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Abstract 
This paper examines the effects of complexity-enhancing manipulations of two cognitive tasks – 

Swaps and Triplet Numbers tests (Stankov, 2000) – on their relationship with Raven’s Progressive 
Matrices test representing aspects of fluid intelligence. The complexity manipulations involved four 
treatment levels, each requiring an increasing number of components and relationships among these 
components. The accuracy, speed of processing, and confidence measures were decomposed into 
experimental and non-experimental parts and represented by the latent variables within a structural 
equation model. In the fitted model, four latent predictor variables had substantial path coefficients to 
Raven’s Progressive Matrices test. Experimental accuracy scores for both Swaps and Triplet Numbers 
tests have significant predictive validity. Thus, complexity-enhancing manipulations affect correlations 
fluid intelligence captured by the Raven’s test. In addition, two non-experimental latent variables 
(speed from Triplet Numbers and confidence from Swaps) have significant path coefficients.  
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Introduction 
 
From the individual differences point of view, being more intelligent implies the ability 

to solve more complex problems (see Lohman, 2000; Stankov, 1999). These are defined as 
problems that contain many elements and many inter-relationships among these elements 
(Crawford, 1991). There are, however, complications in the association of ability and task 
complexity. One is that the relationship between task complexity and ability is not linear. A 
human can automatically solve some problems that are computationally complex (Logan, 
1985), and problems that are difficult for humans may be easy for machines (Carpenter, Just, 
& Shell, 1990). The perception of objects in space and working memory tasks are cases in 
point. It is for this reason that we need a method for choosing complex tasks that are clearly 
related to variations in human ability. This is due to the wiring of our nervous system that 
has emerged in the course of evolution and to the development of special skills for solving 
complex problems (Anderson, Fincham, & Douglass, 1997). Halford, Wilson and Phillips 
(1998) provide formal schemes for quantifying complexity in humans. 

The method we suggest is empirical in nature, and it relies on the use of both experimen-
tal and correlational techniques (Cronbach, 1957). To understand intelligence, we need tasks 
that can be manipulated in a systematic way so that lower levels of the task place lower 
demands on the human processor, and higher levels of the task place higher demand. Given 
this design feature, there are two main statistics – means and variances/covariances – that are 
crucial for the examination of changes in task complexity. They each tell us about different 
issues related to task complexity as the term is defined above. Changes in arithmetic means 
reflect changes in the overall levels of performance. In psychometric literature, such changes 
are treated as indicative of task difficulty. From the individual differences point of view, 
changes (e.g., increase) in variances and covariances (or in correlations) are truly indicative 
of complexity. There is an assumption, often expressed by some experimental cognitive 
psychologists, that difficulty and complexity are the same constructs. This is not the case. 
For example, an infrequently used word that is present in a vocabulary test may be difficult 
when used for the assessment of crystallized intelligence (Hunt, 2000), but it is not complex. 
Since means and variances/covariances are statistically independent, it is logical to assume 
that one can have tasks that show an increase in one but not in the other. A good example is 
Raven’s Progressive Matrices test. In our work, five difficulty levels of this test do not show 
systematic changes in correlation with other measures of fluid intelligence (see also Raven, 
Raven, & Court, 2003).  

Thus, the complexity of a task is related to the increase in its correlation with other 
measures of, say, fluid intelligence or in the increase in factor loadings on a fluid intelligence 
factor. A rationale for this can be found in Thomson’s sampling theory of intelligence which 
states that “each test calls upon a sample of the bonds which the mind can form, and that 
some of these bonds are common to two tests and cause their correlation.” (Thomson, 1956; 
p.309). A contemporary exponent of this view is Detterman (1986). We wish to turn this 
argument around and claim that an increase in correlation is an indication of complexity 
whether one subscribes to Thomson’s theory or not.  

There have been several recent attempts to study cognitive sources of fluid intelligence. 
Some of the constructs that have been examined are attention (Schweizer, Moosbrugger, & 
Goldhammer, 2005; Stankov, 1983;1988), working memory (Ackerman, Beier, & Boyle, 
2005; Buehner, Krumm, & Pick, 2005; Stankov & Myors, 1990), speed (Helmbold & 
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Rammsayer, 2006; Roberts & Stankov, 1999) and properties of the nervous system 
(Neubauer, Grabner, Fink, & Neuper, 2005; Stankov, Danthiir, Williams, Pallier, Roberts, & 
Gordon, 2006). Our approach to complexity is compatible with all these putative sources 
since complexity in this paper represents the description of behavior expressed in terms of 
test scores.  

