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Measurement models for ordered-
categorical indicators: A factor analytic 
approach for testing the level of 
measurement 
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Abstract 

In the social sciences, self-reports administered as questionnaires are frequently used to measure 
psychological constructs. Data stemming from scale items are commonly analyzed using statistical 
methods for metric dependent variables. However, the assumption of interval level data is not 
tested but assumed to be fulfilled. One reason for ignoring this assumptions is the lack of an ade-
quate approach for testing this assumption. Thus, we present a factor analytic approach for testing 
the level of measurement. First, two empirical examples are presented to demonstrate this ap-
proach. Second, a simulation study based on several conditions with varying population model and 
sample size was conducted. Results of the simulation study demonstrate the functioning of this 
approach. In sum, the factor analytic approach can be used for testing the level of measurement of 
scale items enabling empirical decision making about choosing appropriate statistical methods 
instead of relying on untested assumptions. 
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In the social and behavioral sciences, self-report measures administered as questionnaires 
are commonly used to measure psychological constructs. Data resulting from these 
measurements are subjected to statistical methods to describe characteristics of the sam-
ple (i.e., descriptive statistics) and to draw conclusions about the population (i.e., infer-
ential statistics). Thus, appropriate statistical methods need to be selected based on re-
search hypotheses and in accordance with the data at hand. One of the fundamental de-
ciding factors for choosing appropriate statistical methods is the level of measurement of 
data (Pett, 2015). However, researchers rarely bother about the level of measurement and 
oftentimes apply statistical tests for metric dependent variables (e.g., two-sample t-test or 
ANOVA) instead of statistical tests commonly used for ordered-categorical dependent 
variables (e.g., Mann-Whitney U test or Kruskal-Wallis test). One reason for simply 
assuming metric-level data is that there is no appropriate statistical method available to 
test this assumption. 

In the present study, we introduce a factor analytic approach for testing the level of 
measurement based on measurement models for ordered-categorical indicators. In the 
following, we present a commonly used item format for questionnaires and discuss the 
concept of level of measurement. Next, we discuss two approaches for analyzing meas-
urement models for ordered-categorical indicators. Last, we describe the analytical steps 
for testing the level of measurement. 

Note that the present paper focuses on questionnaires items. As for items in achievement 
or intelligence tests, the dichotomous Rasch model and the uni- or multidimensional 
polytomous Rasch model (Rasch, 1960/1980; see also Fischer, 1974) can be used to test 
hypotheses about the properties of the items (see Hohensinn & Kubinger, 2017). 

Questionnaire items 

A questionnaire item consists of an item stem, which contains the stimulus material to 
which respondents have to respond, and a system of response options (McDonald, 1999). 
There are numerous item types from which rating scale items are most frequently used in 
the social and behavior sciences. In a rating scale item, respondents are asked to answer a 
specific question (e.g., How much do you enjoy scientific writing?) by selecting an op-
tion out of a set of ordered categories (e.g., not at all – very little – somewhat – to a great 
extent). Numerical values are assigned to the item responses in accordance to the select-
ed response options. The amount of information within the numbers assigned to the item 
responses is described in the level of measurement.  

Level of measurement 

According to Stevens (1960), four levels of measurement are distinguished: (1) nominal, 
(2) ordinal, (3) interval, and (4) ratio. The former two are labeled categorical and the 
latter two metric. More specifically, a categorical variable (see Agresti, 2002) comprises 
a set of categories which can be either unordered (i.e., numbers represent a qualitative 
distinction, e.g., girls and boys) or ordered (i.e., numbers represent some natural order, 
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e.g., school grades). A metric variable, on the other hand, not only represents a meaning-
ful order of numbers, but also meaningful intervals between numbers (i.e., number repre-
sent equal differences in the underlying variable, e.g., temperature in degrees Fahren-
heit). In theory, the distinction between ordered-categorical and metric variables is clear. 
In practice, however, it is not clear if data resulting from scale items of a questionnaire 
are ordered-categorical or metric. As for rating scale items, it seems clear that the result-
ing data is ordered-categorical and not metric given ordered categories of response op-
tions. Nevertheless, scores on rating scale items are typically summed to derive a compo-
site index of the construct of interest used in subsequent statistical analyses. The implicit 
assumption of this approach is that respondents perceive differences between adjacent 
levels of response categories as equidistant. For example, the equal-distance coding not 
at all = 0, very little = 1, somewhat = 2, and to a great extent = 3 assumes that the dis-
tance between not at all and very little represents the same amount of the construct as the 
distance between somewhat and to a great extent.  

In sum, researchers rarely question metric level of data resulting from a questionnaire 
based on rating scale items. Consequently, data are subjected to statistical methods 
which in fact are designed to analyze metric data. Theses analyses might result in biased 
parameter estimates and wrong conclusions about the research hypotheses. For that rea-
son, ignoring the level of measurement is known to be a measurement error fallacy that 
is most consequential and prevalent in published quantitative research (see Wang, Watts, 
Anderson & Little, 2013). 

One reason for ignoring the level of measurement might be that there is no appropriate 
statistical method available to test this assumption. Thus, the goal of the present study is 
to present a factor analytic approach for testing the level of measurement. 

Factor analytic approach for testing the level of measurement 

The factor analytic approach for testing the level of measurement is based on a meas-
urement model for ordered-categorical indicators (Bovaird & Koziol, 2012). There are 
two approaches for analyzing these models: (1) the underlying response variable ap-
proach and (2) the response function approach (Jöreskog & Moustaki, 2001). 

Underlying response variable approach. This approach assumes that underlying each 
categorical scale item jy  is a continuous and normally distributed latent response varia-

ble *
jy  that leads to an observed ordinal variable (Muthén, 1983). That is, the observed 

ordinal variables are regarded as a crude measurement of underlying unobserved contin-
uous variables. It is assumed that the observed ordinal response ijy  of respondents i (i = 

1, 2, …, n), where n equals the sample size, on item j (j = 1, 2, …, m), where m equals 

the number of items, is related to the latent response *
ijy  via a threshold model so that 
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where c  denotes the number of response categories and kjτ  denotes the threshold pa-

rameter of the threshold k (k = 1, 2, …, c – 1) of item j, which represent the location of 

the cut points along the latent response variable *y  (Skrondal & Rabe-Hesketh, 2005). 

