations. In contrast, the indirect effects between the g factor and the observed variables
mediated by the two lower-order factors are hypothesized to be greater than zero.
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In practice, only occasionally are the effects associated with a higher-order model de-
composed into their constituent indirect effects. Instead, researchers typically report the
effects between the second-order factor and the lower-order factors (i.e., second-order factor
loadings), as well as the effects associated with the lower-order factors and the observed
variables (i.e., first-order factor loadings). In the case where the indirect effects are calcu-
lated and reported, the analysis may be considered to be consistent with a Schmid-Leiman
transformation (Schmid &Leiman, 1957) of a higher-order model. As discussed above, some
researchers (e.g., Humphreys) have referred to such a transformation of a higher-order model
as a hierarchical model, while McDonald (1999) referred to the transformation as an ‘indi-
rect hierarchical model’.

Model 2a depicts the corresponding direct hierarchical model, which is evidently similar
to the conventionally conceived higher-order model depicted as Model la. That is, both
models depict the same nature and number of latent variables. The distinction between the
two models resides in the specification that only direct effects are estimated within the direct
hierarchical model. Thus, each observed variable is free to contribute variance directly to the
g factor, as well as contribute variance directly to the narrower group-factor a given ob-
served variable may be specified to load upon. For this reason, McDonald (1999) referred to
such a model as a ‘direct hierarchical model’. Gustafsson and Balke (1993) referred to the
same type of model as a ‘nested factor model’. For the purposes of this investigation, the
term “direct hierarchical model’ is preferred over the term ‘nested factor model.”* Within a
typical direct hierarchical model, factors can not justifiably be described as being of a par-
ticular or relative order (i.e., “higher” or “lower”). Instead, factors are distinguished based on
breadth, where factors defined by a larger number of observed variables are considered to
have more breadth than another factor defined by fewer observed variables. Model 2b is
effectively identical to Model 2a, with the exception that the regression paths between the
higher-order general factor and the two lower-order group-factors have been included. How-
ever, the regression coefficient estimates (i.e., factor loadings) associated with these regres-
sion paths have been constrained to zero.

Model 2b is an important graphical depiction of a direct hierarchical model, because it al-
lows for a clear and informative comparison with Model 1b, the corresponding higher-order
model. It can be observed that both Model 1b and Model 2b consist of the same nature and
number of latent variables, as well as the same nature and number of regression paths. The
only differences between Model 1b and Model 2b pertain to which parameter estimates are
freely estimated and which parameter estimates are constrained to zero. Further, because the
direct hierarchical model is less restrictive than the corresponding higher-order model, they
are not associated with the same number of degrees of freedom (Yung et al., 1999). Conse-
quently, an indirect hierarchical model (i.e., higher-order model) and a corresponding direct
hierarchical model can justifiably be considered to be nested within each other, which allows
for justifiable structural equation modeling chi-square difference testing (Yung et al., 1999).

The substantive implications of the statistical comparability of the higher-order model
and the direct hierarchical model are that preferences for conceptions of g as a higher-order

® The term “nested factors model’ is not ideal, given that the word ‘nested’ is also frequently used in the SEM
context of one model being nested within another, allowing for justifiable chi-square difference testing
(Bentler & Chou, 1988). A ‘nested factor model’ has been labelled as such because the narrower factors are
nested within a broader factor.
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super-ordinate factor versus a first-order breadth factor can be tested, statistically. Previ-
ously, researchers such as Thurston, Humphreys and others could only favour one model
over the other based on “non-scientific” preferences, such as ease of interpretation (an ad-
vantage that should nonetheless not be understated, Gignac, 2007a). However, the history of
confirmatory factor analytic intelligence research appears to have largely assumed that g is
best conceptualized as a super-ordinate factor. This assumption may be inaccurate and, con-
sequently, should be tested empirically with confirmatory factor analysis (CFA).