There exist constructs that have properties reflecting complexity in the sense we treat it 
in this paper. An example is working memory which is postulated to involve several interact-
ing units (Baddeley, 1986) that serve the processing according to the demands of complex 
plans that require simultaneous transformation and storage of information (Bayliss, Jarrold, 
Gunn, & Baddeley, 2003). Working memory usually plays an important role in problem 
solving that is characterized by a long and complicated sequence of processing steps (Car-
penter, Just, & Shell, 1990). The complexity that characterizes working memory and prob-
lem solving also applies to intelligence tests that show high loadings on factors of fluid and 
general intelligence (Stankov, 1983; 1999).  

The scientific investigation of complexity requires the construction of tasks that can lay 
claim on being true measures of complexity (see also Raykov & Stankov, 1993; Roberts, 
Beh, & Stankov, 1988; Schweizer, 1993, 1996, 1998; Schweizer & Koch, 2003; Stankov, 
1994, 2000, 2003; Stankov & Crawford, 1993; Stankov & Raykov, 1995). Stankov (2000) 
and Stankov and Raykov (1995) examined evidence for two such tasks – Swaps and Triplet 
Numbers tests – that are described in the method section below. The focus of that work was 
on showing that changes in task complexity lead to an increase in loadings on a factor of 
fluid intelligence. A positive finding was interpreted as a proof that fluid intelligence, at least 
in part, depends on the ability to carry out activities that require an increasing number of 
relatively simple steps to the solution and may be interrupted by momentary lapses of atten-
tion. Similar findings were reported by Schweizer (1996, 2007a) with the Exchange task that 
is akin to the Swaps test. The interpretation is, obviously, in terms of processing resources. 
The interpretation is also with respect to one dependent measure – accuracy of the response 
provided. It is important to note that in addition to the fluid intelligence factor, Stankov 
(2000) postulated two task-related factors (Swaps and Triplet Numbers factors) which, as it 
turned out, did not show the increasing trend on the size of loadings.  

In this paper we use the data reported by Stankov (2000) to further validate previous 
findings. This extension of validation has methodological and substantive aspects. Figure 1 
depicts the model that will be fitted.  

Methodological Extensions. We are applying Structural Equation Modeling (SEM) pro-
cedures proposed by Schweizer (2006a, 2006b, 2007a) for the examination of the effects of 
complexity-enhancing manipulations of the kind considered in this paper. These procedures 
originated in the literature on growth modeling (see McArdle, 1986, 1988; McArdle & Ep-
stein, 1987) and are referred to as fixed-links models. Consider the four left-hand manifest 
variables for the Swaps accuracy scores (SA-I to SA-IV). The essential feature of the model 
is the breakdown of variance and covariance into components associated with latent vari-
ables that represent different cognitive processes such as those produced through experimen-
tal treatments. Treatment levels guide the breakdown of variance and covariance. Thus, the 
levels of the manipulated task (i.e., four levels of the Swaps test) give rise to two latent com-
ponents: non-experimental (“ne” in Fig. 1) and experimental (“ex” in Fig. 1). The model, of 
course, works on covariance matrices and, in its structural part, all loadings on the “ne” 
latent variable are constrained to be equal to 1. On the other hand, loadings on the “ex”  
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Figure 1: 
Structural equation model that relates the latent variables representing the experimental and non-

experimental parts of the measures of accuracy, speed of processing, and confidence to fluid 
intelligence (SA ne = Swaps – accuracy – non-experimental component; SA ex = Swaps – 

accuracy – experimental component; SS ne = Swaps – speed– non-experimental component; SS 
ex = Swaps – speed – experimental component; SC ne =  Swaps – confidence – non-experimental 
component; SC ex =  Swaps – confidence – experimental component; TA ne = Triplet numbers – 

accuracy – non-experimental component; TA ex = Triplet numbers – accuracy – experimental 
component; TS ne = Triplet numbers – speed – non-experimental component; TS ex = Triplet 

numbers – speed–experimental component; TC ne = Triplet numbers – confidence – non-
experimental component; TC ex =  Triplet numbers – confidence – experimental component; 

RPM= Raven’s Progressive Matrices Test) 
 
 

latent variable are allowed to vary and can be chosen to reflect linear, quadratic or, indeed, 
any other kind of trend3. These “ex” variables are expected to correlate with measures of 
fluid intelligence such as Raven’s Progressive Matrices test. Latent variable “ne” may be a 
part of fluid intelligence, but it is constant across complexity-enhancing manipulations, and 
                                                                                                                         
3 In effect, loadings on the fluid intelligence and task-related factors in Stankov’s (2000) analyses parallel 

experimental and non-experimental components of the present approach. The main difference is in the re-
quirement that loadings on the non-experimental latent variable be the same in the procedures of this paper; 
Stankov (2000) did not constrain loadings on the task-related factor(s) to be the same. 
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therefore it does not convey information about the effectiveness of the manipulations. Thus, 
“ne” latent variables capture information processing features of the task that are independent 
of changes in task complexity similar to what was captured by the Swaps and Triplets factors 
in Stankov’s (2000) study.   

