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Abstract 

Missing responses resulting from omitted or not-reached items are beyond researchers’ control and 
potentially threaten the validity of test results. Empirical evidence concerning the relationship 
between missingness and test takers’ performance on the test have suggested that the missing data 
mechanism is nonignorable and needs to be taken into account. Various IRT-based models for 
nonignorable item nonresponses have been proposed (Glas & Pimentel, 2008; Holman & Glas, 
2005; Korobko, Glas, Bosker, & Luyten, 2008; Moustaki & Knott, 2000; O’Muircheartaigh & 
Moustaki, 1999; Rose, 2013; Rose, von Davier, & Xu, 2010). In this article, we adopted Rubin’s 
(1976) definitions of missing data mechanisms for educational and psychological measurement and 
consider the implications for maximum likelihood (ML) estimation in IRT models for incomplete 
data. Next, we derived multidimensional IRT models for nonignorable item nonresponses. Further, 
we investigated latent regression models and multiple group IRT models for nonignorable missing 
responses and compared to multidimensional IRT models. Although these models have a great deal 
in common, there are important distinctions in the underlying assumptions and restrictions; these 
have critical implications with respect to their use in real applications. Then, we provided addition-
al insight on how models for nonignorable item nonresponses adjust for missing responses. Finally, 
we offered a list of guiding questions, which support the choice of appropriate models in concrete 
applications.  
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Missing data are an inevitable problem for applied researchers. They may occur for 
many different reasons. For example, participants may not be willing to participate in a 
study, leading to unit nonresponses, or participants may be unable or unwilling to answer 
all items of a test. Such item nonresponses typically result from omitted or not-reached 
items and are common in educational assessments. Furthermore, test takers provide 
answers that cannot be scored meaningfully, producing item nonresponses due to not-
codable item responses. Unplanned missing data resulting from test takers’ response 
behavior must be distinguished from planned missing data due to the design (Graham, 
Taylor, & Cumsille, 2001; Graham, Taylor, Olchowski, & Cumsille, 2006). Especially in 
large scale assessments (LSA), only subsets of items are assigned to test takers to reduce 
costs, participant burden, fatigue, or potential practice effects. With an appropriate test 
design, including randomized assignment of the different test forms, planned missing 
data does not pose a threat to validity. Therefore, we focus on the more challenging case 
of unplanned missing data, which pose not only a loss of efficiency, but potentially lead 
to biased estimation of item and person parameters in the measurement model. In large 
scale assessments (LSA), parameters of the structural model such as means, variances, 
covariances of latent variables are of primary interest instead of individual proficiency 
levels; however, these distributional parameters may also be biased due to item nonre-
sponses.  

Many different approaches to handle missing values have been proposed. Weighting 
methods, such as inverse probability weighting, are commonly applied to account for 
unit nonresponses (Li, Shen, Li, & Robins, 2011; Wooldridge, 2007). The simplest ap-
proach for item nonresponses is listwise deletion, the inclusion of complete cases into the 
statistical analysis. Pairwise deletion was proposed as an alternative for models that are 
based on bivariate statistics, such as structural equation models (SEM) that use covari-
ance matrices as input for parameter estimation. Single and multiple imputation methods 
rest upon the idea that one should replace missing values with predicted or plausible 
values in the first step (imputation phase). Next, the augmented data sets are analyzed 
with standard methods in the second step (analysis phase). In contrast, model-based 
approaches, such as full information maximum likelihood (FIML), allow for parameter 
estimation with incomplete data sets. The suitability of the different missing data han-
dling methods depend on whether certain assumptions hold. These assumptions can be 
derived from Rubin’s taxonomy of missing data (1976; 2002). He distinguishes between 
three missing data mechanisms: Missing completely at random (MCAR), missing at 
random (MAR), and not missing at random (NMAR). We will examine these mecha-
nisms in greater detail later in this paper. So far it suffices to note that missing data that 
are MCAR and MAR are also called ignorable. In this case, missingness is either com-
pletely independent of the observed and unobserved variables under examination 
(MCAR), or conditionally stochastically independent of the unobserved variables given 
the observed variables (MAR). The stochastic independencies imply that missingness is 
not informative with respect to unobserved variables and underlying model parameters 
and can therefore be ignored. Almost all modern missing data methods rest upon the 
assumption that the missing data mechanism is ignorable. This is also true for methods 
like FIML and multiple imputation, which are regarded as state of the art methods for 
item nonresponses (Schafer & Graham, 2002). In contrast, missing data that are NMAR 
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are termed nonignorable. In this case, missingness is not conditionally independent of the 
unobserved variables given the observed variables. Such missingness is also called in-
formative with respect to unobserved variables. Discarding this information may result in 
a biased estimation of model parameters.  

In order to account for nonignorable missing data, two classes of models, selection mod-
els (SLM; Heckman, 1976, 1979) and pattern mixture models (PMM; Little, 1993, 2008) 
have been developed. The rationale underlying both models is to combine a model of 
missingness and the analytic model of substantial interest. Information about missingness 
in this joint model is used to adjust for nonresponses in variables of the analytic model. 
Such approaches are of particular interest for item nonresponses in low-stakes education-
al assessments since evidence has been repeatedly found suggesting that missingness due 
to omitted and not-reached items depends on the persons’ performance in the test. Rose 
et al. (2010) reported a negative correlation (r = −.330) between the response rate and the 
proportion correct score in the PISA 2006 data. They also found that easier items were 
more often completed than difficult items. Test takers do not seem to omit items random-
ly. Pohl, Gräfe, and Rose (2014) also found negative correlations between the latent 
ability and (a) the propensity to omit items (r = −.175), and (b) the propensity for item 
nonresponses due to not-reached items (r = −.200). Similarly, Culbertson (2011) found 
higher rates of omitted items in persons with lower test scores, at least in items where 
students are required to produce a response actively. Since test takers’ performance on a 
test is an indicator of their latent abilities, which are inherently unobservable, the MAR 
assumption seems questionable. 

Starting with O’Muircheartaigh and Moustaki (1999) and Moustaki and Knott (2000), 
multidimensional IRT models for nonignorable missing responses have been proposed 
and further developed in a series of papers (Glas & Pimentel, 2008; Holman & Glas, 
2005; Korobko et al., 2008; Moustaki & Knott, 2000; O’Muircheartaigh & Moustaki, 
1999; Rose, 2013; Rose, Von Davier, & Nagengast, 2015; Rose et al., 2010). It could be 
demonstrated that these models are special cases of both PMM (O’Muircheartaigh & 
Moustaki, 1999) and SLM (Rose, 2013) adapted for the case of latent trait models under 
specific assumptions. Different MIRT models for missing responses have been discussed 
in the literature. In all these MIRT models a latent response propensity is assumed that 
underlies the response indicator variables which represent missingness of item responses. 
This approach is promising for many real applications but suffers from increased model 
complexity and strong assumptions. Rose et al. (2010) and Rose (2013) proposed latent 
regression models (LRM) and multiple group (MG) IRT models for nonignorable item 
nonresponses as alternatives, which are computationally less demanding and more flexi-
ble. Although closely related to MIRT models, the LRM and the MG-IRT model rest 
upon different assumptions. Therefore, these different models may be more or less ap-
propriate in different applications. 