That is, the threshold represents the critical point where respondents transition from one 
response category to another. Note that there are always –1c  thresholds involved. 

Model estimation for the measurement model is based on a limited-information approach 
(Edwards, Wirth, Houts & Xi, 2012), which uses only a summary of the available data 
(i.e., polychoric correlations). The most common limited information method is the 
robust weighted least square estimator (DWLS) using a diagonal weight matrix (see 
Muthén, du Toit & Spisic, 1997). 

Response function approach. This approach directly models the nonlinear relationship 
between the observed ordinal response ijy  of a respondent ݅ on item j and a normally 

distributed latent factor f  using a generalized linear model (Skrondal & Rabe-Hesketh, 

2004).  

The factor analytic model for polytomous items is 
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According to this model, the probability that the response ݕ௜௝ of a respondent i to a given 

item ݆ equals a specific response option category r (r = 1, 2, …, c) is a function of if , 

the individual	݅’s location on the continuum of the latent construct f . The factor loading ߣ௝ reflects the strength of association between the latent factor f  and the item j. The 

threshold parameter kjτ  of threshold k (k = 1, 2, …, c – 1) for item ݆ indicates the extent 

to which the individual must possess the latent construct in order to transition from a 
lower response category to the next higher category at a chance level of 50%. Again, 
there are c – 1 threshold parameter, where c denotes the number of categories.  

Model estimation for the measurement model using confirmatory factor analysis is based 
on a full-information approach (Edwards et al., 2012), which uses the raw data rather 
than summary statistics like in the response variable approach. Note that the chi-square 
test and fit indices (see West, Taylor & Wu, 2012) are not available using the response 
function approach using a full-information approach. 
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Analytical steps for testing the level of measurement 

The factor analytic approach for testing the level of measurement comprises two consec-
utive steps and is based on the response function approach of measurement models for 
ordered-categorical indicators. That is, all measurement models are estimated using 
confirmatory factor analysis based on marginal maximum likelihood (MML) estimation 
with numerical integration. The response function approach was chosen because infor-
mation criteria are needed to evaluate relative fit of competing models, which are only 
available with a full-information approach. Moreover, a full-information approach is 
known to be a more efficient estimator than a limited-information approach (see Lei & 
Qu, 2012).  

Step 1: Estimate measurement models. In the first step, different measurement models 
for ordered-categorical indicators are estimated. These models differ in the assumptions 
about the level of measurement of the indicators, which are specified using parameter 
constraints regarding the location of threshold parameters. Thresholds of the (1) interval 
scale model are constraint to be equally spaced across all items, whereas the thresholds 
of the (2) ordinal scale model are freely estimated without any constraints. These models 
are equivalent to the theoretical differences between ordered-categorical and metric scale 
items (Andrich, 1982). Another measurement model, which accounts for the ordinal 
nature of scale items, but is more parsimonious than the ordinal scale model is the rating 
scale model (Andrich, 1978). Thresholds of the (3) rating scale model are not con-
strained to be equally spaced, but are constrained to have the same unequal spacing 
across all items. 

Step 2: Decide between competing models. In the second step, one has to decide be-
tween competing models by comparing the interval scale model vs. ordinal scale model. 
Model comparison in favor of the ordinal scale model indicates that the scale items are 
not interval scale but ordered-categorical. In case the ordinal scale model was chosen, an 
additional model comparison can be employed comparing the rating scale model vs. the 
ordinal scale model. However, the first model comparison is sufficient to test whether 
scale items are ordered-categorical or metric. 

Satorra-Bentler (S-B) scaled chi-square difference test and information criteria (AIC and 
BIC) can be used for model comparison. A statistically significant chi-square difference 
test for the comparison interval scale model vs. ordinal scale model is in favor of the 
ordinal scale model. A lower AIC and BIC value indicates a better trade-off between 
model fit (i.e., model deviance) and model complexity (i.e., number of estimated pa-
rameters). In addition, the location of threshold parameters of all items based on the 
ordinal scale model should be graphically inspected to aid decision making between 
competing models. 

Present study 

In the present paper, we demonstrate the factor analytic approach for testing the level of 
measurement by investigating the level of measurement of two scales based on rating 
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scale items, using empirical data (Study 1) and investigate the functioning of our ap-
proach using simulated data (Study 2). 

Study 1: Empirical data 

In this section, we present two empirical examples how to test the level of measurement. 
We investigate the level of measurement of (1) the mastery goal orientation scale with a 
four-point response scale and (2) the bullying perpetration scale with a five-point re-
sponse scale. 

Sample and procedure 

The sample comprises 1,396 students (47.1% girls) with a mean age of 11.7 years (SD = 
0.9) who participated in the pretest of an evaluation study (Yanagida, Strohmeier & 
Spiel, 2016) in Austria. Data were collected in May/June 2009 through internet-based 
questionnaires during one regular school hour in the schools under the supervision of two 
trained research assistants. Participation in the data collection was based on active paren-
tal and child consent. There were no missing data in the variables used for the present 
study. 

Measures 

Mastery Goal Orientation. The scale consists of four items from Schober, Dresel, and 
Ziegler (2001): (1) “I want to learn many new things”, (2) “I want to do difficult things 
in order to learn new things”, (3) “I want to understand what I am learning”, (4) “I want 
to be able to do more and more”. Cronbach’s α coefficient for the mastery goal orienta-
tion scale was .82. 

Answers to all questions were given on a four-point response scale ranging from 0 (not 
at all), 1 (a little true), 2 (mostly true), to 3 (very true). Thus, the measurement model for 
ordered-categorical indicators had three thresholds for each item. 