Past empirical research

Some empirical research has begun to emerge addressing this issue. Based on the MAB,
WAIS-R, and WAIS-III, Gignac (2005a; 2006a; 2006b;) has found some CFA evidence in
support of the direct hierarchical model as a superior fitting model, in comparison to a
higher-order model. However, intelligence batteries such as the MAB and the Wechsler
scales should probably not be considered comprehensive enough to represent all of the pri-
mary factors generally acknowledged to exist within the wide spectrum of cognitive abilities
(see Carroll, 1993). Consequently, it was considered valuable to potentially replicate the
effects on several other correlation matrices.

Specifically, the three correlation matrices within the Colom, Rebollo, Palacios, Juan-
Espinosa, & Kyllonen (2004) study, the correlation matrix within the Gustafsson (1984)
study, and the Holzinger and Swineford (1939) correlation matrix re-analysed by Gustafsson
(2001) were considered relevant for the purposes of re-analysis. The correlation matrices
within these three investigations were chosen for three primary reasons: (1) they have been
published in widely accessible sources; (2) they incorporate a relatively large array of cogni-
tive ability tests; and (3) the results associated with the higher-order modeling of these corre-
lation matrices have been interpreted to suggest isomorphic like associations between a
lower-order group factor and g. More specifically, Colom et al. reported WM higher-order
loadings of 1.04, .90 and .93 on a second-order g factor across all three samples, Gustafsson
(1984) reported a Gf loading of 1.04 on a third-order g factor, and, finally, Gustafsson
(2001) reported that a lower-order Gf factor had a unity loading on the g factor based on his
re-analysis of the Holzinger and Swineford (1939) data.

It should be noted that, based on a higher-order modelling re-analysis of the Colom et al.
and the Gustafsson (1984) correlation matrices, Gignac (2007b) suggested caution in the
interpretation of past CFA studies which have suggested isomorphic loadings between a
lower-order group factor and g, because he found that the reliabilities associated with the
corresponding latent variable composite scores were very low (resulting in substantial disat-
tenuation effects). Thus, further counter evidence against contentions that a lower-order
group-factor is isomorphic with g would be suggested in the event that a direct hierarchical
model were found to be more consistent with the data, as all of the group-factor associations
with g are constrained to zero within a conventional direct hierarchical model. Therefore, the
purpose of this investigation was not only to test the competing theories of superordinate g
versus breadth g, but also to examine the possibility that a superior fitting direct hierarchical
model would suggest that there may not be any associations between lower-order groups
factors and g within a properly specified, well-fitting CFA model, in contradistinction to the
evidence reported in Colom et al. (2004), Gustafsson (1984) and Gustafsson (2001).



Higher-order models versus direct hierarchical models: 27
g as superordinate or breadth factor?

Direct hierarchical models and the examination of the greatest indicators of g

Although the conventional direct hierarchical model constrains group-factor associations
with g to zero, it may nonetheless be of interest to determine which type of subtests are the
best indicators of g. However, an obvious limitation of the direct hierarchical model is that it
does not appear to offer any especially useful method of determining which type of indica-
tors are the best measures of g, because all of the factor loadings are based on individual
subtests. Consequently, a researcher is effectively left with an examination of the magnitude
of individual subtests or the calculation of mean subtest loadings based on theoretically
defensible subtest groupings (as performed by Gignac, 2006c, for example). For this reason,
direct hierarchical model solutions may be argued to offer little opportunity to take advan-
tage of the principle of aggregation (Rushton, Brainard, Pressley, 1983) in this respect.

However, there does exist a SEM technique that allows for both the modeling of a direct
hierarchical model, as well as the opportunity to take advantage of the principle of aggrega-
tion, simultaneously, for the purposes of evaluating the association between a group of indi-
cators and a latent variable such as a g factor. The procedure is based on modeling phantom
variables within a SEM framework (Rindskopf, 1984). Within the SEM context of this in-
vestigation, a phantom variable was considered to represent a composite variable (i.e.,
summed scores) from which implied correlations between other elements of a given model
(e.g., latent variables) could be estimated. Raykov (1997), Fan (2003), and Gignac (2007b)
have demonstrated the utility of SEM and phantom variables for the purposes of estimating
internal consistency reliability via the reliability index (i.e., the squared correlation between
observed scores and true scores). Thus, it would seem plausible to extend the utility of phan-
tom variables to the direct hierarchical modeling case, where the association between a
meaningful aggregation of scores (i.e., composite variable) and a latent g variable is of inter-
est, for the purposes of determining which type of subtests are the strongest correlates of g
(i.e., correlates that are not affected by the disattenuation effects observed within higher-
order modeling; see Gignac, 2007b, for a detailed discussion on this issue).

