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Abstract 

Presented is a demonstration of an intuitively simple, flexible and computationally inexpensive 

approach to estimating classification accuracy indices for composite score scales formed from the 

aggregation of performance on two or more assessments. This approach uses a two stage applica-

tion of the polytomous extension of the Lord-Wingersky recursive algorithm and can be driven by 

any IRT model with desired simplicity or required complexity to best represent the properties of the 

tests. The approach is demonstrated using operational data from a high stakes mathematics qualifi-

cation which is formed from two tests administered on distinct occasions. To provide the simplest 

representation of a test containing both dichotomous and polytomous items, the partial credit model 

is applied to model behaviour on the two tests. As an extension to this, a testlet model is applied to 

allow joint calibration of parameters from both tests. This model provides more information to the 

calibration process at the expense of some added computational complexity. Further to this, the 

potential application of this approach in the absence of operational data is investigated using a 

comparison of simulated data to the observed data. 
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1 Introduction 

The purpose of this paper is to present a new method for calculating the classification 

accuracy of composite scores. Wherever scores are reported as classifications such as 

pass / fail or grade A to grade E users of those scores have an interest in understanding 

how accurate those classification decisions are. Classification accuracy approaches pro-

vide an estimate of the accuracy of the grading through a comparison of the degree to 

which observed classifications agree with those based on examinees’ true scores (Lee, 

Hanson, & Brennan, 2002; Livingston & Lewis, 1995). Composite score classification 

accuracy refers to the accuracy of classification when scores have been scaled or aggre-

gated across multiple assessments (Livingston & Lewis, 1995). There are a number of 

benefits to understanding the extent of misclassification and the factors that influence it. 

These include being aware of the potential consequences when designing assessments (or 

combinations of assessments) used for a qualification, as part of assessment quality 

control monitoring processes, and also in educating users of qualification results in areas 

such as the over-interpretation of grades. 

Many previous studies have considered classification accuracy for single assessments. 

Wheadon and Stockford (2011) presented an empirical evaluation of the classification 

accuracy and consistency of single assessments forming high stakes qualifications in 

England. This adopted both a Classical Test Theory (CTT) and Item Response Theory 

(IRT) approach as previously implemented in other assessment contexts by Livingston 

and Lewis (1995) (CTT) and Lee (2008) (IRT). For application of CTT approaches to 

classification accuracy see also Breyer and Lewis (1994), Hanson and Brennan (1990), 

Woodruff and Sawyer (1989), and Peng and Subkoviak (1980). In greater depth, Ver-

stralen and Verhelst (1991) have investigated the consequences of applying different IRT 

based measurement models for item calibration and accuracy calculation in an item 

banking scheme, with Lee, Hanson, and Brennan (2002), Wang, Kolen, and Harris 

(2000), and Bramley and Dhawan (2010), considering further IRT based approaches at 

the test level. 

Regarding articulations of classification accuracy at the composite score level, He (2009) 

considers the extensions available for more conventional reliability indicators; however, 

composite score classification accuracy has only been considered in a limited number of 

studies. Van Rijn, Verstralen, and Béguin (2009), Douglas and Mislevy (2010) and 

Chester (2003) looked at the consequences of different decision rules applied to classify 

candidates based on composite scores including consideration of the validity of the rules 

dependent on the content and aims of the assessment. Issues to be addressed when con-

sidering composite score data sets are the hierarchical and multidimensional nature of the 

items across separate assessments. Multidimensional IRT models (Reckase, 1997) offer a 

potential solution to the management of multiple assessment multiple trait scenarios; 

however, the additional model complexity introduced renders operationalization of these 

approaches challenging. Multidimensional IRT models allow the efficiency of assess-

ment to be improved as estimations of performance on related constructs can draw 

strength from each other, as shown, for example, by Frey and Seitz (2011), but where an 

assessment is required, due to validity constraints, to sample from a given number of 



C. Wheadon & I. Stockford 164 

dimensions there is less to be gained from a complex modelling solution applied post-

hoc. 

This study seeks to demonstrate a simple, robust and intuitive analytical solution to esti-

mating composite score classification accuracy. This approach applies no constraints on 

the simplicity or complexity of the model used to represent the constituent tests. The 

proposed approach is demonstrated on an operational data set and its application using 

simulated data is discussed to provide a preliminary insight into the appropriateness for 

use in instances of (partially) absent data. 