Bullying Perpetration. Self-reported bullying was measured by items developed for the 
PISA 2009 study in Austria (Strohmeier, Gradinger, Schabmann, & Spiel, 2012). The 
bullying perpetration scale consists of a global item, and three specific items covering 
different forms of bullying. In (1) the global item, students were asked “How often have 
you insulted or hurt other students during the last two months?”. The three specific items 
were similar to the global ones, except that they described specific forms of bullying, i.e., 
(2) verbal, (3) exclusion and (4) physical. Cronbach’s α coefficient for the bullying per-
petration scale was .77. 

Answers to all questions were given on a five-point response scale ranging from 0 (not at 
all), 1 (once or twice), 2 (two or three times a month), 3 (once a week), to 4 (nearly every 
day). Thus, the measurement model for ordered-categorical indicators had four thresh-
olds for each item of the bullying perpetration scale. 
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Analytic strategy 

The analytic strategy follows the two steps described above, i.e., (1) estimate measure-
ment models and (2) decide between competing models. 

All models were estimated in Mplus 7.4 (Muthén & Muthén, 1998-2015) using maxi-
mum likelihood estimation with robust standard errors. For all analyses, 10 random 
starting values were requested for the initial and final stage optimization of the estima-
tion procedure.  

Mplus syntax for testing the level of measurement and R syntax for graphical inspection 
of thresholds parameters are provided in the appendices A, B, C, and D. 

Results 

Response category proportions for all scale items are reported in Table 1. 

Step 1: Estimate measurement models. Models of the mastery goal orientation scale 
and bullying perpetration scale based on threshold parameter constraints for the interval, 
rating, and ordinal scale model converged properly (see Table 2). 

Step 2: Decide between competing models. As for the mastery goal orientation scale, 
the S-B scaled chi-square difference test for the comparison interval scale model vs. 
ordinal scale model was statistically not significant ( 2Δ 12.81χ = , Δdf =7, .077p = ). 

Moreover, the interval scale model had a lower AIC and BIC than the ordinal scale mod-
el. In addition, graphical inspection of the location of threshold parameters indicated that 
thresholds across all items are roughly equally spaced (see Figure 1, Panel A). In sum,  

 
Table 1: 

Response Category Proportions for Mastery Goal Orientation and Bullying Perpetration 

Mastery Goal Orientation 

Response category Item 1 Item 2 Item 3 Item 4 

0 (not at all true) .077 .128 .057 .090 

1 (a little true) .145 .203 .097 .143 

2 (mostly true) .223 .241 .178 .226 

3 (very true) .555 .428 .668 .541 

Bullying Perpetration 

Response category Item 1 Item 2 Item 3 Item 4 

0 (not at all) .493 .554 .768 .792 

1 (once or twice) .382 .342 .190 .162 

2 (two or three times a month) .069 .051 .021 .017 

3 (once a week) .027 .025 .011 .013 

4 (nearly every day) .029 .028 .010 .016 
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Table 2: 
Mastery Goal Orientation and Bullying Perpetration Scale: Model Comparison between 

Interval Scale, Rating Scale and Ordinal Scale Model 

 Mastery Goal Orientation 
Scale 

Bullying Perpetration Scale 

Model Interval Rating Ordinal Interval Rating Ordinal 

Number of Parameters 9 10 16 9 11 20 

Loglikelihood -5499.76 -5497.82 -5493.39 -4581.77 -4388.23 -4340.26 

Scaling Correction Factor 1.04 1.07 1.02 1.62 1.26 1.04 

AIC 11017.52 11015.64 11018.79 9181.54 8798.47 8720.53 

BIC 11064.70 11068.06 11102.65 9228.71 8856.12 8825.36 

S-B scaled  
 
χ2 Difference Test 

Interval vs. Ordinal Scale 
Model 

Δχ2 = 12.81, Δdf = 7,  
p = .077 

Interval vs. Ordinal Scale 
Model 

Δχ2 = 854.22.19, Δdf = 11,  
p < .001 

 Rating vs. Ordinal Scale 
Model 

Δχ2 = 9.46, Δdf = 6,  
p = .149 

Rating vs. Ordinal Scale 
Model 

Δχ2 = 124.42, Δdf = 9,  
p < .001 

Note. S-B scaled χ2 Difference Test = Satorra-Bentler scaled chi-square difference test; AIC = Akaike 
information criterion; BIC = Bayesian information criterion. 

 
 

results show that the scale items of the mastery goal orientation scale are metric. The 
model fit of the interval scale model based on the underlying response variable approach 
was very good (χ2(9) = 34.70, p < .001, CFI = .994 and RMSEA = 0.045). 

Since model comparison was in favor of the interval scale model, an additional model 
comparison between rating scale model vs. ordinal scale model is not required. Never-
theless, Table 2 summarizes the results of all model comparisons. 

As for the bullying perpetration scale, the S-B scaled chi-square difference test for the 
comparison interval scale model vs. ordinal scale model was statistically significant  
( 2Δ 854.22χ = , Δdf = 11, .001p < ). In addition, the model comparison rating scale 
model vs. ordinal scale model was also statistically significant ( 2Δ 124.42χ = , Δdf = 9, 

.001p < ). Thus, according to the chi-square difference test the ordinal scale model is 
more favorable than the interval scale model and the rating scale model. Moreover, the 
ordinal scale model had the lowest AIC and BIC. Table 2 summarizes the results of the 
model comparisons. In addition, graphical inspection of the location of threshold pa-
rameters indicated that thresholds across all items do not conform with the interval scale 
or the rating scale model (see Figure 1, Panel B). The model fit of the ordinal scale 
model based on the underlying response variable approach was very good (χ2(2) = 3.34, 
p = .189, CFI = 1.000 and RMSEA = 0.022). In sum, results show that the scale items of 
the bullying perpetration scale are not metric, but ordered-categorical. 
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Figure 1: 

 Graphical representation of threshold location based on the ordinal scale model for the 
mastery goal orientation scale (Panel A) and bullying perpetration scale (Panel B). 