Although the procedures outlined above originate in the growth curve modeling, there 
are differences as well. As is already obvious, the emphasis is not on the growth curve but on 
variances and covariances. Furthermore, mean structures are not a part of the fixed-links 
models. On the other hand there are similarities that may not be obvious. For example, there 
is similarity between the latent variable representing slope and the experimental latent vari-
able and also similarity between the latent variable representing intercept and the non-
experimental latent variable. All in all, the procedures enable the separation of the effects of 
different processes according to theoretical assumptions.  

The other important feature of our model is the presence of a separate measure of fluid 
intelligence, Raven’s Progressive Matrices (RPM) test. Unlike Stankov’s (2000) analyses, 
Swaps and Triplet Numbers tests are not included in this factor. A hypothesis to be examined 
in this paper is that, for accuracy scores, experimental effects on Raven’s test will be 
stronger than non-experimental effects, and the “ex” path will be significant for both Swaps 
and Triplet Numbers tests.  

Substantive Extensions. In addition to typical accuracy scores, we employ two other 
measures that can be derived from the same cognitive act – i.e., the answer to a test item. 
These are the speed of providing an answer and confidence in the accuracy of the answer 
provided. Stankov (2000) shows that speed is indeed a separate factor from fluid intelligence 
that is measured by the accuracy scores. Confidence, too, is a separate factor from both fluid 
intelligence and speed, and it was interpreted as an aspect of a metacognitive skill of self-
monitoring. Stankov (2000) did not examine the effects of complexity-enhancing manipula-
tions on speed and confidence scores.  

Are speed and confidence likely to show the same trend as accuracy scores? We believe 
that it is reasonable to assume that non-experimental and experimental latent variables for 
speed and confidence will behave in the same way as do the accuracy scores. After all, the 
three dependent variables are linked to the same cognitive act. We therefore fit identical 
experimental (ex) and non-experimental (ne) models to speed and confidence data.  

As for the relationship to Raven’s Progressive Matrices test (i.e., arrows leading from the 
12 middle layer ovals to the top rectangle in Fig. 1), three possibilities are the most salient. 
One option is to have the same hypothesis as with accuracy scores – i.e., experimental (ex) 
rather than non-experimental (ne) latent variables for speed and confidence will affect RPM. 
The second option would be that non-experimental (ne) rather than experimental (ex) latent 
variables for speed and confidence will affect RPM. The third option is in-between the first 
two and allows for any pattern of experimental and non-experimental path coefficients of 
accuracy, speed, and confidence scores from Swaps and Triplet Numbers tests to lead to the 
RPM.  

A theoretically interesting outcome would be to have significant paths to RPM from ex-
perimental accuracy latent variables and no paths from non-experimental accuracy latent 
variables. If, at the same time, speed and confidence measures have significant paths only 
from the non-experimental latent variables, an argument can be developed for the existence 
of two types of complexity that are captured by the size of path coefficients to RPM. Accu-
racy measures can be said to reflect changes to essentially the same task that imposes higher 
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demands at each level. Speed and confidence, on the other hand, would reflect differences in 
complexity across different tasks or dependent measures. In other words, speed and confi-
dence would be like any two measures of fluid intelligence, e.g., Raven’s Progressive Matri-
ces and Letter Series. To the extent that Raven’s Progressive Matrices test has higher loading 
on the latent referent of RPM than does Letter Series test, we can claim that this test is a 
more complex task. 

We shall use SEM to fit the model in Figure 1. We propose to use the pattern of signifi-
cant and non-significant (zero) path coefficients to examine the effects of complexity-
enhancing manipulations on fluid intelligence. 

 
 

Aims 
 
In this paper we examine the effects of complexity-enhancing manipulations of Swaps 

and Triplet Numbers tasks on a well-known measure of fluid intelligence, Raven’s Progres-
sive Matrices test. The manipulations involve four levels of increasing task complexity for 
each task. The causal model postulates the existence of two latent variables that capture 
experimental (ex) and non-experimental (ne) effects for each task. We employ three depend-
ent measures: accuracy, speed of providing answers, and confidence. Our hypothesis is that 
complexity-enhancing manipulations from both tasks will affect RPM. 