2 Method 

2.1 The Data 

The operational data selected for consideration is that arising from an examination un-

dertaken in England, specifically a GCSE Mathematics examination sat in summer 2011. 

This particular GCSE Mathematics qualification is composed of two tests sat on different 

occasions within a relatively short period of time (eight days in this instance). Both tests 

have a maximum mark of 100 and are composed of a mixture of dichotomous and poly-

tomous items, as outlined in table 2. 

 

Table 1:  

Frequency of items with the quoted number of response categories 

 Number of Items with Score Category K Total Number 

of Items 

Maximu

m Mark K = 2 K = 3 K = 4 K = 5 K = 6 

Test 1 12 16 10 4 2 44 100 

Test 2 13 6 13 9 0 41 100 

 

 

When multiple tests are aggregated to qualification level, various methods can be applied 

to scale the test scores. For simplicity the approach used in this study was to sum candi-

dates’ scores on each test and consider the accuracy of grading against these qualification 

level cut-scores. The approach can be easily extended, however, to complex non-linear 

scaling and aggregation approaches. 

The number of candidates with valid marks entered for both tests was 17,957, however, 

for the purposes of practicality when fitting the models described below, a sub-set of 

1,000 candidates was drawn at random from this population. 
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2.2 Measurement models 

In order to estimate misclassification rates for test data it is necessary to select a theoreti-

cal model to represent candidate behaviour. To provide a probabilistic representation of 

candidate performance at the item level, IRT models have been applied here as described 

in the following sections. 

2.2.1 Partial Credit Model 

The partial credit model (PCM) (Masters, 1982) is an extension of the dichotomous 

Rasch model (Rasch, 1960) and allows representation of the probability of a candidate 

achieving a certain score category on a given item. For candidate i, with ability i, re-

sponding to item j, which has Kj available score categories, this model can be expressed 

as: 
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where Xj is the candidate’s achieved score on the item, xk is the item level score available 

in category k, and jk is the k
th
 threshold location of item j. To provide the item parame-

ters, jk , and the person parameters, i , conditional maximum likelihood (CML) esti-

mation can be used (Mair, Hatzinger, & Maier, 2010) resulting in a single most likely 

value of  for each candidate and  for each item category. 

As this model only specifies a single ability parameter for each candidate (as opposed to 

multidimensional IRT models where candidate ability is represented by a vector of abili-

ties) this contains the implicit assumption that the items composing the test are measur-

ing a single dimension. This represents the simplest IRT model to describe polytomous 

items and is used as the base model in this study with separate parameter estimation 

being performed for the two tests. 

To simulate data using this model a simplified approach is taken. Rather than applying 

the full PCM, all items are modelled as being dichotomous therefore mirroring the Rasch 

model with both item and person parameters are drawn from a normal distribution with a 

mean of 0 and a standard deviation of 1.  

2.2.2 The Testlet Model 

High stakes qualifications are frequently composed of assessments in different modes or 

assessing diverse skills or content areas. Therefore, different assessments are measuring 

(or attempting to measure) a number of traits, hence, candidates’ true scores are also 

likely to differ between assessments (but are likely to be positively correlated for any 

qualification that can make reasonable claims of validity). 
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A model which accommodates these differences in linked abilities is the testlet model. 

This model facilitates the analysis of a population of items which can be grouped into 

sub-populations due to some common property. Each sub-population of items which 

share this common property forms a testlet. This grouping of items was initially pro-

posed in the context of computer adaptive testing by Wainer and Kiely (1987) to investi-

gate whether the assumption of local independence of items was being compromised. 

Within the testlet model, candidates are estimated ability parameters, i , for the com-

bined population of items along with a modifier of this ability for each testlet, termed a 

testlet propensity. For polytomous items, this model is provided by the re-expression of 

the equation provided by Li, Li, and Wang (2010) and unitisation of testlet and item 

discrimination parameters as: 
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where    id j
 is candidate i’s testlet propensity for testlet d containing item j. 

To accommodate the increased model complexity compared with the PCM, the item, 

person and testlet parameters are estimated in a Bayesian framework via a Markov Chain 

Monte Carlo (MCMC) approach using Gibbs sampling. In contrast to providing a single 

set of most likely item and person parameters as is the case for CML, this numerical 

approach is executed a number of times resulting in a population of possible item, person 

and testlet parameters (Fox, 2010). Multiple runs of the Bayesian parameter estimation 

will, therefore, provide an indication of stability related to model fit. 

