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On the relationship between the retrieval of 
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deep processing 
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Abstract 

This study investigates the relationship between learning and the retrieval of information. In partic-
ular, the influence of deep learning in contrast to shallow learning on this relationship is considered. 
A sample of 183 university students completed a retrieval task (Posner’s Task) as well as tasks 
tapping associative and complex learning. All tasks were designed to include several treatment 
levels that enable the separation of the effects of retrieval and learning processes respectively from 
the effects of auxiliary processes, as for example, perceptual and motor processes that are necessary 
for completing a task. Results showed that there were substantial relationships between retrieval 
and complex learning (r = .56) and also associative learning (r = .34). The relationship due to 
complex learning showing characteristics of deep learning proved to be substantially larger than the 
relationship attributed to shallow learning.     
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This paper focuses on the relationship between the retrieval and the storage of infor-
mation in the knowledge base through two types of learning. Since the retrieval of in-
formation seems to reverse the processes employed in the storage of information, expect-
ing a close relationship between the two seems to be reasonable. Furthermore, the obser-
vation that both learning and retrieval processes contribute to intelligence also suggests 
that there may be common ground (Kaufman, DeYoung, Gray, Brown, & Mackintosh, 
2009; Liesefeld, Hoffmann, & Wentura, 2016; “Wang, Ren, & Schweizer, 2016; Wil-
liams & Pearlberg, 2006). However, it is not the learning and retrieval of the same piece 
of information that is in the focus of this study. Instead it is the efficiency of retrieval and 
use of information stored a long time ago and its relationship to the ability of storing 
information in general that is of interest. This general case differs from the specific and 
immediate one in that it implies the possibility of modifications of the knowledge base 
containing the stored information. It is conceiveable that the integration of new infor-
mation into the knowledge base impairs the access to older information or that uncon-
scious background processes may bring about a reorganization of the internal structure of 
the knowledge base (Dudai, 2004) that makes it difficult to access the older information. 
In the long run these modifications may lead to the gradual disappearance of an original-
ly close relationship. The current study therefore aims to shed light on the question of 
how learning relates to the retrieval of information. 

On the efficiency of retrieving information 

Retrieving information stored in the knowledge base is one of the most important ele-
ments of higher mental processing (Mogle, Lovett, Stawski, & Sliwinski, 2008; Un-
sworth & Engle, 2007; Unsworth, 2010). Items of information originating from various 
external sources and from the knowledge base are related to each other in pursuing a 
variety of complex goals. Most higher-mental processing is complex in that it requires 
the use of information stored in the knowledge base as either input for processing or as a 
tool for transforming other information. For example, retrieved information such as 
previous experiences or knowledge of general rules provides the basis for addressing 
problems in intelligence tests (Mogle et al., 2008; Unsworth, 2010). 

One cognitive test that has established itself as a standard measure of the efficiency in 
retrieving information is Posner’s Task (e.g., Altmeyer, Schweizer, Reiss, Ren, & 
Schreiner, 2013; Posner, Boies, Eichelman, & Taylor, 1969; Posner & Mitchell, 1967). 
This task requires a participant to compare two stimuli stored in the knowledge base. 
Such a comparison has to occur on one of three different levels of processing. Generally, 
simple stimuli such as letters or digits are used in this Task. Therefore, the demands 
during testing are quite low, and errors are usually rare so that processing speed is fre-
quently employed as performance measure. Posner’s Task was included in many studies 
that investigated the speed-ability relationship (e.g., Altmeyer, Schreiner, & Schweizer, 
2009; Sheppard & Vernon, 2008).      

The first level of processing of Posner’s Task (i.e., physical identity level) focuses on the 
physical features of the stimuli and does not require the retrieval of information from the 
knowledge base. In the second level the comparison focuses on the primary meaning of 



On the relationship between the retrieval of information and learning 345

the stimuli (i.e., name identity level) so that information regarding the primary meaning 
needs to be retrieved. The third level requires the comparison of the stimuli with respect 
to a specific property (i.e., categorical identity level); it is considered as secondary mean-
ing that means deep search in the knowledge base compared to the second level. A recent 
investigation of the structure of data collected by means of this task confirms that the 
three levels reflect different ways of cognitive processing (Schweizer, Altmeyer, 
Rammsayer, & Troche, 2016). 