 
 

Method 
 
Participants 

 
The sample consisted of 345 participants. These were first-year psychology students at 

the Universities of Melbourne and Sydney, Australia. They took part in the experiment to 
satisfy their course requirements.  

 
 

Study design 
 
The study design included one criterion variable and 24 predictor variables. The set of 

predictor variables resulted from the systematic combinations of two types of test demands 
(Swaps and Triplet Numbers Tests), three observational methods (Accuracy, Speed, Confi-
dence) and four treatment levels. The treatment levels differed systematically from each 
other in that each subsequent treatment imposed higher cognitive processing demands. 
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Criterion variable 
 
Raven’s Progressive Matrices4. The computerized version of Raven’s Matrices included 

40 items. Twenty items were adapted from “Standard Matrices” and the other items from 
“Advanced Matrices.” The mean and standard deviation of the scores obtained from the 40-
items Raven’s Progressive Matrices test were 26.92 and 7.40 respectively. 

 
 

Predictor variables 
 
Swaps Test. The stimulus material for all versions of the Swaps test consisted of a set of 

three letters – J, K, and L – presented simultaneously on the computer screen, though not 
necessarily in that order. The instructions were to mentally interchange, or “swap,” the posi-
tions of two of the letters. The four versions of the task differed in the number of such in-
structions. There were four blocks of 12 items with an equal number of swaps. For items 
consisting of two or more swaps, the participant had to keep track of the concurrent se-
quence. These items were randomly mixed to form a 48-item test. The participants did not 
know how many swaps would be required on any given trial. To preclude the possibility of 
memory for instructions limiting performance on this task, the required swap instructions 
were also kept visible throughout the participants’ work. The answer consisted of typing the 
three letters in the order resulting from all the swaps. Examples of the four increasingly more 
involved sub-tasks are as follows: 

 
Stimuli: J K L. 

Swap1. “Swap 2 and 3.” (Answer: J L K.) 
Swap2. “Swap 2 and 3,” “Swap 1 and 3.” (Answer: K L J.)  
Swap3. “Swap 2 and 3,” “Swap 1 and 3,” “Swap 1 and 2.” (Answer: L K J.) 
Swap4. “Swap 2 and 3,” “Swap 1 and 3,” “Swap 1 and 2,” “Swap 1 and 3.” (Answer: J K L.) 

 
For each item, the accuracy of the response and time for responding was recorded and 

the result stored on hard disk. In addition, participants were asked for a confidence rating. 
They had to indicate how confident they were that the answer was correct using a 0 to 100 
percent scale. For each treatment level, a confidence score and average speed of responding 
were computed for further analyses.  

The Triplet Numbers test. The stimulus material for all versions of the Triplet Numbers 
Test employed in this study consisted of a randomly chosen set of three different digits pre-
sented simultaneously on the computer screen. These digits changed after each response. The 
four versions of this test differed with respect to the instructions given to the participants and 
time limits5. Instructions for the increasingly complex versions were as follows: 

                                                                                                                         
4 Stankov’s (2000) study contained two additional tests of Gf: Letter Series and Counting Letters. Following 

on the request of an unknown reviewer, these two tests were excluded from the analyses presented in this 
paper. 

5 Our experiences with this test indicate that Triplet1, Triplet2, and – to some extent – Triplet3 are so easy that 
participants start experiencing boredom and frustration if a 6-minute time limit (employed with Triplet4) is 
imposed. In our previous work, shorter versions of these tests showed satisfactory psychometric properties. 
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Triplet1. Press the “Yes” key if a particular number – e. g., 3 – is present within the trip-
let. Otherwise, press the “No” key. Maximum time allowed: 2 minutes 

Triplet2. Press the “Yes” key if the second digit is the largest within the triplet. Other-
wise, press the “No” key. Maximum time allowed: 3 minutes 

Triplet3. Press the “Yes” key if the second digit is the largest and the third digit is the 
smallest . Otherwise, press the “No” key. Maximum time allowed: 5 minutes 

Triplet4. Press the “Yes” key if the first digit is the largest and the second digit is the 
smallest or the third digit is the largest and the first digit is the smallest. Otherwise, press the 
“No” key. Maximum time allowed: 6 minutes 

Three aspects of the responses were recorded for each item: (a) Accuracy, (b) Speed 
(time between the onset of the stimulus and response given), and (c) Confidence rating on a 
percentage scale. For each treatment level, a confidence score and average speed of respond-
ing were computed for further analyses. The accuracy scores of the fourth treatment level 
substantially deviated from the other levels and, therefore, was adjusted.  