2.3 Estimation of classification accuracy 

Rates of grade misclassification are usually expressed as the inverse measure, classifica-

tion accuracy. The classification accuracy for an individual candidate is defined as the 

probability that their observed score falls in the same grade classification as his or her 

true ability. In an IRT framework a candidate’s test level true score (reflecting true abil-

ity) is defined as the sum of his or her expected item level scores, such that on a given 

test composed of J  items, candidate i has a test true score, i, defined as: 

    
1 1 1

Pr | |
jKJ J

i j k i k j i

j k j

X x x E X  
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Two approaches can be used to estimate the candidate level classification accuracy, as 

described in the following sub-sections. 

2.3.1 Numerical estimation of classification accuracy 

Since IRT models provide a probabilistic representation of candidate behaviour it is 

trivial, although computationally expensive, to estimate classification accuracy statistics 
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numerically. This can be achieved at the candidate level by performing a Monte Carlo 

simulation to generate candidates’ ‘observed’ scores (at the test level, composite level, or 

both) based upon the combination of item and person parameters. The frequency of 

candidates’ observed scores occurring in the same grade classification as his or her true 

score can then be summed and expressed as a proportion of the simulations run to pro-

vide an estimate of the candidate level classification accuracy. 

Whilst this numerical approach is computationally expensive it is congruent with estima-

tion in a Bayesian framework such as that applied for parameter estimation under the 

testlet model. Indeed, such an approach is proposed by Wainer, Bradlow, and Wang 

(2007) for estimation of classification accuracy at the aggregated testlet level which is 

equivalent to composite score when defining testlets in the manner described here. The 

numerical approach is difficult to use, however, when the scores from testlets are scaled 

before they are aggregated. 

2.3.2 Analytical estimation of classification accuracy 

As an alternative to the numerical approach, the probabilistic models can be extended to 

determine analytically the probability that a candidate with given i will achieve each 

score on the test. Lord and Wingersky (1984) propose a recursive approach to calculating 

the probability that a candidate will achieve each score. This can be extended to manage 

polytomous items summarised as: 

      1
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where JY  is the candidate’s test level score on a test of length J, and the probability of a 

test score of zero is given by    
1

Pr 0 | Pr 0 |
J

J i j i

j

Y X 


   . Since this recursive 

method relies on knowledge of the probability of achieving a test score of iY x  it is 

therefore efficient for determining the value of  Pr |i iY   for all scores. Collection of 

these values for all possible values of iY  provides a conditional sum score probability 

distribution. 

As proposed by Lee (2008), for a given test, the probability that a candidate is correctly 

classified can then be determined by integrating this conditional sum score probability 

distribution between the cut-scores that surround the candidate’s true score. The candi-

date level classification accuracy, CAI , is therefore defined as: 
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where  C a  is the grade classification based on a test score of a , and YU,i and YL,i are 

the cut-scores above and below the candidate’s true score, respectively.  
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Proposed here is the extension of this approach to combine test level conditional sum 

score probability distributions, using the Lord-Wingersky recursive algorithm, to provide 

a conditional sum score probability distribution based on composite scores which can be 

applied to equation 6 using the qualification level cut-scores. This provides an estimate 

of a candidate’s qualification level classification accuracy. To achieve this, equations 4 

and 5 can be re-expressed as: 

      1
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where 
TNZ  is the candidate level composite score arising from aggregation of TN  tests, 

ˆ
aY  is the maximum scaled test score on test a, iΘ  is the vector of test level ability pa-
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Using this analytical approach it is relatively easy, once probabilities have been derived 

at the test level, to incorporate linear and non-linear scaling into the process of estimating 

classification accuracy at the composite score level. 

For clarity, the steps of the proposed procedure are: 

1. Fit an appropriate IRT model to the tests (be that separate estimation at the test level 

using the PCM, joint parameter estimation using the testlet model, or otherwise). 

2. Apply the Lord-Wingersky recursive algorithm at the test level (equations 4 and 5) 

for each candidate based on his or her probability distributions of scoring each cate-

gory on each item. This results in a test level conditional sum score probability dis-

tribution for each candidate. 

3. If of interest, apply equation 6 to these conditional sum score probability distribu-

tions, to determine ICA at the test level. 