On the storage of information via learning 

As already indicated, the successful retrieval of information depends on how it is stored 
into the knowledge base. Therefore, this section discusses the aspects of the storage of 
information that are pivotal for the research work reported in the empirical sections of 
this paper. According to Hunt’s library-metaphor (1978), like a library that hosts a large 
amount of books, the knowledge base comprises many items of information. In both 
cases the fast access to the item of interest, may it be a specific book or a specific piece 
of information, depends on an efficient storing system that includes additional infor-
mation concerning the location of specific contents. 

This analogy illustrates that storing information in the knowledge base requires not only 
the transfer of information, but also the appropriate allocation of information within this 
base. Active integration is necessary in order to arrive at the most appropriate allocation; 
it means “deep learning” as opposed to “shallow learning” (Struyven, Dochy, Janssens, 
& Gielen, 2006). Deep learning requires a person to actively comprehend new infor-
mation, analyse it and allocate it close to related items of information (Bereiter & Scar-
damalia, 1989). The newly stored information is allocated well if it shows links to virtu-
ally all other items of information representing related contents. This kind of intensive 
integration of new information into the knowledge base referred to as knowledge elabo-
ration (Kalyuga, 2009) is normally achieved in a time-consuming process. It characteriz-
es complex learning that includes the construction of a mental representation as an in-
termediate step in the transfer of information to the knowledge base.  

A similar line of thought characterizes Craik and Lockhart’s (1972) levels-of-processing 
model. It also highlights the relationship of the accessibility of information stored in the 
knowledge base and the depth of mental processing while storing information. “Deep” 
mental processing is assumed to result in more elaborate and longer lasting memory 
traces than “shallow” processing (Rose & Craik, 2012; Rose, Myerson, Roediger III, & 
Hale, 2010). The evidence supporting this assumption is based on a task asking partici-
pants to process words based on their visual, phonological, or semantic characteristics. 
The results suggest that semantic processing during learning yields a better long-term 
retention than processing that focuses on visual and phonological aspects of the words 
(Rose et al., 2010). Furthermore, it needs to be added that there is also evidence suggest-
ing that additional imagery improves performance based on semantic processing (Oliver, 
Bays, & Zabrucky, 2016). It has to be mentioned, that there is also evidence in the litera-
ture saying that the additional material poses some additional workload and might dis-
tract the learner (Mayer, 2014). However, in this approach it is argued that the identifica-
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tion and elaboration of semantic contents that characterize deep processing create links 
for embedding new information into an already available knowledge base. As a conse-
quence, information subjected to deep processing is accessible and retrievable in many 
different ways, whereas only a few connections are available for accessing information 
stored via shallow processing. 

Associative and complex learning 

The aforementioned two approaches that describe the storage of information in the 
knowledge base can be linked to two specific types of learning: associative and complex 
learning. The distinction of associative and complex is in line with the distinction be-
tween simple and complex learning which characterizes different types of basic infor-
mation processing and has been highlighted in past research on information processing 
(e.g., Schweizer, 1998; Stankov, 2000). A main characteristic of the distinction between 
the two is the degree of complexity, which is also a main issue in the storage of infor-
mation in knowledge base (Sweller, 2003, 2005). The lowest degree of complexity in 
learning is the establishment of an association between two knowledge units. 

The term complex learning has been referred to as the integration of knowledge, the 
acquisition skills and attitudes, and the demands for the coordination of skills in the 
transfer of what has been learnt from new situations (Kirschner & van Merriënboer, 
2008). A major characteristic of complex learning is the special preparation of infor-
mation for the transfer to the knowledge base that requires contributions of working 
memory (Ren et al., 2014). It can be compared to the early steps of the model of skill 
acquisition by Anderson et al. (1997). Although this model reflects the computer meta-
phor of mental information processing, it also suggests that the processing of complex 
information implies additional elaborations on the essentials of the contents. This type of 
learning is likely to lead to an especially elaborate representation and the establishment 
of robust links between different pieces of information.  