The aim of this paper is threefold: First, we clarify the underlying rationale of IRT mod-
els for nonignorable item nonresponses by deriving these models from traditional SLMs. 
Second, we compare MIRT models, LRMs, and MG-IRT models for missing responses 
and reveal the commonalities and differences. We explain the assumptions of the differ-
ent approaches, highlight the advantages and disadvantages of each model, and discuss 
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the implications for their use in real applications. Third, we provide guidance regarding 
the choice between the different model-based approaches and their application to real 
data. 

This paper is organized as follows: We begin with definitions of missing data mecha-
nisms following Rubin’s taxonomy, but with some adoptions for peculiarities of educa-
tional and psychological measurement. We will then consider ML estimation in IRT 
models with the focus on marginal ML (MML) estimation as the most commonly used 
estimator for MIRT models. We will then examine the relationship of MIRT models to 
the LRMs and MG-IRT models. Subsequently, we provide some insights in how these 
models adjust for missing responses considering the EM algorithm used for MML esti-
mation. After a synoptic comparison of the different models, the implications of the 
theoretical considerations with respect to applications will be discussed. In order to sup-
port selection and application of models for nonignorable item nonresponses, we also 
provide a list of relevant questions that can serve as a guide for applied researchers. We 
conclude with a summary and suggestions for future research.  

Defining the missing data mechanism in educational and 
psychological measurement 

The phrase missing data mechanism does not imply causality, rather the three missing 
data mechanisms considered here are defined by stochastic dependencies between ob-
served and unobserved variables (Schafer & Graham, 2002). Following Rubin (1976), 
the observed data matrix Y = y can be decomposed into an observed part Yo = yo and a 
missing part Ym = ym so that Y = (Yo ,Ym) and y = (yo, ym). Missingness is conceptualized 
as a random variable within the same probability space like Y. In his original formulation 
Rubin did not distinguish between dependent or independent variables, auxiliary varia-
bles, and covariates. However, in psychological and educational measurement, the items 
constituting a measurement model, the covariates, such as gender, socioeconomic status, 
motivation, etc., and the latent variables are different types of variables. During the scal-
ing procedures in application of measurement models these variables are treated differ-
ently. Accordingly, we consider these distinct groups of variables in the definitions of the 
missing data mechanisms. 

Let N be the sample size with the observations n = 1, ... , N. Furthermore, the measure-
ment model of potentially multidimensional latent variable ξ is constituted by items i = 
1, ... ,I. Let Y be a N × I random matrix consisting of binary random variables Yni that 
code the item responses. In achievement tests that may simply be an incorrect (Yni = 0) or 
a correct response (Yni = 1). The manifest variables Yni are fallible measures of a k-
dimensional latent variable ξ = ξ1, ... , ξk. The corresponding response indicator variables 
Dni indicate the observational status of Yni, where 

  
1,  if  is observed      

0,  if  is not observed
ni

ni
ni

Y
D

Y


= 


  (1) 
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The matrix D is a N × I matrix with the elements Dni. All manifest variables Znj, with j = 
1,..., J, that are not part of the measurement model of ξ constitute the covariate vector Zn 
for case n. Accordingly, Z is a N × J matrix. Here we assume that the covariates are fully 
observed. Hence, the observed part of the variables in the target model is now (Yo ,Z) and 
the missing part (Ym ,ξ). Furthermore, the response indicator matrix D is fully observed, 
but typically is not part of the analytical model. Following Rubin (1976) we can define 
the missing data mechanisms MCAR, MAR, and NMAR. Although essentially equiva-
lent, there exist different definitions of these missing data mechanisms (e. g. Schafer & 
Graham, 2002; Seaman, Galati, Jackson, Carlin, et al., 2013). It is crucial to remember 
that our definitions are based on probability statements about random variables with a 
joint distribution. Observed data are realizations of random variables. Therefore, the 
missing data mechanisms describe stochastic data generating processes in terms of prob-
ability statements. As the definitions are based on probability theory, we can deal with 
events that may never be observable, such as the probability of solving an omitted or not-
reached item. Accordingly, Ym does not refer to realized but unobserved item responses. 
The underlying rationale is that test takers could have solved omitted or not reached 
items even if they had completed these items. We could then observe the realizations ym 
(in other words, we took a counterfactual perspective on item nonresponses). 

The missing data mechanism with respect to Y is denoted as MCAR if 

 ( ), ,⊥D Y Z ξ . (2) 

Thus, missingness is stochastically independent of the latent and manifest variables of 
the measurement model as well as the covariates in the model. Due to the distinction 
between items responses Y and covariates Z, three different MAR conditions result. Each 
MAR condition implies a different method in order to adjust for item nonresponses. The 
missing data mechanism with respect to Y is called to be MAR given Z if  

 ( ), |⊥D Y ξ Z  (3) 

In this case missingness is conditionally stochastically independent of the unobserved 
and observed variables in the model given the covariates. However, unconditional sto-
chastic dependency between D and (Ym, ξ) does not contradict with the definition given 
by Equation 3. For example, in two stage testing designs with an incomplete matrix 
design a routing test (Z) may be used to decide which test form and, therefore, which 
items will be assigned in the final test (Y). An appropriate routing test should be substan-
tially related to the latent ability ξ. However, the missing pattern depends on the test 
form which is determined by Z, implying that Equation 3 holds. The practical implica-
tion is that the covariates need to be included as auxiliary variables for parameter estima-
tion, even if they are not of substantial interest. 

The second MAR assumption refers to the situation where missingness depends only on 
observed item responses. Accordingly, the missing data mechanisms with respect to Y is 
called MAR given Yo if 

 ( ), |⊥ m oD Y ξ Y  (4) 
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The Yo-conditional independence of missingness off the unobserved variables hold in 
computerized adaptive testing if either the starting item is fixed or randomly selected 
from the item pool (Glas, 2006; Mislevy & Wu, 1996). In this case missing responses 
result from not administering items in individual assessments. The missing pattern is 
determined by the item selection algorithm, which does not include covariates or any 
unobserved variables. It is worth noting that the assumption of MAR given Yo is implicit-
ly made in most applications of IRT models with missing data. 

The most general case in which the missing data mechanism is ignorable is the inde-
pendence of missingness off any unobserved variables in the model given both types of 
observable variables: (a) the covariates, and (b) the observed item responses. Hence, the 
missing data mechanism with respect to Y is called MAR given (Z, Yo) if Equations 3 
and 4 do not hold and conditional stochastic independence  

 ( ) ( ), | ,⊥ m oD Y ξ Y Z  (5) 

is valid. Note that Z-conditional independence (see Equation 3) and Yo-conditional inde-
pendence (see Equation 4) are special cases of (Z, Yo)-conditional independence of miss-
ingness off the unobserved variables. However, they are not equal. In an application of 
computerized adaptive testing, for example, where the choice of starting items depends 
on background variables (Z), such as educational or professional qualifications, the selec-
tion of items and, the missing data pattern due to not-administered items is determined 
not only by the observed item responses, but from covariates as well (Glas, 2006). Fur-
thermore, the assumption of MAR given (Z, Yo) is commonly made in most IRT-based 
scaling procedures with incomplete item responses and additional covariates included in 
a background model. In almost all educational LSA, such as Programme for International 
Student Assessment (PISA; OECD, 2009) or Trends in International Mathematics and 
Science Study (TIMSS; Adams et al., 1998), covariates are included in the item and 
person parameter estimation. 