 
 

Statistical analyses 
 
Structural Aspects of the Model. There were 25 manifest variables in this study (rectan-

gles in Figure 1). One manifest variable, Raven’s Progressive Matrices test, served as the 
indicator of the latent criterion variable (i.e., fluid intelligence), and the remaining manifest 
variables served as indicators of the latent predictor variables. Since there were no other 
manifest criterion variables and the internal consistency of Raven’s Matrices was about .80, 
the loading and error component were fixed in such a way that the standardized loading was 
.80 and the standardized error component was .36. The 24 indicators of the latent predictor 
variables resulted from a systematic combination of the two tests (Swaps Test and Triplet 
Numbers Test), the three observational methods (accuracy, reaction time, confidence,) and 
four treatment levels (2 x 3 x 4 = 24).  

In our model, there were 12 latent predictor variables. Two uncorrelated latent predictor 
variables were postulated for each quadruple (i.e., four treatment levels) of manifest vari-
ables associated with the same test and observational method. For example, two uncorrelated 
latent predictor variables were associated with four accuracy levels of the Swaps test. As we 
describe below, the two latent variables for each quadruple captured non-experimental ef-
fects (“level” in growth curves terminology) and experimental effects (i.e., change due to 
treatment). These latent variables were not allowed to correlate with each other. In contrast, 
the latent predictor variables were allowed to correlate across quadruples. Thus, latent vari-
able for non-experimental effect on accuracy was allowed to correlate with latent variables 
for non-experimental effects for speed of responding and confidence.  

The Fixing of the Links. The conventional model was transformed into fixed-links mod-
els in order to be able to decompose the observed measurements into components that re-
sulted from the complexity-enhancing manipulation associated with the treatment levels and 
components that were independent of the complexity-enhancing manipulation. The transfor-
mation into a fixed-links model required the fixation of the links relating the latent variables 
to the manifest variables. This was achieved by assigning fixed numbers to the loadings, i.e., 
free loadings were replaced by constrained loadings.  
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The representation of non-experimental components (“level”) had to be achieved by the 
selection of a constant. The number “one” was selected for this purpose. The representation 
of the experimental effect was not expected to be associated with a specific curve (e.g. linear 
increase, quadratic increase) since there were indications of ceiling effects and equal dis-
tances between the treatment levels could not be assumed. Consequently, mixtures of curves 
were considered. This was achieved in successive steps. At first, the best-fitting type was 
selected and included into the model (e.g., 1, 2, 3, 4 for the linear increase due to the experi-
mental treatment). Subsequently, the appropriateness of the representation was investigated, 
and adjustments were made in considering the modification indices provided by the program. 
The aim was to achieve the best possible representation of treatment levels for each quadru-
ple of manifest variables. This procedure led to the creation of two vectors of numbers serv-
ing as constrained loadings (= fixed links). Standardized coefficients corresponding to the 
fixed links in the covariance structure solution are listed in rows “ne” and “ex” in Figure 2.  

In order to examine the relative importance of the experimental and non-experimental 
components, we compared variances of the two latent variables that were linked to each 
quadruple of manifest variables. However, since the sizes of the variances depended on the 
sizes of constrained loadings, large loadings tended to be associated with small variances and 
small loadings with large variances. To avoid such a confounding of variances with loadings, 
the loadings were standardized (see Schweizer, 2007b for an example). These comparisons 
are reported in Table 2. 

The Strategy. The main aim of this study was the investigation of the relationships be-
tween the latent predictor and criterion variable. This aim could be achieved in two ways. 
The first approach was the computation of correlations between each individual latent pre-
dictor variable and the criterion variable. The second approach was the computation of path 
coefficients (gamma coefficients in LISREL model) in order to find the most appropriate set 
of predictors. In this paper, we use both approaches (see Table 3 and Figure 2, respectively). 

The data were analyzed with LISREL (Jöreskog & Sörbom, 2001).  
 
 

Results 
 
Model-data fit 

 
The model-data fit was explored in two ways. First, in what we call the “pure” model, no 

correlations among error components were allowed. In the second, “adjusted” model we 
allowed three pairs of error components to correlate among themselves6. Table 1 gives the fit 
indices for these two models.  