Conclusion 

In the empirical examples, we demonstrated how to test the level of measurement of two 
scales based on two consecutive steps. Results based on S-B scaled chi-square difference 
test, information criteria (AIC and BIC), and graphical inspection consistently showed 
that interval scale model is tenable for the mastery goal orientation scale, but not for the 
bullying perpetration scale. Given the answer format for bullying perpetration asking 
about the frequency of different forms of aggressive behavior, it is not surprising that 
data resulting from these items are not metric. However, using our approach it is also 
possible to test the level of measurement to argue on empirical grounds. 

Study 2: Simulated data 

In this section, we present a simulation study based on the data constellation of the em-
pirical examples (i.e., four items with four-point and five-point response scale) to inves-
tigate the functioning of our approach for testing the level of measurement under various 
simulation conditions.  
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Simulation design 

In the simulation study, we investigated various conditions with different population 
models and sample sizes ranging from n = 100 to 1000 with an increment of 100. Over-
all, we investigated a four-point response scale (i.e., three thresholds) and a five-point 
response scale (i.e., four thresholds) with four items. Data were simulated in accordance 
to the interval scale, rating scale or ordinal scale model. All conditions investigated in 
the simulation study are shown in Table 3. 

 
Table 3: 

 Simulation Design: Standardized Factor Loadings and Standardized Thresholds for the 
Population Models for Items with a Four-Point and a Five-Point Response Scale 

 Four-Point Response Scale Five-Point Response Scale 

Model Parameters Interval Rating Ordinal Interval Rating Ordinal 

Standardized Factor Loading 
     Item 1 (λ1) 
     Item 2 (λ2) 
     Item 3 (λ3) 
     Item 4 (λ4) 

 
0.40 
0.60 
0.60 
0.60 

 
0.60 
0.60 
0.60 
0.60 

 
0.60 
0.60 
0.60 
0.60 

 
0.60 
0.60 
0.60 
0.60 

 
0.60 
0.60 
0.60 
0.60 

 
0.60 
0.60 
0.60 
0.60 

Standardized Threshold 
     Item 1 
          Thresh. 1 (τ1,1) 
          Thresh. 2 (τ1,2) 
          Thresh. 3 (τ1,3) 
          Thresh. 4 (τ1,4) 
     Item 2 
          Thresh. 1 (τ2,1) 
          Thresh. 2 (τ2,2) 
          Thresh. 3 (τ2,3) 
          Thresh. 4 (τ2,4) 
     Item 3 
          Thresh. 1 (τ3,1) 
          Thresh. 2 (τ3,2) 
          Thresh. 3 (τ3,3) 
          Thresh. 4 (τ3,4) 
     Item 4 
          Thresh. 1 (τ4,1) 
          Thresh. 2 (τ4,2) 
          Thresh. 3 (τ4,3) 
          Thresh. 4 (τ4,4) 

 
 

-1.00 
-0.50 
0.00 

 
 

-0.75 
-0.25 
0.25 

 
 

-0.50 
0.00 
0.50 

 
 

0.00 
0.50 
1.00 

 
 

-1.00 
-0.50 
-0.25 

 
 

-0.75 
-0.25 
0.00 

 
 

-0.50 
0.00 
0.25 

 
 

0.25 
0.75 
1.00 

 
 

-1.00 
0.00 
0.50 

 
 

-0.75 
0.05 
0.25 

 
 

-0.50 
-0.20 
0.40 

 
 

-0.50 
-0.20 
0.40 

 
 

-1.00 
-0.60 
-0.20 
0.20 

 
-0.80 
-0.40 
0.00 
0.40 

 
-0.40 
0.00 
0.40 
0.80 

 
-0.20 
0.20 
0.60 
1.00 

 
 

-1.00 
-0.25 
0.25 
0.50 

 
-0.80 
-0.05 
0.45 
0.70 

 
-0.70 
0.05 
0.55 
0.80 

 
-0.50 
0.25 
0.75 
1.00 

 
 

-1.00 
0.00 
0.50 
0.75 

 
-0.80 
0.00 
0.20 
0.60 

 
-0.40 
-0.10 
0.50 
0.70 

 
-0.75 
-0.50 
0.00 
1.00 
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In sum, 10,000 replications were conducted for each of the 2 (four point and five point 
scale) x 3 (interval, rating and ordinal scale model) x 10 (sample size) = 60 simulation 
conditions. Each replication was analyzed according to the two consecutive steps based 
on the factor analytic approach for testing the level of measurement. The main result of 
the simulation study was the model recovery rate, i.e., the percentage of the population 
model chosen according to the statistical test and the information criteria. In line with a 
significance level of α = 0.05, a model recovery rate over 95% can be considered as an 
acceptable rate. 

Data were simulated in R version 3.2.5 (R Development Core Team, 2016) using the 
lavaan package version 0.5-22 (Rosseel, 2012). All models were estimated in Mplus 7.4 
(Muthén & Muthén, 1998-2015) using maximum likelihood estimation with robust 
standard errors based on 10 random starting values for the initial and final stage optimi-
zation.  

Results 

Model Non-Convergence. In all simulation conditions for the four-point and five-point 
response scale, there were no convergence problems, i.e., all models converged properly.  

Four-point response scale. Results for the simulation study for the four-point response 
scale are shown in Table 4. 