Finally, the missing data mechanism is called not missing at random if  

 ⊥D ( ) ( ), | ,m oY ξ Y Z  (6) 

Here ⊥  indicates stochastic dependency. Thus, the missing data are nonignorable if the 

missingness and unobserved variables in the model are conditionally stochastically de-
pendent on each other given the observed variables in the model. For example, if there is 
any subpopulation defined by the value Z = z and the observed response pattern Yo = yo 
in which missingness in Y depends on the latent variable or missing items, then the item 
nonresponses are NMAR. 

ML estimation in IRT models with item nonresponses 

Rubin’s taxonomy of missing data is very useful not only for classification, but can be 
used to derive appropriate methods to adjust for item nonresponses. The unconditional 
and conditional independence assumptions defining the missing data mechanisms can be 
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applied to the estimators of interest. Conclusions can be drawn about how to account for 
missingness appropriately. In this article, we restrain our focus to ML estimation in IRT 
measurement models. In the case of missing responses it is important to differentiate 
between the complete data likelihood L(Y, D | Z; ι, φ) and the observed data likelihood 
L(Yo, D | Z; ι, φ) (Little & Rubin, 2002; Schafer, 1997). The parameter vector ι refers to 
the measurement model of ξ and includes the item parameters, parameters of a potential 
latent regression model and so on. The vector φ consists of parameters of the missing-
ness model, for example, parameters of probit regressions P(Dni = 1 | Zn, Yn ) that are 
included in SLM for normally distributed variables (Heckman, 1976, 1979). As common 
in many IRT models, the multidimensional covariate Z is taken into account as a purely 
exogenous variable and is required to be fully observed respectively. In ML estimation 
the complete data likelihood is proportional to the joint distribution of the variables P(Y, 
D | Z) given the exogenous variables in the model. Note that P(.) denotes either probabil-
ities or probability mass functions for discrete random variables. Probability density 
functions of continuous random variables are denoted by g(.). Using this notation, the 
complete data likelihood for dichotomous items can be written as  

 ( ) ( ), | ; , , | ; ,L P∝ι φ ι φY D Z Y D Z  (7) 

There are different ML estimators for IRT models, such as joint maximum likelihood 
(JML) estimation, marginal maximum likelihood estimation (MML) for one and two-
parameter models, and conditional maximum likelihood (CML) estimation for unidimen-
sional and multidimensional Rasch models only (e. g., Baker & Kim, 2004). In the fol-
lowing, we focus on MML estimation since consistency of JML estimates is not ensured 
(Drasgow, 1989; Lord, 1986) and CML estimation is limited to one-parameter models. 
Therefore, MML estimation is currently the most common method to obtain estimates of 
one, two, and three-parameter IRT models. MML estimation includes a model of the 
latent distribution g(ξ | Z). Typically a parametric distribution is assumed, such as the 
conditional normal distribution of ξ given Z. Instead of the individual values of ξ, the 
parameters of this distribution, such as means and variances, are estimands in the param-
eter vector ι. The complete data likelihood for N independent observations under the 
MML paradigm is  

 ( ) ( ), | ; , , , | ; ,
k

N
L g d

×
∝ ι φ ι φ


Y D Z Y D ξ Z ξ  (8) 

 ( ) ( )
1

, | ; , , , | ; , .
k

N

n n n

n

L g d
=

∝ ∏ ι φ ι φ


Y D Z Y D ξ Z ξ  (9) 

Since only the distribution of the latent variable ξ is of interest in MML estimation and 
not individual values ξn, the subscript n is omitted from all latent variables in MML 
estimation equations. The joint distribution of the right-hand side of the equation can be 
factored in different ways. In order to derive a general MML estimator of the measure-
ment model of ξ considering missingness we use 
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 ( ) ( ) ( ) ( )
1

, | ; , | , , ; | , ; | ; .
k

N

n n n n n n

n

L P P g d
=

∝ ∏ ι φ φ ι ι


Y D Z D Y ξ Z Y ξ Z ξ Z ξ (10) 

which refers to a generalization of SLM to the case of latent trait models. As common in 
IRT models, we assume that no differential item functioning (DIF) exists depending on 
any covariate Z, and local stochastic independence between all pairs of items i and i’ 
hold: 

 |⊥Y Z ξ  (11) 

 ( ) '
, ' , ' : |

i i
i i i i Y Y∀ ≠ ⊥ ξ  (12) 

Based on these assumptions the complete data likelihood can be written as 

 ( ) ( ) ( ) ( )
1

, | ; , | , , ; | ; | ; .
k

N

n n n n n

n

L P P g d
=

∝ ∏ ι φ φ ι ι


Y D Z D Y ξ Z Y ξ ξ Z ξ  (13) 

This likelihood function is of theoretical interest but cannot be used for parameter esti-
mation in the presence of item nonresponses. Instead, the observed data likelihood needs 
to be used, which is the integral of the complete data likelihood over the missing part. 
Note that the MML estimator given by Equation 10 already includes an integral over the 
unobserved variable ξ but not the integral over the missing part Ym. Integrating over all 
unobserved variables finally yields 

 
( ) ( )( ) ( ) ( )( )

( )( ) ( )
1

, | ; , | ; | , , , ;

                                        | ; | ; .

k

m

N
n n n

n n

n

n

n m

L P P

P g d d

Ω
=

∝

Ω

∏  ι φ ι φ

ι ι

o o o m

m

Y D Z Y ξ D Y Y ξ Z

Y ξ ξ Z ξ

 (14) 

The domain Ωm indicates the set of all possible response patterns Ym = ym that could have 

been observed jointly with Yo = yo. In the case of binary items, Ωm contains 
1

I

nii
I D

=
−  

possible patterns for case n. In the appendix, the derivation of the observed from the 
complete data likelihood is shown in detail. Here we focus on the conditional distribution 

( ) ( )( )| , , , ;n n

n n
P φo mD Y Y ξ Z  of missingness given all other observed and unobserved 

variables in the model. From the different definitions of the missing data mechanism this 
conditional distribution and, therefore, the observed data likelihood can further be sim-
plified. For example, if the missing data mechanism with respect to Y is MCAR, D does 
not depend on any variables in the model (see Equation 2). As demonstrated in the ap-
pendix, the observed data likelihood is then 

 ( ) ( ) ( )( ) ( )
1

, | ; , ; | ; | ; .
k

N
n

n

n

L P P g d
=

∝ ∏ ι φ φ ι ι
o oY D Z D Y ξ ξ Z ξ  (15) 
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There exist two independent factors in the likelihood. The first factor refers to the model 
of missingness and the second factor is the common MML estimator of the measurement 
model of ξ based on the observed item responses. This implies that ML inference is valid 
even if D is ignored in estimating ι.  