                                                                                                                         
6 The pairs of error components were Swaps-accuracy of second treatment level and Swaps-confidence of 

second treatment level; Triplet-accuracy of fourth treatment level and Triplet-reaction time of fourth treat-
ment level; and also Triplet-accuracy of fourth treatment level and Triplet-confidence of fourth treatment 
level. Furthermore, two constrained loadings were set free. 
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Table 1:  
Fit Statistics Obtained for the Fixed-Links Models Based on Accuracy, Confidence and Speed 

Data of Swaps and Triplet Numbers Tests (Stankov, 2000) 
 

Model χ2 df RMSEA SRMR GFI CFI NNFI AIC SMC 
Pure model 761.68 256 .076  

(.070-.082) 
.078 .85 .91 .90 899.68 .30 

Adjusted model 644.55 253 .067  
(.061-.074) 

.079 .87 .93 .92 788.55 .30 

Note: Confidence interval is included within the parentheses. 
 
 
The model-data fit of the pure model is acceptable. The ratio of chi-square and degrees 

of freedom was below 3, and RMSEA was below .08. The fit indices were above or near the 
borderline for an acceptable fit. The model-data fit of the adjusted model was better than the 
model-data fit of the pure model. The ratio of chi-square and degrees of freedom was close 
to 2, and RMSEA was close to .05. Furthermore, almost all the other fit indices indicated an 
improved model fit. The estimated parameters of the two models turned out to be very close. 
To avoid clutter, we present only the “pure” model parameters in the remainder of this paper; 
the main conclusions from the two models are the same.  

 
 

Constrained experimental and non-experimental parameters 
 
Figure 2 presents standardized coefficients for the “pure” SEM solution. There are two 

sets of constrained elements in this figure. The row labeled “ne” on the right-hand side pro-
vides coefficients for the arrows originating from the “ne” latent variables. In the non-
standardized – i.e., covariance matrix – all these coefficients were fixed at one. They all 
differ from one in this row because of standardization – i.e., variances of the manifest vari-
ables differ among themselves – and because an increasing part of each manifest variables’ 
variance is removed by the “ex” component. Underneath the “ne” row are the coefficients 
for the experimental “ex” latent variables. In the fitted solution based on covariances, these 
coefficients are constrained to reflect increases corresponding to complexity-enhancing 
manipulations. They are reflecting variations in task complexity. That is, an increasing pro-
portion of variance for each higher complexity task is due to common variance that this task 
shares with other tasks in the battery. 

 
 

Experimental vs. nonexperimental comparison: variances of the latent predictor  
variables 

 
Since in the fixed-links models the loadings are constrained, the variances have to be es-

timated. The first column in Table 2 provides these variances.  
It is obvious from Table 2 that all variances have reached the level of statistical signifi-

cance. Thus, both experimental and non-experimental effects are significant.  
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Figure 2: 
Structural equation model that relates the substantial set of latent variables representing the 

experimental and non-experimental parts of the measures of accuracy, speed of processing, and 
confidence to fluid intelligence with the parameter estimates (The numbers given between the 
arrow heads and rectangles in the lower part of the Figure are standardized fixed loadings and 

residual variances.) 
 
 
Because of standardization (see Schweizer, 2007b), it is possible to compare variances of 

the two latent variables with links to the same manifest variables (i.e., “ne” and “ex” latent 
variables). The second column of Table 2 provides values for these comparisons. These are 
percentages that add up to 100 % for the pairs consisting of experimental and non-
experimental latent variables. For example, the percentages of the variances of Swaps accu-
racy – experimental and Swaps accuracy – non-experimental are 44.2 % and 55.8 %. 
Clearly, the experimental part of the variance is larger than the non-experimental part. Over-
all, larger experimental variances are found for Swaps accuracy, Swaps reaction times, and 
Triplet Numbers accuracy whereas larger non-experimental variances were observed for 
Swaps confidence, Triplet Numbers speed, and Triplet Numbers confidence. This finding is 
in general agreement with the hypothesis that complexity-enhancing manipulation will affect 
accuracy scores from both tests. 
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Table 2:  
Variances of the Latent Variables Representing the Experimental and Non-experimental Parts of 

the Measures of Accuracy, Speed of Processing, and Confidence 
 

Latent (predictor) variable Variance Percentage of  
Variance 

Swaps accuracy - non-experimental 164.72* 44.2 
Swaps accuracy - experimental 208.02* 55.8 
Swaps speed - non-experimental 10.42* 33.5 
Swaps speed - experimental 20.73* 66.5 
Swaps confidence - non-experimental 150.69* 52.0 
Swaps confidence - experimental 139.32* 48.0 
Triplet accuracy - non-experimental 6.24* 52.5 
Triplet accuracy - experimental 5.65* 47.5 
Triplet speed - non-experimental 16.23* 67.3 
Triplet speed - experimental 7.89* 32.7 
Triplet confidence - non-experimental 27.71* 73.5 
Triplet confidence - experimental 10.01* 26.5 
* p < .05.   