Method
Correlation matrices

All analyses were based on the three correlation matrices reported in Colom et al. (2004),
the single correlation matrix reported in Gustafsson (1984), and the single correlation matrix
reported in Holzinger and Swineford (1939). As reported in Colom et al., 12 cognitive ability
tests were administered to the first sample (N = 198) and 15 tests were administered to the
second (N = 203) and third samples (N = 193). For further details, see Colom et al. In the
case of Gustafsson (1984), the data were reported to be based on a sample of 981 sixth-grade
children. A total of 20 cognitive ability variables were included in the Gustafsson (1984)
correlation matrix. Further details can be found in Gustafsson (1984). Finally, the Holzinger
and Swineford (1939) correlation matrix (which was re-analysed by Gustafsson, 2001) was
based on 301 elementary school children (7" and 8" grades) and 24 cognitive ability sub-
tests. Further details can be found in Holzinger and Swineford (1939).
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Data analytic strategy

The first stage of the analyses consisted of testing and evaluating the model-fit associated
with the higher-order models endorsed by Colom et al. (2004), Gustafsson (1984) and
Gustafsson (2001). The sample one higher-order model for the Colom et al. data is depicted
in Figure 2 (Model 1). It can be observed that there was one second-order factor (g) and four
first-order factors defined by three indicators each. With respect to samples two and three of
the Colom et al. data, the higher-order models were modeled very similarly to the sample
one higher-order model, with the exception that an additional three observed variables were
included in the model to form an additional first-order factor (i.e., Gs). The higher-order
model tested on the Gustafsson (1984) data consisted of one first-order g factor and three
first-order factors that corresponded to Gv, Gf, and Gc*. Further, correlated residuals were
added between the indicators derived from the same subtests to account for the relatively
large amount of variance expected to be shared by indicators derived from the same subtest
(see Figure 2, Model 3, for a graphical depiction of the Gustafsson (1984) higher-order
model). Finally, a higher-order model which corresponded to five first-order factors (Gv, Gc,
Gs, Gy, and Gf) and one second-order g factor was tested based on the Holzinger and Swine-
ford (1939) data, in accordance with the model tested by Gustafsson (2001). For the pur-
poses of scaling/identification, one factor loading from each first-order factor was fixed to
1.0. Further, the higher-order g factor variance was also fixed to 1.0.

Next, the higher-order model solutions were transformed via the Schmid-Leiman proce-
dure for the purposes of yielding indirect hierarchical model solutions. As argued by Hum-
phreys (1962) and Gignac (2007a), higher-order model solutions should be Schmid-Leiman
(1957) transformed into indirect hierarchical model solutions for the purposes of interpreta-
tion.

The next subset of analyses consisted of testing the corresponding direct hierarchical
models. For the Colom et al. sample one data, the direct hierarchical model consisted of one
first-order g factor defined by all 12 subtests and four nested orthogonal first-order factors,
corresponding to WM, PS, Gc, and GeGf (see Figure 2, Model 2). The sample two and three
direct hierarchical models were specified similarly, with the exception of the addition of a Gs
factor defined by an additional three indicators. The Gustafsson (1984) direct hierarchical
model consisted of one first-order g factor and three nested group-level factors, correspond-
ing to Gv, Gf, and Gc. Further, correlated residuals were added between the indicators de-
rived from the same subtests (see Figure 2, Model 4). Finally, the direct hierarchical factor
model tested on the Holzinger and Swineford (1939) data consisted of one first-order g fac-
tor and five nested, group-level factors (see Figure 3, Model 2). For the purposes of scal-
ing/identification, the latent variable variances were constrained to 1.0.