If the missing data mechanism with respect to Y is MAR given Yo , Z, or both (Yo , Z), 
the observed data likelihood can also be factored into two independent pieces. Consider-
ing the most general MAR assumption of a missing data mechanism that is MAR given 
(Yo , Z), then Equation 14 is equal to  

 ( ) ( ) ( )( ) ( )
1

, | ; , | , ; | ; | ; .
k

N
n

n

n

L P P g d
=

∝ ∏ ι φ φ ι ι
o o oY D Z D Y Z Y ξ ξ Z ξ  (16) 

It is important to note that this factorization applies only if the covariate Z is included in 
the model. Hence, all covariates that are related to missingness need to be modeled joint-
ly with the measurement model of ξ. If there is no DIF depending on Z (see Equation 11) 
it is sufficient to include the covariates in the structural model or in a latent regression 
model, which is expressed by the individual conditional distributions g(ξ | Zn; ι) in the 
Equations 10 - 16. If the missing data mechanism with respect to Y is MAR given Yo 
then 

 ( ) ( ) ( )( ) ( )
1

, | ; , | ; | ; | ; .
k

N
n

n

n

L P P g d
=

∝ ∏ ι φ φ ι ι
o o oY D Z D Y Y ξ ξ Z ξ  (17) 

Missingness is independent of any covariates in the model. Accordingly, the latter needs 
not necessarily be included in the model to adjust for item nonresponses.  

If the missing data mechanism with respect to Y is NMAR, the Equation 14 cannot be 
factorized into two independent pieces that refer to independent models with distinct sets 
of parameters that could be maximized independently. Accordingly, a model of missing-
ness and a measurement model of ξ needs to be estimated simultaneously to adjust for 
missing data. Unfortunately, a joint model for (Yo, D) that refers to the likelihood func-
tion given by Equation 14 is not identified without further restrictions. 

Multidimensional IRT models for nonignorable missing responses 

If the missing data mechanism is nonignorable, missingness is informative with respect 
to unobserved variables and model parameters underlying these variables. Discarding 
this information potentially results in biased parameter estimation and invalid inference. 
The crucial question in models for nonignorable data is how to identify and to specify the 

model of missingness that refers to the term ( )( ) ( )| , , , ;n n
n nP o mD Y Y Zξ ϕ  in Equation 14. 

Logit or probit regression with the response indicator variables Di as dependent variables 
are not applicable due to the missing values in Y and the latent variable ξ, which is al-
ways missing. Model estimation is only possible under certain assumptions. A well-
known example is the univariate normal selection model that rests upon the strong as-
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sumption of normality (Heckman, 1976, 1979; Puhani, 2000). Multidimensional IRT 
models for missing responses are identified by assumptions about model-implied de-
pendencies between manifest variables Y and D due to the structural model of latent 
variables. It is assumed that a latent response propensity θ exists that underlies the re-
sponse indicator variables Di. Therefore, completing a test requires not only the compe-
tency (ξ) for processing test items, but also the motivation, willingness, and cognitive 
speed to do so. These and many other characteristics of the test takers are potential corre-
lates of θ. However, for the sake of clarity, we exclusively use the terms competency, 
ability, or proficiency for ξ, which is intended to be measured by the items of the test.  

Conditional stochastic independence is assumed for all Yi and Di given the latent varia-
bles. That is  

 ( ) ( )1, , : , |ii I Y∀ = ⊥ -iY D ξ  (18) 

 ( ) ( )1, , : , |
i

i I D∀ = ⊥ -iD Y θ  (19) 

Based on this assumption, also denoted as local stochastic independence, Equation 14 
can be simplified to the final MML function of the MIRT model for nonignorable item 
nonresponses  

( ) ( ) ( ) ( )
1 1

, | ; , | ; | ; , | ; .ni

k p

N I
d

ni ni ni ni n

n i

L P Y y P D d g d d
= =

∝ ∏ ∏ ι φ ι φ ι
 

Y D Z = ξ = θ ξ θ Z ξ θ

 (20) 

Note that the subscript n is omitted from all latent variables including θ since individual 
values θn are not relevant in MML estimation. Note that the model represented by Equa-
tion 20 is conceptually close to the MIRT model proposed by Holman and Glas (2005) 
and O’Muircheartaigh and Moustaki (1999). The only difference is that covariates Z 
have been included here. In the final model θ = (θ1, …, θp) is a p-dimensional latent 
variable, with p ≥ 1. Furthermore, the conditional distribution g(ξ, θ | Zn; ι) refers to the 
joint distribution of ξ and θ given the covariates Z. The latter does not need to be part of 
the model in order to adjust for nonignorable missing data, but can be included in the 
background model to facilitate item parameter estimation or to improve person parameter 
estimation (Mislevy, 1987, 1988). When applied, the term g(ξ, θ | Z; ι) refers to the po-
tentially multivariate latent regression models E(ξ | Z) and E(θ | Z). It is important to 
note that the validity of the model assumptions (see Equations 18 and 19) implies that all 
stochastic dependency between missingness (D) and the unobserved variables ξ and Ym 
result from the relationship between the latent variable ξ and θ. Hence, if ξ and θ are 
stochastically independent then Y and D are necessarily independent and the missing 

data mechanism is MCAR. Similarly, if ⊥ξ θ  but ξ ⊥ θ | Z, then the missing data 

mechanism is MAR given Z. In other words MIRT models can also be used to study the 
missing data mechanism of item nonresponses (Pohl et al., 2014). 

Figure 1 shows an hypothetical example of a MIRT model, which is mathematically 
represented by Equation 20. Note that the model allows for within-item multidimension-



N. Rose, M. von Davier & B. Nagengast 482

ality within the measurement models of ξ and θ. That is, a single item Yi can be an indi-
cator of more than one latent dimension ξm. Similarly, single response indicators Di can 
indicate more than one latent propensity θl. However, no direct effects of ξ on D or θ on 
Y are allowed. Alternative MIRT models have been proposed allowing for additional 
direct effects across the measurement models of the latent variables (Holman & Glas, 
2005; Rose, 2013; Rose et al., 2010). In covariance structure analyses, equivalence of 
alternative models is typically defined by (a) the equality of model implied covariance 
and mean structures, and (b) the equality of model fit (Raykov & Penev, 1999; Raykov & 
Marcoulides, 2001; Stelzl, 1986). In the case of missing data models, further aspects 
should be considered. These specific models aim to adjust for item nonresponses without 
changing the target model of substantial interest. The latter is the measurement model of 
ξ. From a practical point of view, two alternative models for missing responses are 
equivalent in the sense of being interchangeable, if they equally adjust for missing re-
sponses. Taking these aspects into account, we consider two missing data models A and 
B as equivalent if (a) the latent ability variable ξ is equally constructed in Models A and 
B, (b) the bias of item and person parameters due to missing responses is equally reduced 
in both models, and (c) both models have the same model fit in terms of any goodness-
of-fit statistics. The equality of the construction of ξ is a defining feature of models for 
item nonresponses, and means that the measurement model of ξ based on Y is preserved 
as a submodel in the joint missing data model of (Y, D). Only then can a missing data 
model correct for nonresponse biases in the parameters of the target model (ι) instead of 
estimating completely different parameters of a model with a different meaning. 

 

 

 
 Figure 1: 

The MIRT model with multidimensional latent variables ξ and θ 
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Rose (2013) examined equivalence of different MIRT models analytically. He showed 
that these models differ in the construction of the latent variables apart from ξ. More 
precisely, the latent response propensity θ is replaced by functions f(ξ, θ) such as latent 
difference variables 

 ( )
1

,
k

m

m

f ξ
=

= −ξ θ θ  (21) 

or latent residuals 

 ( ) ( ), |f E= −ξ θ θ θ ξ  (22) 

Here we abstain from a detailed description of all these alternative MIRT models for two 
reasons. First, all these alternative models are equivalent to the examined model (see 
Equation 20) in terms of the construction of ξ, the bias adjustment, and the model fit. 
Second, the model specification of the alternative MIRT becomes intricate in cases of 
high dimensional latent variables ξ and θ. Readers interested in equivalent MIRT models 
are referred to Holman and Glas (2005) and (Rose, 2013). 