 
Table 4: 

 Simulation Results for the Four-Point Response Scale: Percentage an Interval Scale, Rating 
Scale or Ordinal Scale was Chosen Depending on the Sample Size, Statistical Test, 

Information Criterion and Population Model 

 Population Model 

 Interval Scale Model Rating Scale Model Ordinal Scale Model 

Sample size (n) Interval Rating Ordinal Interval Rating Ordinal Interval Rating Ordinal 

n = 100 
     χ2 Difference Test
     AIC 
     BIC 

 
93.40%
81.12%
96.72%

 
1.46%

14.22%
3.28%

 
5.14%
4.66%
0.00%

 
24.46%
1.46% 
7.99%

 
65.20%
91.13%
92.00%

 
10.34%
7.41%
0.01%

 
0.00% 
0.00% 
3.14%

 
0.00%
0.00%
0.19%

 
100% 
100% 

96.67% 

n = 200 
     χ2 Difference Test
     AIC 
     BIC 

 
94.36%
80.61%
97.95%

 
1.20%

14.91%
2.05%

 
4.44%
4.48%
0.00%

 
2.30% 
0.00% 
0.26%

 
88.59%
91.37%
99.74%

 
9.11%
8.63%
0.00%

 
0.00% 
0.00% 
0.00%

 
0.00%
0.00%
0.00%

 
100% 
100% 
100% 
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n = 300 
     χ2 Difference Test
     AIC 
     BIC 

 
94.52%
80.95%
98.44%

 
1.26%

14.76%
1.56%

 
4.22%
4.29%
0.00%

 
0.13% 
0.01% 
0.01%

 
91.47%
90.87%
99.99%

 
8.40%
9.12%
0.00%

 
0.00% 
0.00% 
0.00%

 
0.00%
0.00%
0.00%

 
100% 
100% 
100% 

n = 400 
     χ2 Difference Test
     AIC 
     BIC 

 
94.55%
81.28%
98.56%

 
1.27%

14.44%
1.44%

 
4.18%
4.28%
0.00%

 
0.01% 
0.01% 
0.01%

 
90.30%
89.19%
99.99%

 
9.69%

10.80%
0.00%

 
0.00% 
0.00% 
0.00%

 
0.00%
0.00%
0.00%

 
100% 
100% 
100% 

n = 500 
     χ2 Difference Test
     AIC 
     BIC 

 
94.23%
81.7% 

98.93%

 
1.33%

14.15%
1.07%

 
4.44%
4.68%
0.00%

 
0.00% 
0.00% 
0.00%

 
89.09%
87.52%
100%

 
10.91%
12.48%
0.00%

 
0.00% 
0.00% 
0.00%

 
0.00%
0.00%
0.00%

 
100% 
100% 
100% 

n = 600 
     χ2 Difference Test
     AIC 
     BIC 

 
93.75%
80.50%
98.74%

 
1.70%

14.78%
1.26%

 
4.55%
4.72%
0.00%

 
0.00% 
0.00% 
0.00%

 
89.27%
87.73%
100%

 
10.73%
12.27%
0.00%

 
0.00% 
0.00% 
0.00%

 
0.00%
0.00%
0.00%

 
100% 
100% 
100% 

n = 700 
     χ2 Difference Test
     AIC 
     BIC 

 
94.72%
81.17%
98.88%

 
1.16%

14.44%
1.12%

 
4.12%
4.39%
0.00%

 
0.00% 
0.00% 
0.00%

 
88.27%
86.29%
99.99%

 
11.73%
13.71%
0.01%

 
0.00% 
0.00% 
0.00%

 
0.00%
0.00%
0.00%

 
100% 
100% 
100% 

n = 800 
     χ2 Difference Test
     AIC 
     BIC 

 
94.46%
80.38%
99.11%

 
1.24%

15.17%
0.89%

 
4.30%
4.45%
0.00%

 
0.00% 
0.00% 
0.00%

 
86.70%
85.10%
100%

 
13.30%
14.90%
0.00%

 
0.00% 
0.00% 
0.00%

 
0.00%
0.00%
0.00%

 
100% 
100% 
100% 

n = 900 
     χ2 Difference Test
     AIC 
     BIC 

 
93.79%
80.40%
99.06%

 
1.43%

14.62%
0.94%

 
4.78%
4.98%
0.00%

 
0.00% 
0.00% 
0.00%

 
85.99%
84.00%
100%

 
14.01%
16.00%

0% 

 
0.00% 
0.00% 
0.00%

 
0.00%
0.00%
0.00%

 
100% 
100% 
100% 

n = 1000 
     χ2 Difference Test
     AIC 
     BIC 

 
94.16%
80.33%
98.94%

 
1.47%

15.09%
1.06%

 
4.37%
4.58%
0.00%

 
0.00% 
0.00% 
0.00%

 
85.99%
84.00%
100%

 
14.01%
16.00%
0.00%

 
0.00% 
0.00% 
0.00%

 
0.00%
0.00%
0.00%

 
100% 
100% 
100% 

Note. χ2 Difference Test = Satorra-Bentler scaled chi-square difference test; AIC = Akaike information 
criterion; BIC = Bayesian information criterion. 
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Interval scale model condition. In the interval scale model condition, the S-B scaled chi-
square difference test and the AIC did not reach a model recovery rate of 95%, irrespec-
tive of the sample size. The BIC, on the other hand, had a model recovery rate between 
96.72% (n = 100) and 99.11% (n = 800), depending on the sample size.  

Rating scale model condition. In the rating scale model condition, the S-B scaled chi-
square difference test and the AIC did not reach a model recovery rate of 95%, irrespec-
tive of the sample size. The BIC, on the other hand, had a model recovery rate over 99% 
when sample size was equal or larger than n = 200.  

Ordinal scale model condition. In the ordinal scale model condition, the S-B scaled chi-
square difference test and the AIC and BIC always decides for the correct model, irre-
spective of the sample size. The BIC, on the other hand, had a model recovery rate of 
96.67% when sample size was n = 100, but always decides for the correct model when 
sample size was equal or larger than n = 200.  

Five-point response scale. Results for the simulation study for the five-point response 
scale show a similar pattern like the results of the four-point response scale and are 
shown in Table 5. 