 
 

The correlations between latent predictor variables 
 
Table 3 presents correlations between the latent predictor variables and, in the last row, 

correlations with the Raven’s Progressive Matrices (RPM) scores.  
Altogether, there are 60 non-zero correlations between the predictor variables. Correla-

tions between six pairs of variables were fixed at zero since the corresponding latent vari-
ables were linked to the same set of manifest variables. These latent variables were expected 
to account for different parts of variance; fixing them at zero ensures their independence. 
Correlations above about .11 in Table 3 are significant at the .05 level7. The number of cor-
relations among the predictor variables reaching the level of significance in Table 3 is 38 
(63.3 %).  

Overall, correlations between components of the same test (Swaps or Triplet Numbers) 
are higher than correlations between components of different tests. The highest correlations 
are between non-experimental accuracy and non-experimental confidence (Swaps: .81, Trip-
let Numbers: .86) and also between experimental accuracy and experimental confidence 
(Swaps: .63, Triplet Numbers: .86). The correlations for the pairs of experimental accuracy 
and experimental speed are also high (Swaps: .67, Triplet Numbers: .64). Moderate correla-
tions between the two tests were found for non-experimental accuracy (.48) and non-
experimental speed (.59). Finally, correlations between experimental accuracy and experi-
mental confidence were high (.63 for Swaps and .89 for Triplet Numbers). The pattern of 
correlations suggests that there are relatively strong relationships between accuracy and 
confidence and between accuracy and speed.  

                                                                                                                         
7 Each correlation coefficient in Table 3 has its own significance level. The value of .11 that is reported in the 

text as a cut-off number is only an approximation. 
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Table 3: 
Correlations Between the Latent Variables Representing the Experimental and Non-experimental 

Parts of the Measures of Accuracy, of Speed of Processing, and of Confidence and Fluid 
Intelligence (Adjusted Model) 

 
Code of 
variable 

SA 
ne 

SA 
ex 

SS 
ne 

SS 
ex 

SC 
ne 

SC 
ex 

TA 
ne 

TA 
ex 

TS 
ne 

TS 
ex 

TC 
ne  

TC 
ex  

SA ne  1.00     
SA ex  - -   1.00    
SS ne  .10  -.38  1.00   
SS ex  .40  .67  - -  1.00   
SC ne  .81  .01  .19  .29  1.00   
SC ex  -.01  .63  -.27  .50 - - 1.00   
TA ne  .48  -.01  .16 .20  .33 .09 1.00   
TA ex  .25  .29  -.09  .37 .02 .00 - - 1.00   
TS ne  -.08  -.19  .59  -.16  .01 -.01 .14 -.15 1.00   
TS ex  .13  .17  .01  .40  .00 .02 .07 .64 - - 1.00   
TC ne  .18  .03  .03  .08  .28 .18 .86 -.35 .00 .01 1.00  
TC ex  .12  .31  .09  .36 .14 .18 -.35 .89 .03 .04 - - 1.00 
RPM .29 .36 -.22 .36 .29 .17 .05 .27 -.33 .14 .03 .25 

Note. SA ne = Swaps – accuracy – non-experimental component; SA ex = Swaps – accuracy – experimental 
component; SS ne = Swaps – speed – non-experimental component; SS ex = Swaps – speed – experimental 
component; SC ne =  Swaps – confidence – non-experimental component; SC ex =  Swaps – confidence – 
experimental component; TA ne = Triplet numbers – accuracy – non-experimental component; TA ex = 
Triplet numbers - accuracy – experimental component; TS ne = Triplet numbers – speed – non-experimental 
component; TS ex = Triplet numbers – speed – experimental component; TC ne = Triplet numbers – 
confidence – non-experimental component; TC ex =  Triplet numbers – confidence – experimental component. 
RPM = Raven’s Progressive Matrices test. 

 
 

Correlations Between latent predictors and criterion variable (RPM) 
 
The last row in Table 3 presents correlations between all latent predictor variables and a 

criterion variable (RPM) representing fluid intelligence. Almost all correlations in the last 
row are significant. There are only two exceptions: the correlation with the non-experimental 
component of the Triplet Numbers confidence and with non-experimental component of 
Triplet Numbers accuracy. Almost all correlations are positive. There are only two excep-
tions: the non-experimental components of speed correlated negatively with fluid intelli-
gence. The range of the correlations (absolute values) is considerable (lower limit: .03, upper 
limit: .36).  