Latent regression models for nonignorable item nonresponses  

MIRT models have several advantages. They do not only allow adjusting for noningo-
rable missing responses, but can also be used to study the nonresponse mechanisms by 
analyzing D as well as the correlational structure between ξ and θ. However, MIRT 
models also have limitations. The complexity of the model increases substantially. The 
number of manifest variables doubles due to including the response indicators Di. The 
number of latent dimensions increases as well depending on the dimensionality of θ. 
Using MML estimation this is critical since MIRT models with more than five latent 
dimensions are still computationally challenging (Asparouhov & Muthén, 2012; Cai, 
2010; Schilling & Bock, 2005). If the rates of missing data are low so that little variation 
is seen in the response indicators, estimation of parameters of the measurement model of 
θ may be inaccurate or even fail, if the sample size is small. Finally, under MML estima-
tion with the assumption of a multivariate normal distribution of (ξ, θ) only linear rela-
tionships between the latent ability dimensions ξm and the latent propensities θl are taken 
into account. If additional covariates are included in a background model of a MIRT 
model for missing data, then conditional linear dependencies between ξm and θl given Z 
are taken into account only. 

To overcome these problems Rose et al. (2010) and Rose (2013) proposed LRMs and 
MG-IRT models for nonignorable item nonresponses. The basic idea is to use functions 
f(D) as independent variables in latent regressions E[ξ | f(D)] simultaneously estimated 
with the parameters ι of the measurement model of ξ. As in MIRT models information of 
missingness is taken into account while model complexity is reduced by excluding the 
latent variable model of D. Nevertheless, the LRM is closely related to MIRT models for 
nonignorable item nonresponses if the assumptions of the latter hold. If we could observe 
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the latent responses propensity θ and could include it as a covariate in the model, then 
the missing data mechanism with respect to Y were MAR given the covariate θ. D could 
be omitted from the model. However, θ can never be observed, but proxies of it may be 
available. For example, in cases of a unidimensional latent response propensity θ under-

lying D, the sum score 
1

I

D ii
S D

=
=  is increasingly correlated with θ if the number of 

response indicators increases. Model complexity can be substantially reduced using SD as 
a function f(D) in a LRM instead of modeling D. Strictly speaking the assumption of 
LRMs for missing responses is  

 ( ) ( )( ), | ,f⊥ m oD Y ξ D Y  (23) 

In informal terms, this equation means that all information of D is preserved in the func-
tion f(D). Furthermore, local stochastic independence and absence of DIF is assumed 
with respect to the function f(D), so that  

 ( ) ( )[ ]1, , : , |
i

i I Y f∀ = ⊥ -iY D ξ  (24) 

Under these assumptions, the observed data likelihood can be written as  
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∝ ∏ ι φ φ ι ι
o o oY D D D Y D Y ξ ξ D ξ

 (25) 

Hence, missingness does not depend on unobserved variables in the model, and the two 
factors of the likelihood function can be maximized independently. The final MML 
estimator of the LRM for nonignorable item nonresponses is then 

 ( )( ) ( ) ( )( )
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d
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∝ ∏ ∏ι φ ι ι
oY D = ξ ξ D ξ  (26) 

The missingness information with respect to persons’ latent trait levels are taken into 
account by the conditional distribution g(ξ | f(Dn); ι) in the model. In most implementa-
tions of MML estimators, a conditional multivariate normal distribution of the latent trait 
is assumed, so that 

 ( ),MVN Σ0 ζζ  (27) 

where Σζ is the covariance matrix of the residuals ζ = ξ − E[ξ | f(D)]. The model can 
easily be extended by inclusion of additional covariates Z in the LRM. The general final 
model is graphically represented in Figure 2.  

For applications of the LRM it is crucial to find appropriate functions f(D). This might be 
easy in some cases. For example, if the test design does not allow for omissions of items, 
so that nonresponses only result from not-reached items, all information of the missing 
pattern D is given by the number of reached or not-reached items, which is SD or I − SD.  
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 Figure 2: 

The measurement model of ξ with the function f(D) and additional covariates Z as  
predictors in the LRM for nonignorable item nonresponses 

 

 

There are many conceptual similarities between MIRT models and LRMs, but there are 
also significant differences. In MIRT models local stochastic independence is assumed 
for the response indicators Di (see Equation 19). This assumption is necessarily violated 
in the case of not-reached items (Rose, 2013; Rose et al., 2015). In LRMs for nonignora-
ble missing responses the assumption of local stochastic independence with respect to 
response indicators Di is not required. For that reason MIRT models are appropriate to 
account for omitted response, whereas LRMs are recommended to account for item 
nonresponses due to not-reached items (Rose, 2013; Rose et al., 2015). 

In some applications the choice of appropriate functions f(D) is difficult. We recommend 
an analysis of D in a first step. If the assumption of a latent responses propensity underly-
ing D is tenable, estimates of θ, such as ML or EAP estimates, can be used as functions 
f(D) in the latent regression model. Note that the simplest function f(D) is D itself. 
Hence, the latent regression can also be specified as the multiple regression E(ξ | D1, . . . , 
DI); even interaction effects between the response indicators are allowed but may rapidly 
result in large numbers of independent variables in the LRM. 

A potential disadvantage of using LRMs is the possible unreliability in functions f(D) 
especially if estimates of θ obtained from a previously fitted model of D are used. How-
ever, Rose (2013) showed that even in cases with a minimal number of items and very 

low reliabilities of EAP estimates ( ( )ˆRel
EAP

θ = .41 − .55), the LRM equivalently adjust-

ed for item nonresponses compared to more complex MIRT models. 



N. Rose, M. von Davier & B. Nagengast 486

Multiple group models for nonignorable item nonresponses  

MG-IRT models for nonignorable item nonresponses are conceptually very close to 
LRMs. The basic idea is to use categorical functions f(D) that serve as grouping variables 
in a multiple group IRT model. Let q = 1, … ,Q be the values of f(D). The MML estima-
tion equation of the MG-IRT model for missing data is 

 ( )( ) ( ) ( )( )
1 1 1

| ; , | ; | ; .
q

ni
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NQ I
d

ni ni n

q n i

L f P Y y g f q d
= = =

∝ =∏∏ ∏ι φ ι ι
oY D = ξ ξ D ξ (28) 

The assumptions in the MG-IRT model are equivalent to that of the LRM model dis-
cussed in the previous section (see Equation 23 and 24). Since no DIF is assumed with 
respect to f(D), the item parameters are constrained to be equal across the groups. The 
distribution of the latent variables in the groups is assumed to be multivariate normal, 
with 

 ( ) ( )[ ]( )|
| | ,

q
f q MVN E f qξ= = Σ ξξ D D  (29) 

In contrast to the LRM, not only are the means allowed to differ across the values of f(D) 
but the covariance matrices Σξ|q can be group specific as well.  