 
Table 5: 

 Simulation Results for the Five-Point Response Scale: Percentage an Interval Scale, Rating 
Scale or Ordinal Scale was Chosen Depending on the Sample Size, Statistical Test, 

Information Criterion and Population Model 

 Population Model 

 Interval Scale Model Rating Scale Model Ordinal Scale Model 

Sample size (n) Interval Rating Ordinal Interval Rating Ordinal Interval Rating Ordinal 

n = 100 
     χ2 Difference Test
     AIC 
     BIC 

 
93.74%
84.83%
98.95%

 
1.66%

12.93%
1.05%

 
4.60%
2.24%
0.00%

 
0.43% 
0.00% 
0.06%

 
89.79%
94.35%
99.94%

 
9.76%
5.65%
0.00%

 
0.06% 
0.04% 
8.64%

 
0.01%
0.01%
0.67%

 
99.93% 
99.95% 
90.69% 

n = 200 
     χ2 Difference Test
     AIC 
     BIC 

 
94.28%
84.72%
99.53%

 
1.71%

13.30%
0.47%

 
4.01%
1.98%
0.00%

 
0.00% 
0.00% 
0.00%

 
89.62%
93.00%
100%

 
10.38%
7.00%
0.00%

 
0.00% 
0.00% 
0.03%

 
0.00%
0.00%
0.00%

 
100% 
100% 

99.97% 

n = 300 
     χ2 Difference Test
     AIC 
     BIC 

 
94.09%
84.27%
99.54%

 
1.74%

13.63%
0.46%

 
4.17%
2.10%
0.00%

 
0.01% 
0.00% 
0.00%

 
87.89%
91.15%
100%

 
12.10%
8.85%
0.00%

 
0.00% 
0.00% 
0.00%

 
0.00%
0.00%
0.00%

 
100% 
100% 
100% 
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n = 400 
     χ2 Difference Test
     AIC 
     BIC 

 
94.36%
84.93%
99.76%

 
1.76%

13.06%
0.24%

 
3.88%
2.01%
0.00%

 
0.00% 
0.00% 
0.00%

 
85.39%
88.98%
100%

 
14.61%
11.02%
0.00%

 
0.00% 
0.00% 
0.00%

 
0.00%
0.00%
0.00%

 
100% 
100% 
100% 

n = 500 
     χ2 Difference Test
     AIC 
     BIC 

 
93.96%
84.27%
99.83%

 
1.93%

13.58%
0.17%

 
4.11%
2.15%
0.00%

 
0.00% 
0.00% 
0.00%

 
81.11%
85.77%
100%

 
18.89%
14.23%
0.00%

 
0.00% 
0.00% 
0.00%

 
0.00%
0.00%
0.00%

 
100% 
100% 
100% 

n = 600 
     χ2 Difference Test
     AIC 
     BIC 

 
94.36%
84.26%
99.88%

 
1.79%

13.75%
0.12%

 
3.85%
1.99%
0.00%

 
0.00% 
0.00% 
0.00%

 
79.38%
84.00%
100%

 
20.62%
16.00%
0.00%

 
0.00% 
0.00% 
0.00%

 
0.00%
0.00%
0.00%

 
100% 
100% 
100% 

n = 700 
     χ2 Difference Test
     AIC 
     BIC 

 
93.95%
84.25%
99.81%

 
0.73%

13.64%
0.19%

 
4.32%
2.11%
0.00%

 
0.00% 
0.00% 
0.00%

 
75.74%
80.71%
100%

 
24.26%
19.29%
0.00%

 
0.00% 
0.00% 
0.00%

 
0.00%
0.00%
0.00%

 
100% 
100% 
100% 

n = 800 
     χ2 Difference Test
     AIC 
     BIC 

 
94.47%
85.51%
99.89%

 
1.46%

12.52%
0.11%

 
4.07%
1.97%
0.00%

 
0.00% 
0.00% 
0.00%

 
71.91%
77.40%
100%

 
28.09%
22.60%
0.00%

 
0.00% 
0.00% 
0.00%

 
0.00%
0.00%
0.00%

 
100% 
100% 
100% 

n = 900 
     χ2 Difference Test
     AIC 
     BIC 

 
93.88%
84.27%
99.82%

 
1.87%

13.53%
0.18%

 
4.25%
2.20%
0.00%

 
0.00% 
0.00% 
0.00%

 
69.41%
75.27%
100%

 
30.59%
24.73%
0.00%

 
0.00% 
0.00% 
0.00%

 
0.00%
0.00%
0.00%

 
100% 
100% 
100% 

n = 1000 
     χ2 Difference Test
     AIC 
     BIC 

 
94.11%
83.98%
99.93%

 
1.84%

13.92%
0.07%

 
4.05%
2.10%
0.00%

 
0.00% 
0.00% 
0.00%

 
66.44%
72.58%
100%

 
33.56%
27.42%
0.00%

 
0.00% 
0.00% 
0.00%

 
0.00%
0.00%
0.00%

 
100% 
100% 
100% 

Note. χ2 Difference Test = Satorra-Bentler scaled chi-square difference test; AIC = Akaike information 
criterion; BIC = Bayesian information criterion. 

 

 

In summary, S-B scaled chi-square difference test and the AIC did not reach a model 
recovery rate of 95% in the interval and rating scale model irrespective of the sample 
size, whereas the BIC always had a model recovery rate over 95% in the interval and 
rating scale model. As for the ordinal scale model, the S-B scaled chi-square difference 
test and the AIC nearly always decides for the correct model irrespective of the sample 
size. The BIC, on the other hand, had a model recovery rate of 90.69% when sample size 



Measurement models for ordered-categorical indicators 331

was n = 100, but nearly always decided for the correct model when sample size was 
equal or larger than n = 200.  

Conclusion 

Results of the simulation study demonstrate that the factor analytic approach for testing 
the level of measurement is functioning in principle. Moreover, results show that the BIC 
is the best criterion to decide between competing models. This criterion had a model 
recovery rate of over 95% in all simulation conditions as long as sample size was equal 
or larger than n = 200. The S-B scaled chi-square difference test and the AIC, however, 
never reached a model recovery rate of 95% in the interval and rating scale model irre-
spective of the sample size. 