4. Scale the test level conditional sum score probability distribution using the required 

transformation (be that linear or non-linear). 

5. Reapply the Lord-Wingersky recursive algorithm at the qualification level (equa-

tions 7 and 8) for each candidate based on their scaled test level conditional sum 

score probability distributions. This provides a qualification level conditional sum 

score probability distribution for each candidate. 

6. Apply equation 6 to this conditional sum score probability distribution using the 

qualification level cut-scores to determine ICA at the qualification level. 

 

It should be noted use of the Lord-Wingersky algorithm depends on the assumption that 

the conditional distributions of the item scores are independent of each other. This as-

sumption will not hold for composite scores when models have been fitted separately to 

each test: the conditional probability of achieving a score on one test given a score on the 
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other test would give a more accurate estimation of the likelihood of classification accu-

racy than the marginal probabilities used in the process described here. 

2.3.3 Models fitted 

Three models are fitted: 

1. The partial credit model is fitted to each test separately, the Wingersky-Lord algo-

rithm is applied to the model parameters derived from each test separately, and then 

combined once again using the Wingersky-Lord algorithm. This is the simplest ap-

plication of the procedure suggested here, but is subject to the limitations concern-

ing conditional independence as described above resulting in degradation of the 

classification accuracy estimation. 

2. The partial credit model is fitted to the combined sets of items from both tests and 

the Wingersky-Lord algorithm applied to the single set of model parameters. While 

this approach would not be generally recommended it allows the degradation of the 

estimation from loss of conditional independence in the separate estimation proce-

dure to be evaluated and is valid here due to the highly correlated nature of the test 

scores composing the composite score. 

3. The testlet model is fitted across both tests, with each test representing one testlet. 

The person, item and testlet parameters are then used to define separate conditional 

sum score distributions for each test. The two sets of probabilities are then com-

bined using the Wingersky-Lord algorithm. This approach allows the estimation of 

the model parameters to benefit from joint estimation across both tests. This ap-

proach should yield a more accurate estimation than the separate estimation of par-

tial credit models and does not suffer the loss of conditional independence to which 

model 1 is subjected. 

2.3.4 Classification accuracy summary statistics 

Regardless of both the approach used to estimate the classification accuracy and level of 

the hierarchy at which it is expressed, ICA is available at the individual candidate level. 

Collectively, this provides a rich representation of how classification accuracy varies 

with different candidate properties (usually plotted against candidate true score). Howev-

er, for many applications such as routine quality monitoring, the definition of a single 

summary statistic is potentially beneficial for manageability and interpretability. 

The summary statistic applied here is that proposed by Lee (2008) which takes the mean 

of the candidate level classification accuracies. This statistic can be interpreted as the 

probability that a candidate selected at random from the cohort will be accurately classi-

fied. Whilst this provides an intuitive measure it should be borne in mind if using this 

measure for quality monitoring purposes that this measure is heavily dependent on the 

distribution of candidates across the mark range. This measure reflects as much about the 

properties of the cohort as it does about the underlying assessment (Wheadon & Stock-

ford, 2011). 
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2.4 Software 

The analyses described throughout this work have been implemented in R (R Develop-

ment Core Team, 2011). The PCM model and accompanying CML is implemented using 

the eRm package (Mair, Hatzinger, & Maier, 2010). The MCMC and Gibbs sampling 

procedure applied when estimating parameters under the testlet model was performed 

using JAGS (Plummer, 2012) accessed via the R2jags (Su & Yajima, 2011) R package 

when analysing the operational data. Due to its improved handling of missing data, this 

estimation used WinBUGS (Lunn, Thomas, Best, & Spiegelhalter, 2000) for the produc-

tion and estimation of simulated data due to its robustness in the presence of missing data 

at the expense of a degree of computational speed. The testlet model specification was 

taken from Curtis (2010). In order to support further research in this area the authors 

have developed the R package classify (Wheadon & Stockford, 2012). 