In contrast, associative learning is usually defined as the establishment of a new associa-
tion between at least two items of information. This means the straightforward transfer of 
information to the knowledge base without further elaboration (Kaufman et al., 2009; 
Tamez, Myerson, & Hale, 2012; Williams & Pearlberg, 2006). As a result of this way of 
establishing information, there is a new item of information that is linked to a few other 
items of information. However, this does not include an elaboration process when inte-
grating the new information into the knowledge base. Instead the strength of the link to 
some degree seems to depend on instances of attentive retrieval (Dudukovic, DuBrow, & 
Wagner, 2009). In sum, complex learning shows some similarity with deep processing 
whereas associative learning does not.  

On the purification of latent representations by modeling 

This section describes and justifies the modeling approach selected for the research work 
in order to achieve an especially purified representation of the concepts of interest: cog-
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nitive measures usually stimulate auxiliary processes besides the cognitive processes of 
interest. For example, a reaction time task for measuring speed in list searching is not 
only determined by the intake and analysis of information but also by a motor response. 
This means that the motor response contributes to processing time. This additional pro-
cess is no problem in an experiment that compares the processing times observed in 
completing, for example, three- and six-item lists because in each case there is the same 
contribution to processing time. In contrast, if correlations are computed and investigat-
ed, the additional contribution matters. It can lead to an increase or a decrease of the 
correlation with another score because of this additional contribution that means system-
atic error; alternatively it is addressed as impurity in measurement (Miyake, et al., 2000; 
Schweizer, 2007; Van Zomeren and Brouwer (1994).     

The combination of experimental manipulation and fixed-links modeling of the experi-
mental effect enables purification in the sense of the separation of systematic error from 
the contributions of cognitive processes of interest (Schweizer, 2006, 2008). This ap-
proach requires that the assumptions regarding the processes of interest and the auxiliary 
processes are transformed into constraints that replace the factor loadings. In confirmato-
ry factor analysis theses constraints are associated with different latent variables and 
cause the decomposition of the true variance into variance due to the processes of inter-
est and due to auxiliary processes. As a consequence of the decomposition, a purified 
latent variable is available that can, for example, be used for the investigation of con-
struct validity.    

The current study 

The main objective of the current study is to investigate the relationship between the 
storage and retrieval of information. Since the research interest is on the general proper-
ties of the storage and retrieval of information, the contents to be stored and retrieved 
may differ from each other and even a temporal distance may separate the storage and 
retrieval of the considered information. Because of the assumed long-term dynamics 
regarding the structure of the knowledge base a small to medium relationship is ex-
pected. Furthermore, dependency on the type of learning is hypothesized to characterize 
the relationship. A stronger relationship with retrieval is expected for complex learning 
than for associative learning since the two types of learning are characterized by different 
degrees of elaboration when information is transferred into the knowledge base.   

Method 

Participants 

The sample comprised 183 university students (62 males) aged between 18 and 45 years 
of age (mean age = 23.90; SD = 4.96). They were either paid or received course credit 
for participating. 
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Experimental tasks 

Since all participants were either of German nationality or spoke German fluently, all 
test materials and instructions were in German.  

Posner’s Task. Posner’s Task (Posner & Mitchell, 1967) was used to capture the effi-
ciency of retrieval of information from the knowledge base. We employed the original 
version of the task that includes three treatment levels. In the first treatment level (physi-
cal identity) participants were asked to judge whether two letters were physically the 
same (e.g., ‘A A’), whereas the second treatment level (name identity) demanded a deci-
sion on whether the two letters were semantically the same (e.g. ‘A a’). In the third 
treatment level (categorical identity) the participants had to decide whether the letters 
possessed categorical equality (either vowels or consonants). The letters were presented 
on the computer screen and participants were asked to respond as quickly and accurately 
as possible. Response time was automatically recorded for each trial. 