Discussion 

The present study presented a factor analytic approach for testing the level of measure-
ment of variables stemming from scale items with various answer formats. This approach 
is based on the response function approach for measurement models for ordered-
categorical indicators and enables to statistical compare the interval scale and the ordinal 
scale model. The decision for the interval scale model indicates that data are consistent 
with the assumption of equidistance of response categories (i.e., variables are metric). On 
the other hand, the decision for the ordinal scale model indicates that data stemming 
from scale items are not interval but ordinal level. In case the comparison is in favor of 
the ordinal scale model, an additional comparison between the rating scale and the ordi-
nal scale model is recommended since the rating scale model is also accounting for the 
ordinal nature of scale items, but is a more parsimonious model than the ordinal scale 
model. Thus, in structural equation modeling a rating scale model can be specified for 
the measurement part of the model to save degrees of freedom. 

In order to decide between competing models, we propose using the Bayesian infor-
mation criterion (BIC) and a graphically inspection of threshold parameters whether 
thresholds spacing across all items are in line with the interval scale, rating scale or 
ordinal scale model. Results of the simulation study showed that the BIC has a model 
recovery rate of over 95% in all simulation conditions as long as sample size was equal 
or larger than n = 200. Of course, these recommendations are solely based on the simula-
tion conditions investigated in the present study. Additional simulation studies based on 
different population models, i.e., with varying the factor loadings, the number of thresh-
olds, the number of items, and the degree of model deviation and the sample size, should 
be conducted to further investigate the factor analytic approach for testing the level of 
measurement. Moreover, the present study compared three basic models (interval scale, 
rating scale and ordinal scale model), whereas further models with thresholds spacing 
based on other hypotheses might be investigated.  

In conclusion, we recommend testing the level of measurement using the factor analytic 
approach instead of simply assuming variables stemming from scale items are metric 
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when applying statistical methods, which in fact require metric data. In such a way, 
biased parameter estimates and wrong research conclusions can be avoided, as ignoring 
the level of measurement is known to be a measurement error fallacy that is most conse-
quential and prevalent in published quantitative research (see Wang et al., 2013). Of 
course, in case where the answer format clearly suggests an ordered-categorical (e.g., 
less than five response options) or metric level of measurement (e.g., visual analog 
scale), statistical methods for testing this assumption are not needed. Note that a simula-
tion study showed that the performance of robust continuous (e.g., normal theory maxi-
mum likelihood with robust correction) and categorical methodology (e.g., robust cate-
gorical least squares) in estimating confirmatory factor analysis models depends on the 
number of categories (Rhemtulla, Brosseau-Liard & Savalei, 2012). That is, when ob-
served variables have fewer than five response categories, robust categorical methodolo-
gy is best, whereas both methods yield acceptable performance with five to seven re-
sponse categories. These results indicate that variables stemming from scale items may 
be treated as continuous as long as they have at least five response categories. 

Of course, there are other statistical assumptions (e.g., distributional assumptions) which 
also need to be considered, but were not in the scope of the present paper. Thus, beside 
the level of measurement it is important to always investigate and tackle all assumptions 
when applying statistical methods. 
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Appendix A: Mplus Syntax for the Four-Point Response Scale 

Syntax for interval scale 

TITLE:       Four-Point Response Scale   
             Interval Scale Model 
 
DATA:        FILE IS Data.dat; 
 
VARIABLE:    NAMES ARE item1 item2 item3 item4;  
             CATEGORICAL ARE item1 item2 item3 item4;  
 
ANALYSIS:    ESTIMATOR = MLR; 
             STARTS = 10;                      
 
MODEL:       f BY item1* item2 item3 item4; 
        
             f@1; 
 
             [item1$1] (T11);             
             [item1$2] (T12); 
             [item1$3] (T13); 
 
             [item2$1] (T21); 
             [item2$2] (T22); 
             [item2$3] (T23); 
 
             [item3$1] (T31); 
             [item3$2] (T32); 
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             [item3$3] (T33); 
 
             [item4$1] (T41); 
             [item4$2] (T42); 
             [item4$3] (T43); 
 
MODEL CONSTRAINT: 
             NEW(diff); 
 
             diff = T12 – T11; 
 
             T12 = T13 - diff; 
            
             T21 = T22 - diff; 
             T22 = T23 - diff; 
           
             T31 = T32 - diff; 
             T32 = T33 - diff; 
           
             T41 = T42 - diff; 
             T42 = T43 - diff; 
 
OUTPUT:      NOCHISQUARE; 

Syntax for the rating scale model 

TITLE:       Four-Point Response Scale   
             Rating Scale Model 
              
DATA:        FILE IS Data.dat; 
 
VARIABLE:    NAMES ARE item1 item2 item3 item4;  
             CATEGORICAL ARE item1 item2 item3 item4;  
 
ANALYSIS:    ESTIMATOR = MLR; 
             STARTS = 10;                      
 
MODEL:       f BY item1* item2 item3 item4; 
        
             f@1; 
 
             [item1$1] (T11);             
             [item1$2] (T12); 
             [item1$3] (T13); 
 
             [item2$1] (T21); 
             [item2$2] (T22); 
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             [item2$3] (T23); 
 
             [item3$1] (T31); 
             [item3$2] (T32); 
             [item3$3] (T33); 
 
             [item4$1] (T41); 
             [item4$2] (T42); 
             [item4$3] (T43); 
 
MODEL CONSTRAINT: 
             NEW(diff1 diff2); 
 
             diff1 = T12 - T11; 
             diff2 = T13 - T12; 
 
             T21 = T22 - diff1; 
             T22 = T23 - diff2; 
           
             T31 = T32 - diff1; 
             T32 = T33 - diff2; 
           
             T41 = T42 - diff1; 
             T42 = T43 - diff2; 
 
OUTPUT:      NOCHISQUARE; 

Syntax for the ordinal scale model 

TITLE:       Four-Point Response Scale   
             Ordinal Scale Model 
 
DATA:        FILE IS Data.dat; 
 
VARIABLE:    NAMES ARE item1 item2 item3 item4;  
             CATEGORICAL ARE item1 item2 item3 item4;  
 
ANALYSIS:    ESTIMATOR = MLR; 
             STARTS = 10;                      
 