In accordance with Hu and Bentler (1999), a combination approach was used to evaluate
model-fit. In this investigation, one absolute close-fit index (SRMR) and two incremental
close-fit indices were evaluated (TLI and CFI). Also in accordance with Hu and Bentler
(1999), models were evaluated as well-fitting when the SRMR was approximately equal to

* The higher-order model that was tested in this investigation on the Gustafsson (1984) data had only two-
orders, rather than the three tested in Gustafsson (1984), for the same reasons that were delineated in Gignac
(2007b).
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or less than .06 and the incremental fit indices (TLI and CFI) were approximately .95 or
larger. The normalized residual covariance matrices were also examined for indications of
model misfit (i.e., values conspicuously larger than |2.0]).

Model fit comparisons between the higher-order models and the direct hierarchical mod-
els were based on two approaches. First, the well-known chi-square difference test was used
(Steiger, Shapiro, & Browne, 1985). However, this method may be regarded as excessively
powerful, in the same way that the chi-square test of the implied model has been criticized as
excessively powerful (e.g., Bentler, 1990). Consequently, a practical significance test was
also applied, which was based on the observation of a TLI difference of .010 or more be-
tween two competing models (as suggested by Gignac, 2007a). Thus, for example, if model
A were associated with a TLI of .940 and model B were associated with a TLI of .950,
model B would be considered practically better fitting than model A. Comparisons between
TLI values was considered appropriate, because the TLI incorporates a penalty for model
complexity (Marsh, Balla, & Hau, 1996). A penalty for model complexity was considered
important in this investigation, as all of the direct hierarchical models were associated with
fewer degrees of freedom (i.e., larger number of freely estimated parameters) in comparison
to the corresponding indirect hierarchical models (i.e., higher-order models). All model
solutions were estimated via maximum likelihood estimation (AMOS 5.0).

Finally, in order to take advantage of the principle of aggregation, the direct hierarchical
models included phantom variables defined by the respective subtests which corresponded to
the hypothesized group-factors (each phantom variable was identified by unit weighted
constraints from each indicator; i.e., each regression path was constrained to 1.0; see Gignac,
2007b, for further details on modeling phantom variables). Thus, the association between the
composites (i.e., phantom variables) and the first-order g factor could be estimated via their
respective implied correlations. This procedure is predicated upon the same SEM technique
employed by Fan (2003), Raykov (1997) and Gignac (2007b), where phantom modeling was
used for the purposes of estimating the reliability index via the implied correlation between a
phantom composite variable and its corresponding latent variable (see Fan, 2003, for a non-
technical discussion of phantom variable modeling with AMOS). Conceptually, the implied
correlation between a phantom composite and a latent g variable may be viewed in a similar
manner to the correlation between summed composite scores and g factor scores. Note that
in order to obtain the appropriate standardized implied correlations, it was necessary to spec-
ify all observed variable variances to 1.0 within the SPSS correlation matrix.

Results
Hypothesized higher-order models versus direct hierarchical models

For the purposes of simplicity and clarity, the fit statistics and close-fit indexes associ-
ated with the higher-order models and the direct hierarchical models are all reported in Table
1. It can be observed that only one of the higher-order models (i.e., Gustaf. 1984) was asso-
ciated with acceptable levels of model close-fit. In comparison, two of the direct hierarchical
models were associated with acceptable levels of model close-fit (i.e., Gustaf. 1984 and
Colom S2). More importantly, however, four out of five of the direct hierarchical models
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were both statistically (p <.05) and practically (ATLI >.01) better fitting than the competing
higher-order models (the exception was Colom S1). Thus, there was more support for a
breadth conceptualization of g, in comparison to a superordinate conceptualization of g. The
factor solutions associated with the indirect hierarchical models (i.e., Schmid-Leiman trans-
formations of the higher-order models) and the direct hierarchical models are reported in
Tables 2-5. It can be observed that many of the nested factors within the direct hierarchical
factor models were seriously ill-defined, which would not have been completely anticipated
by the indirect hierarchical model solutions.