After completing 10 practice trials, each participant completed 60 trials, evenly distribut-
ed over the three treatment levels by being arranged in six blocks (two for each level) of 
ten trials each. The order of the blocks was: Level 1, Level 2, Level 3, Level 1, Level 2, 
Level 3. This order was meant to minimize possible position effects while avoiding too 
many changes between different levels.  After each block the participant was informed 
that a new block was next, which level it belonged to and what the requirements were. 
The participants were then able to start the next block by clicking a button whenever they 
were ready. The average response time was computed for each treatment level by aver-
aging the measurements of the correctly answered trials. Incorrectly answered trials were 
omitted because a false response may be due to incorrect cognitive processing, which 
would make a correct estimation of the response time impossible. There were about 2% 
of incorrectly answered trials.  

Complex learning task. This task was employed to assess complex learning as the ac-
quisition of rules from examples (Schweizer & Koch, 2002). The stimuli consisted of 32 
arrays of symbols. Each array included multiple “o” and “+” symbols that were com-
posed to follow one of five rules. The 32 arrays were grouped into five sets each associ-
ated with a particular rule. Two sets implied the application of a simple rule (sets G and 
H), and included four arrays each consisting of three symbols. They were considered as 
the first treatment level.  

 
O O  O 

O +  + 

+ O  O 

+ +  + 

Figure 1:  
Example from the complex learning task for a set representing a simple rule 
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The participants were informed that the rule always defined the “relationship” between 
the last symbol of the array and the other symbols. The arrays of the example in Figure 1 
follow the rule that the last symbol of an array is always identical with the second to last 
symbol.  The other three sets that constituted the second treatment level followed the 
same principle but represented more complex rules (sets J, K and L). Each set included 
eight arrays of four symbols. 

A detailed on-screen instruction informed participants that there would be a test after-
wards and that this test would require them to reproduce the last symbol of each array 
when presented with the other symbols. They were also informed that the identification 
of the rule would facilitate learning considerably. The learning of each set was started by 
pressing the key of a letter marking a specific rule (G, H, J, K, and L), and one of the 
arrays associated with the rule appeared on the screen. There was only one array present-
ed on the screen at one time so that direct comparisons among different arrays associated 
with one rule were prevented. Participants could go up and down for inspecting the dif-
ferent arrays within a set by pressing the “up” or “down” keys. This way they could find 
information for developing hypotheses and checking hypotheses by proceeding to other 
arrays within a block. They were not allowed to take notes. 

Participants had 10 min to inspect the arrays characterizing the rules on the screen of a 
personal computer and to memorize them. In the testing phase the participants had to 
process an answer sheet. There were five blocks, each including four arrays of symbols 
and rules (G, H, J, K, and L) assigned to these blocks. The arrays used were not part of 
the training material. In each case the last symbol of an array was missing, and the par-
ticipants were asked to determine what the last symbol should be according to this rule. 
No time limit was imposed on the responses. Responses to each array were recorded as 
binary data. Besides a total score, a score was computed for each one of the five blocks. 

Associative learning task. This task aimed at the assessment of the simple transfer of 
information to the knowledge base (Schweizer & Koch, 2002). Unlike in the complex 
learning task it was not necessary to analyze the information and to derive rules before 
transferring the outcome. This task consisted of a list of 20 names and definitions of what 
they mean. The names were made up and did not exist in the German language. They did 
however include familiar German syllables. Each name consisted of six or seven letters. 
The definition identified the names as something merging two existing concepts. For ex-
ample, the word ORKINOL stood for a combination of salad oil and liqueur.  

The task started with the learning phase, in which the participants were presented with the 
20 names and their definitions on a computer screen. The names were presented individual-
ly together with the corresponding definitions, and the participants could skip from one 
name to the next one by using the “up” and “down” arrows. They had five minutes to 
memorize as many of the name-definition combinations as possible. Five minutes after the 
learning phase, participants were presented with a piece of paper with the same 20 names 
and definitions. In some cases, however, the definitions were switched between names. 
This provision resulted in some names being paired with their original and correct defini-
tions, while other names were now linked to incorrect definitions. None of the names or 
definitions was used twice so that there were no special relationships among any items. The 
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correct and incorrect combinations were arranged randomly.  Participants were asked to 
decide for each pair, whether the name was matched with its correct definition or not. The 
responses were recorded as binary data. A total score of correct answers was computed and 
used for data description. Four subscores were additionally computed by splitting the items 
into 4 blocks (Items 1-5, 6-10, 11-15, 16-20)  in order to reduce the otherwise large number 
of indicators in confirmatory factor analysis. Only these subscores obtained for the blocks 
were used as part of the confirmatory factor model.   