MODEL:       f BY item1* item2 item3 item4; 
        
             f@1;        
 
OUTPUT:      NOCHISQUARE; 
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Appendix B: Mplus Syntax for the Five-Point Response Scale 

Syntax for interval scale  

TITLE:       Five-Point Response Scale   
             Interval Scale Model 
 
DATA:        FILE IS Data.dat; 
 
VARIABLE:    NAMES ARE item1 item2 item3 item4;  
             CATEGORICAL ARE item1 item2 item3 item4;  
 
ANALYSIS:    ESTIMATOR = MLR; 
             STARTS = 10;                      
 
MODEL:       f BY item1* item2 item3 item4; 
        
             f@1; 
 
             [item1$1] (T11);             
             [item1$2] (T12); 
             [item1$3] (T13); 
             [item1$4] (T14); 
 
             [item2$1] (T21); 
             [item2$2] (T22); 
             [item2$3] (T23); 
             [item2$4] (T24); 
 
             [item3$1] (T31); 
             [item3$2] (T32); 
             [item3$3] (T33); 
             [item3$4] (T34); 
 
             [item4$1] (T41); 
             [item4$2] (T42); 
             [item4$3] (T43); 
             [item4$4] (T44); 
 
MODEL CONSTRAINT: 
             NEW(diff); 
 
             diff = T12 - T11; 
 
             T12 = T13 - diff; 
             T13 = T14 - diff; 
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             T21 = T22 - diff; 
             T22 = T23 - diff; 
             T23 = T24 - diff; 
 
             T31 = T32 - diff; 
             T32 = T33 - diff; 
             T33 = T34 - diff; 
 
             T41 = T42 - diff; 
             T42 = T43 - diff; 
             T43 = T44 - diff; 
 
OUTPUT:      NOCHISQUARE; 

Syntax for the rating scale model  

TITLE:       Five-Point Response Scale   
             Rating Scale Model 
              
DATA:        FILE IS Data.dat; 
 
VARIABLE:    NAMES ARE item1 item2 item3 item4;  
             CATEGORICAL ARE item1 item2 item3 item4;  
 
ANALYSIS:    ESTIMATOR = MLR; 
             STARTS = 10;                      
 
MODEL:       f BY item1* item2 item3 item4; 
        
             f@1; 
 
             [item1$1] (T11);             
             [item1$2] (T12); 
             [item1$3] (T13); 
             [item1$4] (T14); 
 
             [item2$1] (T21); 
             [item2$2] (T22); 
             [item2$3] (T23); 
             [item2$4] (T24); 
 
             [item3$1] (T31); 
             [item3$2] (T32); 
             [item3$3] (T33); 
             [item3$4] (T34); 
 
             [item4$1] (T41); 
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             [item4$2] (T42); 
             [item4$3] (T43); 
             [item4$4] (T44); 
 
MODEL CONSTRAINT: 
             NEW(diff1 diff2 diff3); 
 
             diff1 = T12 - T11; 
             diff2 = T13 - T12; 
             diff3 = T14 - T13; 
 
             T21 = T22 - diff1; 
             T22 = T23 - diff2; 
             T23 = T24 - diff3; 
 
             T31 = T32 - diff1; 
             T32 = T33 - diff2; 
             T33 = T34 - diff3; 
 
             T41 = T42 - diff1; 
             T42 = T43 - diff2; 
             T43 = T44 - diff3; 
 
OUTPUT:      NOCHISQUARE; 

Syntax for the ordinal scale model 

TITLE:       Five-Point Response Scale   
             Ordinal Scale Model 
 
DATA:        FILE IS Data.dat; 
 
VARIABLE:    NAMES ARE item1 item2 item3 item4;  
             CATEGORICAL ARE item1 item2 item3 item4;  
 
ANALYSIS:    ESTIMATOR = MLR; 
             STARTS = 10;                      
 
MODEL:       f BY item1* item2 item3 item4; 
        
             f@1;        
 
OUTPUT:      NOCHISQUARE; 
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Appendix C: R Syntax for Graphical Inspection of Thresholds 
Parameters of the  Four-Point Response Scale  

# install packages 
install.packages(c("MplusAutomation", "ggplot2")) 

 

# load packages 

library(MplusAutomation) 

library(ggplot2) 

 

# set the working directory 

# contains only the Mplus output file of the ordinal scale 

model 

setwd("C:/...") 

 

# extract unstandardized model parameters 

modpar <- extractModelParameters()$unstandardized 

 

# extract thresholds 

modpar <- modpar[modpar$paramHeader == "Thresholds", ] 

 

# create data frame 

df <- data.frame(item = factor(rep(paste("Item", 1:4), each 

= 3)), 

                 thres = factor(rep(1:3, times = 4)), 

                 est = modpar$est) 

 

# plot thresholds 

ggplot(df, aes(est, thres)) + geom_point() + fac-

et_grid(item ~ .) + 

   scale_y_discrete("Threshold") + xlab("Unstandardized 

Estimate") 
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Appendix D: R Syntax for Graphical Inspection of Thresholds 
Parameters of the  Five-Point Response Scale  

# install packages 
install.packages(c("MplusAutomation", "ggplot2")) 

 

# load packages 

library(MplusAutomation) 

library(ggplot2) 

 

# set the working directory 

# contains only the Mplus output file of the ordinal scale 

model 

setwd("C:/...") 

 

# extract unstandardized model parameters 

modpar <- extractModelParameters()$unstandardized 

 

# extract thresholds 

modpar <- modpar[modpar$paramHeader == "Thresholds", ] 

 

# create data frame 

df <- data.frame(item = factor(rep(paste("Item", 1:4), each 

= 4)), 

                 thres = factor(rep(1:4, times = 4)), 

                 est = modpar$est) 

 

# plot thresholds 

ggplot(df, aes(est, thres)) + geom_point() + fac-

et_grid(item ~ .) + 

   scale_y_discrete("Threshold") + xlab("Unstandardized 

Estimate") 

 

 

 

 