As in the case of LRMs, the choice of the functions f(D) is crucial. Theoretically, each 
missing pattern can be considered a separate group. In this case the MG-IRT model is 
equivalent to a PMM with additional assumptions (see Equations 23 and 24). Unfortu-
nately, the number of missing data patterns and groups, respectively, are typically very 
large and alternative functions f(D) should be used. For example, Rose et al. (2010) used 
stratified students of the PISA 2006 sample into three strata depending on their response 
rates and applied a three group IRT model. They found substantial mean differences in 
the latent mathematics, science, and reading proficiency levels between the strata, which 
supports the assumption that omitted and not-reached items in PISA 2006 were most 
likely nonignorable. 

Using information of missingness in MML estimation  

Before the different models described here are critically compared, we explain how they 
adjust for nonignorable nonresponses. We confine ourselves to the case of MML estima-
tion using an EM algorithm as proposed by Bock and Aitkin (1981). In general, the EM 
algorithm is an iterative procedure consisting of two steps: (a) the E-step where the ex-

pectation ( )[ ], | ; ,E ι φ Y D Z  of the log-likelihood is calculated, and (b) the M-step, 

where the expected log-likelihood is maximized. The basic idea of MML estimation is to 
assume a parametric conditional or unconditional distribution of the latent variables. 
Typically a multivariate normal distribution is assumed, which is represented by g(ξ, θ | 
Zn; ι) in the MIRT model (see Equation 20). This allows for removing individual person 
parameters from the MML estimation equation by integrating the distribution of the 
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latent variables. This needs to be done for each of the N individual response patterns in 
the sample. 

The individual distributions g(ξ, θ | Zn) are unknown. However, the Bayes theorem al-
lows for computing the joint posterior distribution of the latent variables given the ob-
served responses, the missing pattern and the covariates. That is  
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Under the assumptions of the MIRT model (see Equations 18 and 19) this can be written 
as 
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Finally, the posterior density of the latent variable ξ of observation n is 
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Hence, the test takers’ posterior density of the latent competency variable ξ depends not 
only on the observed item responses but also on the relationship between ξ and θ. If the 
dimensions ξm and θl are positively correlated, persons with more item nonresponses 
have left-shifted posterior distributions of ξ and lower expected values of ξm respectively. 
Similarly, the individual posterior density of ξ in LRMs is 
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If the latent competency ξ is related to missingness the posterior distribution is shifted 
and the expected a posterior proficiency level changes. For example, if the sum SD is 
chosen as the function f(D) in the LRM, and a positive regression coefficient of f(D) 
indicates nonignorable missing data, then higher trait levels are more likely in observa-
tions with high response rates. In turn, observations with low response rates have left-
shifted posterior distributions and, therefore, lower expected trait levels. Based on all 
individual posterior distributions the adjusted expected rate of correct and incorrect re-
sponses calculated for each item. These rates are considered in the first and second deriv-
atives of the log-likelihood with respect to the item parameters. Hence, the information 
of missingness is accumulated in the E-step and taken into account in the M-step when 
the expected log-likelihood is maximized. 
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Comparing model-based approaches for nonignorable item nonresponses  

In this section, we compare MIRT models, LRMs and MG-IRT models highlighting their 
commonalities and differences, which have important implications for their suitability in 
real applications. A common characteristic of all models discussed here is the inclusion 
of missingness represented by the response indicators D1 , . . . , DI. A major difference 
between MIRT models on the one hand LRMs and MG-IRT models on the other hand is 
that D is only modeled in MIRT models using a latent variable model. Therefore, Pohl et 
al. (2015) denoted this approach as the latent approach. LRMs and MG-IRT models can 
be regarded as conditional models with functions f(D) of the manifest responses indica-
tors as covariates in a background model or as grouping factors. Accordingly, this class 
of models was denoted as the manifest approach (Pohl et al., 2014). The assumptions 
differ between the two approaches, which has implications for the indication of each 
method. Only in the latent approach is local stochastic independence assumed for the 
response indicator variables Di (see Equation 19). This assumption is not required in 
LRMs and MG-IRT models. Hence, the manifest approach is preferred when local sto-
chastic independence of response indicators does not hold. This is the case when the 
missing responses result from not-reached items; the value of Di depends on whether 
item i − 1 was not reached or item i + 1 was reached in time (Rose, 2013; Rose et al., 
2014). The use of MIRT models is appropriate to account for omitted responses. Never-
theless, both approaches, the manifest and the latent, rest upon implicit assumptions 
about how the dependencies between D and Y are implied. In MIRT models it is as-
sumed that the stochastic relationship between ξ and θ implies all dependencies between 
items and responses indicators. In the manifest approach, however, the stochastic de-
pendency of ξ on functions f(D) implies dependency of Y on D. In other words, all in-
formation of missingness (D) with respect to unobserved variables Ym and ξ is represent-
ed in the structural model of latent variables in a joint model of (Y , D) (MIRT) or in a 
model that allows for distributional differences in ξ and Y depending on functions f(D) 
(LRM and MG-IRT). The latent and the manifest approaches are very close, when the 
assumptions of the latent variable approach hold and proxies of θ are used as functions 
f(D). 

Considering the issue of model equivalence, MIRT models, LRMs, and MG-IRT models 
are equivalent in the construction of the latent variable ξ. As noted previously, this is a 
fundamental requirement, since model-based approaches are not intended to change the 
target model, rather they should adjust for missing data. Furthermore, the three types of 
models under comparison are approximately equivalent in adjusting for missing respons-

es when estimates θ̂  are used in an LRM despite the unreliability in person parameters 
estimates of the latent response propensity. MG-IRT models and LRMs are conceptually 
identical if f(D) is categorical, but differ in the assumptions about the distribution of the 
residual ζ. The LRM assumes equality of variances and covariances for all values of 
f(D), whereas MG-IRT models allow for heterogeneity in the latent residuals. This dif-
ference may guide researchers in real applications to choose between the models.  
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How to choose the appropriate model  

From the theoretical considerations we can derive a set of questions that needs to be 
answered prior to analyses to choose the right model. In this section we will list these 
questions and provide answers that may guide researchers in real applications. We begin 
with the first and most important question about the missing data mechanism and will 
end with concrete questions about model specification. 

Is there really a problem with item nonresponses? It is important to keep in mind that the 
problem of missing data is negligible if the nonresponse rate is very low, even if the 
missing data mechanism is strongly NMAR. However, the use of IRT models in LSAs 
aims at accurate estimation of item parameter and distribution parameters of the latent 
variables in all subpopulations of interest. Therefore, the rates of missing responses 
should be examined for all items and in all subpopulations addressed in the study. If only 
small rates of missing data are found, models for nonignorable missing data are not 
required. This is all the more true since the common MML estimator used for IRT mod-
els is a FIML estimator. Hence, all observed item responses are used and validity of the 
MAR assumption is sufficient for unbiased parameter estimation. 

Is the missing data mechanism NMAR? This question is essential, since an ignorable 
missing data mechanism implies that D can be left out. Unfortunately, the question can-
not be tested or answered empirically. So, the question is how plausible is an ignorable 
missing data mechanism. The test design may have implications for the plausibility and 
tenability of the ignorability assumption. There might also be hints in the data suggesting 
nonignorability, for example, rates of omitted or not-reached items that are stochastically 
dependent on proportion correct scores of the observed item responses (Rose et al., 
2010). Similarly, missing rates per item may depend on the observed item means, as an 
inverse measure of their difficulty. Such findings indicate that missingness is systematic 
and therefore MAR or even NMAR. If the ignorability assumption is implausible an 
appropriate model of Y and D needs to be chosen.  