 
 

The prediction of RPM test scores (Fluid Intelligence) 
 
Path coefficients (i.e., gamma coefficients in LISREL notation) between latent variables 

and RPM are also presented in Figure 2. Only four path coefficients reach the .05 level of 
significance. Two of these path coefficients relate experimental accuracy components to 
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fluid intelligence. These are the path coefficients of the experimental components of Swaps 
accuracy (.30) and of Triplet Numbers accuracy (.16). This is in accordance with the expec-
tations – accuracy scores from the experimental tasks show increasing correlations with the 
accuracy scores from the RPM. At the same time, non-experimental components of accuracy 
scores do not show increasing correlations with RPM.  

The other two significant path coefficients relate non-experimental components to fluid 
intelligence. They are path coefficients of the non-experimental components of Swaps confi-
dence (.31) and of Triplet Numbers speed (-.31). As expected, path coefficients of the non-
experimental components of Triplet Numbers speed were the only path coefficients that are 
negative.  

The small number of substantial path coefficients is not a surprising result since the cor-
relations in Table 3 made it obvious that there is a degree of co-linearity among the latent 
predictor variables. It is obvious from the squared multiple correlation presented in the last 
column of Table 1 that these four predictors lead to a sizeable multiple correlation of about 
.55.  

 
 

Summary and discussion 
 
The analyses reported in this paper extend our knowledge about the role of complexity 

manipulations in Raven’s Progressive Matrices test and, by extension, of fluid intelligence. It 
seems meaningful to conceive of the complexity of a particular task as consisting of two 
parts – a part that is sensitive to complexity-enhancing manipulations and a part that is con-
stant across different levels of complexity-enhancing manipulations. This distinction is made 
in the analyses of this paper and also in the analyses reported by Stankov (2000). From both 
sets of analyses it is clear that accuracy measures are sensitive to complexity manipulations 
on both Swaps and Triplet Numbers tasks, and that experimental rather than non-
experimental component of accuracy scores is affecting fluid intelligence. This finding is in 
agreement with findings based on the manipulation of the demands on working memory 
(Carpenter, Just, & Shell, 1990; Stankov & Myors, 1990). On this basis alone, we can say 
that the increase in the number of steps to complete the task, which is a salient feature of the 
Swaps test, or the increase in the number of components in the Triplet Numbers task are 
important aspects, perhaps the essence, of fluid intelligence as captured by the RPM.  

Although the variance of speed and confidence measures can also be divided into the 
same two parts – i.e., experimental and non-experimental – the experimental part of neither 
measure shows a relationship to fluid intelligence. Therefore, speed and confidence are not 
the essence of RPM and fluid intelligence in the same way as accuracy scores are. But they 
cannot be ignored either, since non-experimental components of Swaps confidence and 
Triplet Numbers speed also affect fluid intelligence. These last two findings will need to be 
replicated. Significant path coefficients for the two non-experimental latent variables imply 
that fluid intelligence captured by RPM test is broader in this study than as it is usually con-
ceived – it is not limited to accuracy scores only, but also to speed and confidence from the 
latent predictor variables. As mentioned in the introduction, the presence of the significant 
paths from the non-experimental latent variables to complexity-enhancing manipulations and 
to RPM suggests that it may be meaningful to distinguish between two conceptualizations of 
complexity: experimental and task-related. 
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Replication of this finding is in order for the following two reasons. First, there is ample 
evidence in the literature that fluid intelligence defines a factor that differs from speed (see 
Carroll, 1993) and confidence (Kleitman & Stankov, 2007; Stankov, 2000). Second, it is not 
readily apparent why the other two non-experimental latent variables – Swaps speed and 
Triplet Numbers confidence – did not have significant path coefficients as well.  

In this paper we limit ourselves to the typical measurement of fluid intelligence in terms 
of accuracy scores from a well-known measure of Gf. There are many other options that we 
have not addressed here. For example, measures of Gf such as Raven’s Progressive Matrices, 
can also be used to assess speed and confidence. Thus we may have three rectangles – accu-
racy, speed, confidence – at the top of Figure 1. What happens to “ne” and “ex” path coeffi-
cients in this condition? Some careful theorizing about the nature of intelligence that can 
guide the choice of models to be fitted is clearly in order. 

We believe that an improved understanding of abilities at different levels in a hierarchy 
(primary or broad abilities) can be achieved by a combination of the experimental and corre-
lational approaches we have employed in this paper. One can ask, for example, what are the 
manipulations that lead to changes in loadings on the mental speed or confidence factors? A 
systematic program of research along similar lines can be of theoretical interest because it 
will lead to a more precise definition of human abilities. Inevitably, this would generate 
practical benefits because of the possibility for systematic creation of tests that would be 
suitable for particular ability and developmental levels. 
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