Modified direct hierarchical models and phantom correlations with g

Prior to estimating the phantom correlations with g, it was considered necessary to first
obtain an acceptably well-fitting direct hierarchical model for each sample of data. That is,
some inter-subtest covariance that is not accounted for by the model might be expected to
alter somewhat the estimation of g, in the same context that the observation of correlated
error terms is known to affect the accurate estimation of internal consistency reliability (see
Gignac, Bates, & Lang, 2007, for an accessible discussion of this issue). To this effect, sev-
eral nested factors were removed from the previously tested direct hierarchical models, be-
cause they were seriously ill-defined (see Tables 3-5). Further, one or two correlated residu-
als were added to each model and/or one or two subtests were allowed to cross-load onto a
nested factor. All of the modification details and close-fit index values are reported in the
Notes below each respective Table.

As can be seen in Table 7, with respect to the Colom et al. data, the WM and GvGf phan-
tom composites were effectively both the most substantial correlates with g (i.e., mean phan-
tom 7 = .63 vs. 62). In contrast, with respect to ‘Gustaf. 1984°, the numerically largest corre-
late with g was Gc at .77. Finally, with respect to ‘Gustaf. 2001’ (i.e., the Holzinger and
Swineford, 1939 data), the numerically largest correlate with g was Gf at .89.

Discussion

Across two of three samples of the Colom et al. (2001) data, the Gustafsson (1984) data,
and the Holzinger and Swineford (1939) data, the competing direct hierarchical models were
both statistically better fitting, as well as practically better fitting, in comparison to the corre-
sponding higher-order models. Thus, there was some empirical support for a breadth concep-
tualization of g, rather than a superordinate conceptualization of g. Further, the phantom
correlations derived from the direct hierarchical models did not offer a consistent support for
either the WM subtests or the Gf subtests as the clearly strongest correlates of g.

With the exception of the sample one data from Colom et al., the CFA results clearly and
consistently favoured a breadth conceptualization of g rather than a superordinate conceptu-
alization. These results should be viewed as suggestive rather than conclusive, given the fact
that a number of the samples were based on children, and that none of the batteries of sub-
tests would be considered ideal for yielding conclusive evidence relevant to the g factor. It is
nonetheless hoped that researchers will increasingly test the possibility that a direct hierar-
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Table 6:
Re-analysis of Colom et al. (2004): Maximum likelihood completely standardized factor loadings
associated with the modified direct hierarchical factor model solutions

Sample 1 Sample 2 Sample 3
Subtest g PS Subtest g PS Gs g PS Gec Gf Gs
Cou S .39 Cou 22 .66
Sen 37 Sen .58 .62
LF 31 LF 51 .40
Rec 25 .58 Rec 31 .64 S155
Vow 22 .65 Vow 28 .66 560 33
O-E 41 .63 O-E 42 47 55 44
PMA .37 R4 .50 .38 37 .38
DAT .53 V4 .35 .16 .66
Mon .53 V5 32 23 .61
Iden 51 vZ3 .58 29 75
Surf .69 S1 45 23 40
Rav .66 I3 48 25 32 45
P1 .29 49 .30 47
P2 .20 .58 31 74
P3 .36 .59 A5 40

Note. See Table 1 for full subtest names; modifications to the originally specified direct hierarchical models
included the following: Sample 1: removal of the nested WM, Gc, and GvGf factors, the addition of a
covariance term between the PMA and DAT subtest residuals, and allowing the Counter Task to load onto the
nested PS factor, which resulted in X2(49, N=198) =78.92, p =.004, and CFI = .938, TLI = .917, RMSEA =
.056 and SRMR = .052. Although the incremental close-fit indices were only marginally well-fitting, there
were no standardized residual covariances larger than [2.0]; Sample 2: removal of the nested WM, Ge, and
GvGf factors, the addition of a covariance term between Adv. Vocab. and Vocab. residuals, which resulted in
X2(83, N =203) = 108.13, p < .01, and CFI = .947, TLI = .933, RMSEA = .039, SRMR = .057; Sample 3:
removal of the nested WM factor, the allowance of Arithmetic subtest to load onto the nested Gf factor and
the Figure Classification subtest to load onto the nested Ge factor, which resulted in y*(76, N = 193) = 96.34,
p =.06, and CFI =.963, TLI = .948, RMSEA = .039, and SRMR = .058.

chical model will more appropriately fit their data, rather than simply assume the plausibility
of a higher-order model.