3 Results 

3.1 Descriptive statistics 

Before considering the classification accuracy estimates it is important to examine the 

descriptive statistics to provide some context for the later analyses. The test level de-

scriptive statistics for the operational data are presented in Table 2. The Cronbach’s 

alpha and average item to test correlation are high suggesting each test comprises a co-

herent scale. Both tests show only a slight positive skew with mean marks around 50% 

suggesting that the tests are appropriately targeted at the cohort. The correlation between 

candidates’ scores on the tests is high, which would suggest that a single trait is being 

measured across both tests, and that the hierarchical structure within the data has mini-

mal effect. Indeed, the disattenuated correlation, which approaches a value of 1, is highly 

suggestive of a single dimension being assessed. In spite of this apparent unidimension-

ality, there is still, at least, a strong theoretical case for the use of a testlet model in this 

specific case as the tests are sets of items that are designed to be administered separately 

and are likely to be taught as coherent courses in separation. The consequences of fitting 

the testlet model to this highly coherent data set are evaluated in the next section. 

 

Table 2: 

Descriptive Statistics 

 Mean SD Max Cronbach’s 

Alpha 

Skew Kurtosis Average Item 

to Test 

Correlation 

Inter-Unit 

Correlation 

Test 1 56.88 20.07 100 0.93 0.10 -0.84 0.22 0.92 

Test 2 54.94 22.82 100 0.94 0.06 -1.10 0.26 0.92 

 



Estimation of composite score classification accuracy... 171 

3.2 The testlet effect 

To evaluate the magnitude of the testlet effect for the cohort as a whole, the ratio of the 

variation in abilities can be compared to the variation introduced by the testlet effect 

defined as: 

 
2

2 2

( )d j






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 (9) 

where 2

( )d j  is the variance associated with the testlet parameter. For the operational data 

set presented, this value is 0.11 suggesting a low level of local dependence within the 

testlets. Further, around 11% of candidates have a gamma value that does not intersect 

with zero within one standard deviation (Figure 1). While there does therefore appear to 

be a measurable testlet effect it would seem unlikely that the testlet model would per-

form considerably better than a model which neglects this hierarchy for the purposes of 

estimating classification accuracy in this instance. Additional value is, however, added 

under the testlet model since information is combined from both tests during parameter 

estimation. The analogous non-hierarchical approach is to apply the PCM model to all 

items combined across both tests (as previously specified as model 2). This approach is 

applied in this case to examine the degradation due to loss of conditional dependence; 

but it is only potentially viable with this highly coherent data set as it would violate 

assumptions of the model in the majority of cases. 

 

 

Figure 1:  
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3.3 Model fit of observed data 

To further evaluate the appropriateness of the applied models it is necessary to establish 

how well the models fit the data. As measures of classification accuracy are based on the 

cumulative information yielded by all item information, and the distribution of score 

probabilities compared to the grade boundaries, the most important measure of fit ap-

pears to be the comparison of the observed and expected score distribution. This predict-

ed observed score distribution is defined as the composite conditional sum score distribu-

tions, provided by equations 7 and 8, summed across all candidates (Hanson & Béguin, 

2002).  

Therefore, the IRT models were fitted to the observed data and the estimated frequency 

distributions compared with the observed distribution. As can be seen from Figure 2, the 

estimated distribution from the PCM intersected the multiple models produced by the 

Bayesian fit performed under the testlet model. Critically, the expected score distribu-

tions under both models appears to follow the observed distribution suggesting good 

model fit at the test level in both cases. 

 

 

 

Figure 2: 

Observed and expected score distributions with grade boundaries super-imposed 
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3.4 Classification accuracy 

The candidate level composite score classification accuracy values are illustrated in Figure 

3 (including data sets using simulated item parameters for later reference). All of the mod-

els follow the same typical shape, with the lowest values at the grade boundaries which are 

fundamentally limited to a maximum of 0.5. As can be seen from Figure 4, the differences 

between the testlet model and the PCM models are small apart from score points directly 

around the grade boundaries, with the largest differences occurring around the narrowest 

boundaries. This is due to any differences between the models being accentuated by the 

narrow boundaries where sensitivity to misclassification is greatest. Since the testlet pro-

pensities are small, the differences between the models are likely to be due to the combina-

tion of information across tests due to joint estimation under the testlet model and the con-

straint of item parameters to a common scale resulting in differing item level fit. 

The summary classification accuracy indices for the two individual tests are around 0.79 

under both models. Whilst the accuracy with which candidates are classified at the test 

level is not of primary concern here it is worth noting that these values are higher than 

any measured in Wheadon and Stockford (2011). From consideration of the descriptive 

statistics, this is unsurprising given that both tests have considerably higher mean grade 

boundary separations (13.8 marks and 13.6 marks, respectively) than any considered as 

part of the previous study. 