Statistical analysis 

Structural equation models were constructed to investigate the relationship between the 
speed of retrieval of information and the performance in reproducing the stored infor-
mation. The construction of the models was theory-driven. In some cases the characteristics 
of the data required an additional adaptation. These models were complex models combin-
ing two different models of measurement; one of them was even a twofold model.  

The model of measurement associated with Posner’s Task was an extended version of 
the fixed-links factor model (Schweizer, 2006a, 2006b, 2008) proposed for Posner’s 
Task taken from another study (Altmeyer et al., 2013). There were three manifest varia-
bles associated with the three treatment levels and two latent variables reflecting the core 
cognitive processes (i.e., retrieval processes) and auxiliary processes (e.g., motor pro-
cesses). Following Altmeyer et al. (2013) the loadings on the latent variable reflecting 
auxiliary processes were constrained to 1 while the loadings on the latent variable repre-
senting core processes to 0, 1 and 4 for the levels 1, 2, and 3 in corresponding order. 

Since the expectations regarding complex and associative learning were less clear than 
the ones regarding Posner’s Task, an extended bifactor model (Canivez, 2016) served as 
the twofold model of measurement for representing complex and associative learning. 
The bifactor model enables to have double factor loadings of manifest variables on latent 
variables without constraining these factor loadings. It was a twofold model of measure-
ment for the two learning tasks since each of them included several different treatment 
levels that could provide the basis for distinguishing between core and auxiliary process-
es. This model of measurement included three latent variables and nine manifest varia-
bles. One of them represented the auxiliary processes of learning (e.g., perceptual and 
motor processes that are necessary for completing the task but are not genuine learning) 
and the other two reflected the core processes of complex learning and of associative 
learning respectively. All manifest variables of the two learning tasks loaded on the 
latent variable denoted as “Associative / complex learning auxiliary processes”. Three of 
the five manifest variables associated with more complex rules (i.e. J, K, and L) had 
additional loadings on the latent variable denoted as “Complex learning core processes”. 
Also the four manifest variables of the associative learning task loaded on the latent 
variable denoted as “Associative learning core processes”.  

In a next step the learning-based latent variables were related to the retrieval-based latent 
variables. In the first and second models the core processes of complex learning and 
associative learning were separately linked to the core processes of retrieval in order to 
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examine the relationship of the two types of learning and retrieval. At the same time the 
two latent variables representing auxiliary processes were related to each other. Then, the 
third model, which included links between both latent variables of complex learning and 
associative learning and the latent variable of retrieval was tested. 

The data were analyzed by means of LISREL (Jöreskog & Sörbom, 2006) using the 
maximum likelihood estimation method with the covariance matrix as input. In order to 
avoid artifactual results due to the investigation of dichotomous items (Kubinger, 2003), 
covariances of scores obtained as counts of correct responses were computed. The fol-
lowing set of fit statistics and evaluation criteria given in parentheses were considered 
(see Distefano, 2016; Kline, 2005): normed χ2(=χ2/df) (≤2 indicating good model-data 
fit), RMSEA (≤.06 indicating good model-data fit), SRMR (≤.08 indicating good model-
data fit), CFI (≥.95 indicating good model-data fit), and TLI (≥.95 indicating good mod-
el-data fit). Since positive correlation coefficients were expected  for the latent variables 
representing efficiency in learning and efficiency in retrieval, the tests of the correlation 
coefficients were one-sided.  