The results of this investigation may appear surprising in light of the simulation results
by Mulaik and Quartetti (1997), which suggested that empirical preference for either a
higher-order g or a first-order g factor would likely be difficult to establish in practice, be-
cause of the very substantial amounts of power required to detect any differences statistically
significantly. However, in Chen, West, and Sousa’s (2006) investigation, power levels in
excess of .99 were estimated for direct hierarchical versus higher-order model comparisons
based on a sample size of 403, which is not particularly large. Thus, the results of this inves-
tigation, which were based on sample sizes ranging from 198 to 981, support further the
argument that a lack of power should not be viewed as a problem in this area.
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Table 7:
Summary of implied correlations between phantom composites and direct hierarchical model
estimates of g

WM  PS Gce GvGf  Gs

Colom S1 .61 .36 .65 .81 --
ColomS2 .52 .40 .55 .67 .35
Colom S3 75 .67 .34 .37 .34
} .63 48 51 .62 .35

Gv Gf Gce
Gustaf. 1984 .70 .55 77

Gv Ge Gs Gy Gf
Gustaf. 2001 .63 .65 49 .53 .89

It will be noted that some researchers have argued that indirect hierarchical model solutions
(i.e., Schmid-Leiman transformations) and direct hierarchical model solutions are more
difficult to interpret, in comparison to higher-order model solutions (e.g., Bagby, Taylor,
Quilty, & Parker, 2007; Schulze, 2005). In particular, Schulze (2005) claimed that the nar-
row factors within the direct and indirect hierarchical model solutions are “partialled factors”
(i.e., the g factor has been partialled out), which complicates their interpretation for a number
of reasons. Curiously, it is precisely the “partialling out” that takes place in the indirect and
direct hierarchical model solutions that makes them attractive to this author and others (e.g.,
Chen, West, & Sousa, 2006). In perhaps the simplest terms, the traditional higher-order
model solution is difficult to interpret because the first-order factor loadings represent two
sources of reliable variance: (1) that which defines the higher-order general factor, and (2)
that which defines the residual or disturbance term associated with the first-order factor.
Consequently, the magnitude or pattern of the first-order factor loadings can not be inter-
preted clearly, in contrast to indirect hierarchical model solution and the direct hierarchical
model solution.

If preferences for the direct hierarchical model can not be determined categorically based
on the issue of interpretation, it should probably be acknowledged that the traditional higher-
order model does not offer much practical opportunity to investigate the associations be-
tween narrow group-factors and an external criterion, independently of g. For example,
Gignac (2005b) was interested in determining whether the personality dimension Openness
to Experience was correlated with intelligence because of the g factor or because of Ge (in-
dependently of g). Such hypotheses may be argued to be more clearly tested with the direct
hierarchical model, particularly in light of the identification problems that arise when linking
a regression path from a first-order factor disturbance term (which may be regarded as Gc
independently of g in this context) and an external criterion. The utility of the direct hierar-
chical model for the purposes of predicting external criteria has also been argued by Chen,
West, & Sousa (2006).
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Some may argue that the higher-order model is simpler than the direct hierarchical
model, and, consequently, should be preferred on that basis, all other things being equal.
However, there may be a counter-argument to this contention. Consider that a higher-order
modeling conceptualization of intelligence implies that all of the common variance between
subtests from different group-level factors (i.e., factors narrower than g) within a model is
due solely to the association between the narrow group-factors (i.e., full mediation). Theo-
retically, on what basis may one defend the implication of full mediation implied by the
higher-order model? From this perspective, the direct hierarchical model may be considered
simpler than the higher-order model, despite the fact that it is associated with fewer degrees
of freedom, because it does not require a theoretical justification for full mediation.