The composite score classification indices for the different models are presented in Table 

3, including the values for the simulated data sets for later reference. Due to a combina-

tion of the increase in measurement information provided by multiple tests and the in-

creased separation of subject level grade boundaries (27.4 marks) over those found at test 

level, the composite score classification index values increase to around 0.85. These tests 

benefit from long raw mark scales which allow clear differentiation of ability and wide 

spacing of grade boundaries. 

Virtually no difference is apparent between the joint estimation of the partial credit model 

and the separate estimation of the partial credit model. Differences would be due to the loss 

of conditional independence between the test scores on the two separate tests when the 

model parameters are estimated separately. As the tests are highly correlated, the degrada-

tion represents a worst case scenario. This shows that the consequences of violating this 

assumption may be minimal when estimating the classification accuracy summary statistic. 

 

Table 3: 

Classification accuracy under different models 

 

Operational Data Simulated  

Parameters 

 

PCM 

(Model 1) 

PCM with 

JE (Model 2) 

Testlet 

(Model 3) 

Rasch Testlet 

Mean Classification Accuracy 0.853 0.845 0.850 0.878 0.837 

SD of Classification Accuracy - 0.013 0.003 - 0.010 
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3.5 Simulated data sets 

3.5.1 Model fit of simulated data 

While models of the operational data showed good fit to the observed score distributions, 

the entirely simulated models showed a poor fit to both the observed distribution and to 

each other, as shown in Figure 5. However, since these person and item parameters were 

drawn from arbitrary (yet reasonable) distributions of parameters, this is not altogether 

surprising and these differences are likely to be due to the distributions of simulated 

parameters being poorly matched to the operational data. 

To investigate improvements to the accuracy of the simulation, the effects of fixing 

either the person or item parameters was considered. Since it is more likely that the dis-

tribution of person parameters can be estimated from performance elsewhere, the values 

of  were constrained to match those arising from the operational data. This gives rise to 

the estimated composite score distributions given in Figure 6. As expected, this yielded 

more satisfactory fit to the observed distribution for both models, although the data simu-

lated under the testlet model seems to provide a better fit than the data simulated under 

the Rasch model. 

3.5.2 Classification accuracy for simulated data 

In addition to the operational data sets the classification accuracy plots for the simulated 

data with constrained person parameters are shown in Figures 3 and 4. It should be noted  

 

 

Figure 5: 

Observed and simulated expected score distributions 
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Figure 6: 

Observed and simulated expected score distributions with constrained  and  values 
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4 Discussion 
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the probability distributions yielded by potentially simple IRT models which replaces the 

need to model any multidimensionality or hierarchical structure which may exist be-

tween tests. Provided the model used to represent each test is locally valid, the test level 

probability distributions to which the model information is distilled can be applied to the 

process outlined here. Furthermore, it is relatively easy to apply linear or non-linear 

scaling to the scores once the probabilities have been derived; the scaling process is 

problematic for other composite score classification procedures. 

The simplicity of the proposed model comes at the expense of some reduction in test 

information supplied to the fitting process if parameter estimation is undertaken inde-

pendently at the test level. As the probabilities derived from each test are not independ-

ent, there is also likely to be some further degradation of the classification accuracy 

estimates. However, the results presented here suggest the degradation may be minimal.  

Where data is not available, the paper has also shown how simulated item parameters can 

yield reasonably accurate values of classification accuracy along a score scale. How well 

item and person information can be predicted more generally, however, is an empirical 

question that could be worth further investigation in particular contexts.  

The present study was limited to a consideration of two highly correlated tests. The more 

closely correlated the tests the more the estimates of composite score classification accu-

racy will be degraded due to loss of local independence between the test scores. Further 

work is required to demonstrate the robustness of the proposed approach with data sets 

with varying degrees of multidimensional hierarchical effects and comparison to classifi-

cation accuracy estimates derived from other modelling solutions. 

The derivation of a simple, mathematically appealing approach to the calculation of 

classification accuracy for scores derived from multiple tests opens up a range of further 

research opportunities. The approach could be used, for example, to determine the rela-

tive strengths and weaknesses of different scaling and aggregation schemes. Most im-

portantly, however, the simplicity of the approach means that the estimation of classifi-

cation accuracy at the composite score level could become a routine part of qualification 

quality measures as opposed to a research activity in itself. 
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