Are nonresponses the result of omitted or not-reached items? In general, MIRT models 
discussed in this paper are appropriate for omitted responses, whereas nonignorable 
missing values due to not-reached items are better handled by LRMs (Rose, 2013; Rose 
et al., 2015) or special MIRT models with additional constraints (Glas & Pimentel, 2008; 
Pohl et al., 2014). If missing values in Y result from omitted and not-reached items, 
LRMs and MIRT models can be combined (Rose, 2013; Rose et al., 2015) or MIRT 
models with separate latent response propensities for omitted and not-reached items can 
be used (Pohl et al., 2014).  

As in any latent variable models it is recommended to establish the model gradually. 
Thus, if the assumption of local stochastic independence of response indicators is jus-
tifiable and a latent responses propensity can be assumed, the structure of D should be 
examined in a first step to answer the question: What is the best model for D? Explorato-
ry factor analyses for dichotomous variables can be used in this step (Wirth & Edwards, 
2007) as well as other techniques to investigate dimensionality (Reckase, 2009). Even if 
an LRM is used it is strongly advised to analyze D initially to choose appropriate func-
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tions f(D) for the LRM or the MG-IRT model. If many dimensions and a complex facto-
rial structure are needed to model D, it is best to use a two-step procedure. Estimates of 

θ̂  are obtained in the first step form a model of D, which are used as functions f(D) in a 
LRM for nonignorable item nonresponses in the second step. 

As previously noted, MIRT models can only account for linear relationships between 
latent propensities and latent traits. Therefore, applied researchers need to answer the 
question: Is the relationship between dimensions θl and ξm linear? To answer this ques-

tion estimates ˆ
l

θ  and polynomials ˆh

l
θ , with h = 1, . . . , H, can be used in an LRM to 

investigate potential nonlinearity. If there is strong evidence for violations of the linearity 
assumption, LRMs are preferred. 

What is the appropriate function f(D) for an LRM or an MG-IRT model? This question 
needs to be answered if the manifest approach is chosen. As previously mentioned, the 
analysis of D itself can help to answer this question. For the case of omitted responses 

IRT person parameter estimates θ̂  might be preferred if the dimensionality underlying D 
is complex. As the sum score is a sufficient statistic for the latent trait in the Rasch mod-
el, the response rates SD can be used in an LRM if D can be appropriately modeled by a 
unidimensional Rasch model. This is also possible if θ is a p-dimensional latent response 
propensity in a multidimensional Rasch model with simple structure. In this case each Dil 

indicates only one latent dimension θl. The p sum scores 
1

l
I
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S D

=
= can be used in a 
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If a simple structure does not hold for the measurement model of θ or if a one-parameter 
model may be inappropriate, the IRT person parameter estimates may be used rather than 
sum scores. Even if the Rasch model holds for θ in assessments with incomplete booklet 
designs, the sum scores SD or SDl may not be comparable across booklets since they result 
from different response indicator variables depending on the test forms. In such cases 
IRT person parameter estimates are also superior to observed responses rates. LRMs are 
very flexible and additionally allow for interactions between test forms and functions 
f(D) with respect to ξ, by inclusion of indicator variables of the test forms and respective 
interactions terms. Therefore, the test design also needs to be considered in deciding 
which missing data model is appropriate and how should it be specified. 

If the number of manifest and latent variables is large and the sample size moderate to 
small LRMs and MG-IRT models might be preferred. The same is true in IRT models 
for longitudinal data. In this case the latent responses propensity needs to be modeled for 
each time point in MIRT models for nonignorable item nonresponses. Model complexity 
might then become impractical even for large sample sizes and two-step modeling might 
be a better choice. D is examined in a first step to find an appropriate measurement mod-
el of θ and appropriate functions f(D).  

What degree of model complexity is compatible with the sample size and the number of 
items? Model complexity is an important issue in selecting the most appropriate model in 
a concrete application. If appropriate functions f(D) can be found LRMs and MG-IRT 
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models are often less complex and computationally less demanding. Especially in cases 
with multidimensional latent traits and multidimensional latent response propensities, 
MIRT models may become inapplicable. For example in IRT models for longitudinal 
data the latent responses propensity needs to be modeled for each time point. LRMs and 

MG-IRT models with f(D) = θ̂  can be a viable alternative. However, this question needs 
to be answered considering the number of cases and the number of items in the study. 
More complex models with more parameters require larger samples. Unfortunately, no 
clear recommendations can be given for required sample sizes. Monitoring convergence 
and comparing parameter estimates and standard errors obtained from different model-
based approaches may facilitate decision-making for an appropriate and stable model.  

Are there potential moderating variables that need to be taken into account? In both, the 
latent and the manifest approach for nonignorable item nonresponses, covariates Z can 
be included in a background model. However, these covariates can moderate the rela-
tionship between f(D) and ξ or θ and ξ. In the manifest approach, interaction terms can 
simply be included in the LRM. Existing IRT software hardly allows for interactions 
between manifest and latent variables. However, if the covariates are categorical with a 
few levels, MG-MIRT models can be used with equally constraint parameters of the 
measurement model of ξ across groups. 

How to deal with the fact the missing data mechanism within single items can be differ-
ent? Missing responses may result not only from omitted or not-reached items but also 
from the test design. Planned missing data due to not administered items are typically 
MCAR if different test forms with only subsets of items were randomly assigned to test 
takers. Omitted and not-reached items, however, may be MAR or even NMAR. This 
implies that different missing data mechanisms can coexist. Since, all models described 
in this paper adjust for nonignorable missing data, missingness that is MAR or MCAR 
should not be addressed by these approaches, respectively. This can be achieved by 
defining response indicators more specifically. Instead of indicating an observed re-
sponse (Di = 1) or an item nonresponse (Di = 0), they can be defined as response indica-
tors of administered items only. In this case, we do not know whether an item i would 
have been answered by test takers or not if i were administered. Hence, D itself is in-
complete in cases of planned missing data. This is not problematic as long as the missing 
data mechanism is MCAR. Nevertheless, the analysis of D and finding appropriate func-
tions f(D) can become more difficult with incomplete data matrices D = d. Similarly, 
item nonresponses due to omitted and not-reached items can differ with respect to the 
missing data mechanism. In this case two sets of indicator variables can be defined. The 
first set indicates omitted (

( )R

i
D  = 0) or not omitted items (

( )R

i
D = 1) and the second set 

indicates reached (
( )R

i
D = 1) or not-reached items (

( )R

i
D = 0). Both can be modeled sepa-

rately (Pohl et al., 2014; Rose, 2013; Rose et al., 2015). 

Note that this list of questions is by no means complete but can make researchers aware 
of the most relevant issues in model selection and may provide at least some guidance in 
IRT scaling with potentially nonignorable item nonresponses. 
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Discussion 

Missing responses may occur for many different reasons. In educational and psychologi-
cal assessments item nonresponses are often not under researchers’ control. Missing 
responses due to omitted and not-reached items typically occur systematically, implying 
that the missing data mechanism is MAR or even NMAR. In the missing data literature 
many different approaches have been developed that account for ignorable item nonre-
sponses but just a few approaches exists for nonignorable missing data. In this paper, we 
initially adopted the definitions of Rubin’s missing data mechanisms to the peculiarities 
of educational and psychological measurement. By means of these definitions we con-
sidered ML estimation with missing data in IRT models. A general MML estimator was 
derived, which underlies existing MIRT models for nonignorable missing data. We fur-
ther compared MIRT models, LRMs, and MG-IRT models regarding their commonali-
ties and differences and discussed the implications for real applications. MIRT models 
assume a latent response propensity variable underlying D and are denoted as the latent 
approach (Pohl et al., 2014). LRMs and the MG-IRT models refer to the manifest ap-
proach, since they do not need the assumption of a latent variable underlying D (Pohl et 
al., 2014). Instead, information of missingness is taken into account using functions f(D) 
as predictors in an LRM or as grouping factors in MG-IRT models.  