Support for the direct hierarchical model of intelligence may also be viewed as consistent
with the developmental differentiation hypothesis proposed by Garrett (1946), which con-
tends that individual differences in intelligence in children are determined by the general
factor, exclusively. During the course of development, various groups of abilities begin to
differentiate themselves from g, resulting in a reduction in the dominance of the g factor and
the emergence of group-factors. In light of Garret’s (1946) developmental differentiation
hypothesis, a higher-order conceptualization of intelligence in adults would imply that the
nature of g changes over time such that the effects of g on the association between individual
subtests disappears, and is replaced by a g factor that is defined exclusively by the inter-
correlations between group-factors. It is argued, here, that the law of parsimony would fa-
vour a developmental theory of intelligence consistent with a g factor model that does not
change its factor definition over time. Stated simply, on what theoretical basis should the
nature of g be described as consistent with a change from direct effects to indirect effects?

Note that a direct hierarchical model does not preclude correlations between group-
factors. It is possible to model covariance links between nested factors within a direct hierar-
chical model (e.g., Gignac, 2006a). In this investigation, however, there were no indications
that any of the nested group-factors should be correlated. Further, it is also possible to model
‘hybrid models’ which incorporate both direct and indirect effects between the indicators and
a higher-order general factor (Yung et al., 1999), although the theoretical implications of
such a model remain to be established. In fact, it would be expected that there are several
models which could have been demonstrated to be associated with acceptable levels of
model fit based on the Colom et al. (2004), Gustafsson (1984) and Holzinger and Swineford
(1939) data that were not tested in this investigation (see Tomarken & Waller, 2003, for a
discussion of the problem of equivalent and non-equivalent models).

Based on the phantom variable modeling strategy, the modified direct hierarchical mod-
els of the Colom et al. data suggested that both the WM and GvGf phantom composites
were associated with the g factor to effectively the same degree (i.e., .63 vs. .62). With re-
spect to the Gustafsson’s data, the phantom composite most greatly associated with g was Ge
at .77. Finally, with respect to the Holzinger and Swineford (1939) data, Gf was associated
with the strongest correlation (.89) with g. Thus, the implied correlations between the corre-
sponding group-factor composites (i.e., phantom variables) and g did not suggest any clear
subtest grouping as the strongest correlate of g. These results suggest that there is no firm
evidence for a single determinant of g; instead, g appears to be a complex construct defined
by multiple determinants, the nature of which may vary somewhat from sample to sample
(and subtest battery to subtest battery), resulting in the observation of different greatest indi-
cators of g.
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Another consideration in the evaluation of factor model solutions within the context of
the greatest indicator of g debate relates to the fact that not all subtests included in a battery
would be expected to contain the same number of items and/or the same number of items
representing the same spectrum of item difficulty. For instance, both Vocabulary (Wechsler
scales) and Raven’s Progressive Matrices are often found to be the highest loading subtest on
a general factor of intelligence (Jensen, 1998). While theories of intelligence may be devel-
oped to account for this phenomenon, a simpler possible explanation relates to the fact that
both Vocabulary and Raven’s contain a relatively large number of, arguably, high quality
items, covering a wide spectrum of item difficulty, in comparison to other subtests often
included in a battery of cognitive ability tests (e.g., Picture Completion and Picture Ar-
rangement). This fact raises the question as to whether meaningful comparisons can be made
between subtests g loadings (or lower-order group factor loadings), even in the case where
the loadings have been disattenuated for imperfect reliability. Ultimately, although correc-
tions can be made for differences in subtest score reliability, there do not appear to be any
established corrections that can be made for differences in subtest validity. Ideally, a defen-
sible and valid factor analysis would be based on scores derived from a battery of subtests
that represent the same level of validity as an indicator of that narrow element of cognitive
ability. Only then would fully meaningful comparisons between factor loadings be possible
(or phantom composite correlations). This issue would be expected to require a substantial
amount of item level psychometric research to overcome in practice, and, consequently, it is
somewhat doubtful that convincing empirical evidence will emerge, in the near future, to
indicate which narrow type of cognitive ability factor (or subtest) is the greatest indicator of
g. In the event that such an ideal set of data were to emerge, it is recommended that this
investigation include analyses relevant to the higher-order model solution, the indirect hier-
archical model solution, and the direct hierarchical model solution.
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