Results 

Descriptive results 

The mean reaction times (in milliseconds) and the corresponding standard deviations for 
Posner’s Task were 740 ms (SD=210 ms), 790 ms (SD=190 ms) and 1210 ms (SD=390 
ms) for the three treatment levels in corresponding order as illustrated in Figure 1.  

 

 
Figure2: 

Mean reaction times observed for the physical, name and categorical identity conditions of 
Posner’s Task 
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The mean scores observed for the subscores of the Associative Learning Task were 4.16 
(SD=.97), 3.68 (SD=1.30); 3.63 (SD=1.21) and 3.99 (SD=1.03) respectively, with a 
maximum possible score of 5 for each subscore. The mean scores observed in the Com-
plex Learning Task were 3.33 (SD=.87), 3.06 (SD=1.15), 2.61 (SD=1.12), 2.23 
(SD=1.24) and 2.38 (SD=1.36) for the five treatment levels in corresponding order. 

Results observed in structural equation modeling  

As suggested by Anderson and Gerbing (1988) the models of measurement for each task 
as well as the models representing the relationships between the tasks were investigated 
separately. 

The model of measurement representing retrieval showed the following fit results: χ2 (1) 
=2.87, normed χ2 =2.87, RMSEA = .10, SRMR = .06, CFI=.99, TLI=.95. Most of the fit 
statistics were above or beneath the corresponding cut-offs indicating a good model fit. 
Two indices normed χ2 and RMSEA only showed an acceptable fit. The fit results for the 
model of measurement representing the learning tasks were as follows: χ2 (20) = 19.22, 
normed χ2 =0.96, RMSEA = .00, SRMR = .00, CFI=1.00, TLI=.95. All the fit statistics 
were well above or beneath the corresponding cut-offs, indicating a good model fit.  

The model considering the relationship between associative learning and retrieval yield-
ed the following fit results: χ2 (49) = 63.62, normed χ2 = 1.29, RMSEA = .04, SRMR 
= .07, CFI = .97, TLI = .95. A good model fit was indicated. The link relating associative 
learning to retrieval showed a standardized regression weight of .34 (t = 1.96, p < .05). It 
indicated that associative learning and retrieval shared 11.6 % of common variance. 

The model considering the relationship between complex learning and retrieval yielded 
the following fit results: χ2 (49) = 58.91, normed χ2 = 1.20, RMSEA = .03, SRMR = .07, 
CFI = .97, TLI = .97. All the fit statistics were well above or beneath the corresponding 
cut-off, indicating a good model-data fit. The link observed between complex learning 
core processes and retrieval showed a standardized regression weight of .57 (t = 2.65, p < 
.05). It indicated that complex learning and retrieval shared 32.5 % of common variance. 

The complete model with relationships of the three learning latent variables on one hand 
and two retrieval latent variables on the other hand yielded the following fit results: χ2 
(47) = 53.12, normed χ2 = 1.13, RMSEA = .03, SRMR = .06, CFI = .98, TLI = .97. 
Again the model showed a good fit according to the criteria. The standardized parameter 
estimates, numbers used for fixations and the standardized error component for the 
measurement model parts of the complete model are presented in Table 1. 

An illustration of the complete model with standardized parameter estimates is included 
in Figure 2.  

This Figure includes numbers without parentheses and numbers given in parentheses. 
The numbers without parentheses were estimated jointly whereas the numbers given in 
parentheses were estimated separately. The first correlations suggested between 28 and 
33 percent common variance while the second ones between 7 and 12 percent only. The 
differences of the numbers indicated that there was some overlap of the correlations with 
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retrieval. All the correlations among core processes proved to be substantial. Further-
more, three out of the four substantial correlations reached the level of significance not 
only in the one-sided test but also in the two-sided test. The exception was the correla-
tion of associative learning core processes and retrieval core processes when there was 
joint estimation. Moreover, the correlation of complex learning core processes and re-
trieval core processes was larger than the correlation of associative learning core pro-
cesses and retrieval core processes. The z-difference of the two correlations was z = 
16.93 (p < .01). 