Comparisons of models should be based on certain criteria. Model equivalence is a wide-
ly used concept to judge equality of nested models. Considering that missing data models 
aims to adjust for nonresponses, we extended the concept of model equivalence. In most 
cases it is sufficient to define model equivalence as the equality of model-implied distri-
butions of manifest variables and equal goodness-of-fit statistics. However, in missing 
data models the equivalent construction of the latent trait variable based on Y and the 
equality in adjusting for missing values are two additional and even more important 
aspects of model equivalence. In the latent approach, different MIRT models exist, 
which are equal in terms of all three aspects of model equivalence. LRMs and MG-IRT 
include different sets of variables and parameters than MIRT model. Hence, they are not 
nested and incomparable in terms of model fit, respectively. Nevertheless, all models are 
equivalent in the construction of the latent trait ξ, which means that the measurement 
model of Y remains an unchanged part in all models. LRMs and MIRT models adjust 
equally well for item nonresponses if person parameter estimates of the latent responses 
propensities are used as predictors in the LRM (Rose, 2013). Furthermore, the MG-IRT 
model and the LRM with dummy variables are equivalent if the predictor f(D) is categor-
ical and homogeneity with respect to ξ holds for all levels of f(D).  

The models of the manifest approach were originally developed as less complex alterna-
tives for MIRT models, implying that they have a lot in common. This is true if the prox-
ies of a latent response propensity serve as predictors in an LRM. However, the latent 
and the manifest approach differ in their assumptions. Local stochastic independence of 
response indicators is assumed in MIRT models only. This assumption can either strong-
ly be violated or the assumption of a latent response propensity measured by D may not 
be justifiable. In such situations LRMs or MG-IRT models are the method of choice 
(Rose, 2013; Rose et al., 2015). LRMs and MG-IRT models assumes that all information 
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of D with respect to unobserved variables in the model is preserved in functions f(D). 
Hence, finding appropriate functions f(D) which met this assumption is crucial. Howev-
er, in some cases these functions are easy to find, for example if item responses result 
from not-reached items in a timed test and all test takers answered the same items in the 
same order. All information of missingness is given by the number of reached (SD) or 
not-reached items (I − SD). In most cases the choice of functions f(D) is not straightfor-
ward. We strongly recommend to analyze D prior to the final scaling either to find the 
correct dimensionality of the latent response propensity or to find suited functions f(D) 
for the manifest approach. LRMs and MG-IRT models have the disadvantage of finding 
appropriate functions f(D) but have the advantage of being very flexible. Nonlinearity 
between ξ and f(D) can easily be taken into account, as well as interactions between 
additional covariates and f(D). Hence, the models of the manifest approach are promising 
for a wide range of applications.  

The aim of this paper is not only to compare the different models that have been devel-
oped, but to provide some insights about how these models correct for missing respons-
es. Unfortunately, this is specific for different estimators and we constrained our consid-
erations to MML estimation using the EM algorithm. However, we could show that the 
adjustment mechanism is very similar in the latent and the manifest approach. This paper 
is also intended to provide some guidance in selection and application of models for 
nonignorable item nonresponses. For that reason we used a list of questions that should 
be addressed by applied researchers in order to select a particular model in a concrete 
application. Unfortunately, some of the recommendations have remained vague for sev-
eral reasons. First, although MIRT models for missing responses were developed more 
than a decade ago they are still not widely applied. Hence, there is a lack of practical 
knowledge in the use of models for nonignorable missing data. Second, some of the 
questions may never be definitely answered in many applications, such as the question 
about the missing data mechanism of unplanned item nonresponses. Testing the nonre-
sponse mechanism would require observing the missing part Ym and the latent trait in the 
model. Hence, knowledge must be replaced by plausibility considerations about certain 
assumptions. For the sake of simplicity, it is commonly assumed that the missing data 
mechanism is MAR because then missingness does not need to be included in the model. 
However, item nonresponses should be taken seriously even if missingness is ignorable. 
We showed that three different MAR assumptions can be differentiated in latent trait 
models. Two of them require the appropriate inclusion of covariates in parameter estima-
tion. This is well known for the case of SEM (Graham, 2003) but hardly discussed in 
IRT modeling (e. g. DeMars, 2002). 

The missing data mechanism may be termed ignorable or nonignorable, but that does not 
mean that applied researchers can ever ignore missing values. Rather they need to decide 
how to deal with them. Here we summarized and compared different models which 
reduce nonresponse biases because of nonignorable missing responses. However, they 
rest on fairly strong assumptions. Violations of these assumptions can result in more 
biased parameter estimates than using models which ignore missingness. Sensitivity 
analyses have been proposed as a means for investigating dependence of parameter esti-
mation on model assumptions. In the discussed IRT models for nonignorable item nonre-
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sponses, especially the conditional stochastic independence assumptions (see Equations 
18, 19, 23, and 24) are critical. Unfortunately, violations of these assumptions may not 
only affect parameter estimation but pose theoretical challenges. For example, if items Yi 
are not conditionally stochastically independent of the response indicators D or functions 
f(D), differential item functioning due to the response indicators (or functions of it) is 
implied. The theoretical and practical implications of such violations are still unclear and 
should be addressed in future research. Furthermore, guidance for sensitivity analyses 
should be developed, which also accounts for the amount and the complexity of data in 
LSA. Finally, the development of less restrictive models with fewer assumptions is an 
objective of future research. 
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Appendix 

Derivation MML estimation with item nonresponses. In section three, the observed data 
MML estimator in presence of item nonresponses was presented (see Equation 14). Here 
we derived this equation starting with the complete data likelihood (see Equation 13). 
Using the partition of Y into the observed (Yo) and the missing part (Ym), we obtain the 
complete data likelihood 
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The assumption of local stochastic independence (see Equation 12) allows us to separate 
the likelihood of the missing part from the likelihood of the observed part. 
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Due to conditional independence Yo ⊥ Ym | ξ the observed part can be brought out of the 
integral over Ym (Mislevy & Wu, 1996) yielding 
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which is the observed data likelihood given by Equation 14.  

 In all ignorable missing data mechanisms D is conditionally stochastically 
independent off all unobserved variables (Ym, ξ) in the model. This allows us to omit the 
missing part Ym from the MML estimation equation. This will be shown here, for the 
case of the least restrictive ignorable missing data mechanism, which is MAR given (Yo, 
Z), the MML Equation 36 can be further simplified to 
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In Equations 15, 16, and 17 the missing part Ym is no longer part of the observed data 

likelihood since ( )( ) | ; 1
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= ιmY ξ  for all values of the latent trait, and therefore  
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This result holds also for missing data that MCAR, MAR given Yo, and MAR given Z. 

 

 

 