 
Table 1: 

Standardized Parameter Estimates, Fixations (fixed links) and Standardized Error Component 
(Error) 

Indicator Associative 
learning 

core 
processes 

Complex 
learning 

core 
processes 

Associative 
/ complex 
learning 
auxiliary 
processes 

Retrieval  
auxiliary 
processes 

(fixed links)

Retrieval 
core 

processes 
(fixed links)

Error 

Associative 
learning 1 

0.62 
 

0.15 
  

0.58 

Associative 
learning 2 

0.81 
 

0.11 
  

0.60 

Associative 
learning 3 

0.77 
 

0.16 
  

0.59 

Associative 
learning 4 

0.67 
 

0.06 
  

0.58 

Complex 
learning 1   

0.64 
  

0.51 

Complex 
learning 2   

0.65 
  

0.69 

Complex 
learning 3  

0.36 0.50 
  

0.71 

Complex 
learning 4  

0.67 0.25 
  

0.68 

Complex 
learning 5  

0.34 0.31 
  

0.89 

Posner task 1 1 0 0.29 

Posner task 2 1 1 0.15 

Posner task 3 1 4 0.54 
Note. The numbers are parameter estimates with the exception of those identified as fixations (please see 
columns characterized as fixed links).  
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Discussion 

At first view and without a clear idea of the dynamics inherent in the knowledge base, 
one may expect an almost perfect relationship between the storage and retrieval of in-
formation. It may appear as if the retrieval of information is nothing but the reversal of 
what happens when storing new information in the knowledge base. However, research 
focusing on the malleability of memory suggests something different (Loftus, 2003). The 
contents of the knowledge base appear to be exposed to various influences and are likely 
to undergo some changes in the long run. Therefore, we postulated the observation of a 
small to medium rather than a large correlation between learning and retrieval of infor-
mation. The outcomes of the empirical investigation are in line with this postulation. No 
one of the correlations between learning and retrieval reaches a size suggesting that more 
than 50 percent of the observed variance is common variance.  

The small size of the correlation between associative learning and retrieval is likely to be 
due to the type of learning new information. Associative learning is achieved by creating 
a rather superficial representation of the new information in the knowledge base. It 
amounts to the establishment of a new knowledge item in tying it to a very few already 
available items only. It means a minor modification of the knowledge base. The new 
knowledge item does probably not reflect major characteristics of the general structure 
and unique properties of the knowledge base. As a consequence, the success in retrieving 
these items in probe trials may depend to a larger degree on random processes, as they 
are described by diffusion models (Ratcliff, 2002), than on the structure and properties of 
the knowledge base.  

In contrast, performance in retrieving information according to Posner’s Task can be 
assumed to reflect general characteristics of the knowledge base. The to-be-retrieved 
information can be assumed to be easily accessible by well-established pathways. These 
pathways can be perceived as the result of a kind of compilation, as is suggested by the 
model of skill acquisition (Anderson et al., 1997) in using an analogy to making comput-
er programs especially efficient. As a consequence, deviations due to random processes 
in the search for this information are suppressed. Knowledge elaboration provides the 
other opportunity to arrange for the good accessibility of the stored information. Due to 
the large number of established links to already available information, it can be assumed 
that accessibility reflects the structure and properties of the knowledge base. Therefore, 
the larger correlation for complex learning is not really a surprise.  

Furthermore, there is the difference between the correlations with associative and com-
plex learning that needs to be addressed. The correlation with complex learning is con-
siderably larger than the correlation with associative learning. This difference is in line 
with the expectations based on the distinction of deep and shallow learning (Struyven et 
al., 2006). Complex learning requires participants to consider various aspects of the 
stimuli and to search the knowledge base when looking for the rule that underlies a set of 
arrays composed of circles and plus signs. A possible side-effect or bonus of this search 
is the establishment of additional links between new and old information. It also means 
that more information is transferred to the knowledge base than otherwise and that even-
tually even a redundant representation is created. As a consequence, there is a compre-
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hensive representation of information due to complex learning as compared to a poor 
representation created by associative learning. This representation is likely to reflect the 
structure and properties of the knowledge base and, therefore, to show the larger correla-
tion with retrieval.  
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