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Abstract 
Item position (IP) effects typically indicate that items become more difficult towards the end of a 
test. Such effects are thought to reflect the persistence with which test takers invest effort and work 
precisely on the test. As such, IP effects may be related to cognitive and motivational variables that 
are relevant for maintaining a high level of effort and precision. In this article, we analyzed IP effects 
in a reading comprehension test. We propose an IRT model that includes random IP effects affecting 
item difficulties and fixed IP effects affecting item discriminations. We found evidence for gradually 
increasing item difficulties and decreasing discriminations. Variation in IP effects on the item diffi-
culties was systematically related to students’ decoding speed and reading enjoyment. The results 
demonstrate that the relationship between the overall scores and other variables is affected by re-
spondents’ test-taking behavior, which is reflected in the random IP effect. 
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Scores derived from achievement tests are commonly interpreted to indicate individuals’ 
maximal performance (e.g., Goff & Ackerman, 1992); thereby, it is assumed that test tak-
ers maintain their effort throughout a test. However, most often, this is not the case, espe-
cially in low-stakes situations (Asseburg & Frey, 2013). Typically, as they get closer to 
the end of a test, the probability of individuals solving the test items declines (Leary & 
Dorans, 1985). These effects are subsumed under the term item position effects (IP) in the 
literature. IP effects play a role in virtually all testing situations, recurring on tests of mod-
erate to extensive lengths (Leary & Dorans, 1985). The phenomenon of items becoming 
more difficult towards the end of the test is commonly referred to as a fatigue effect (King-
ston & Dorans, 1984), reflecting declines in test takers’ motivation to apply, and their 
capacity to maintain, a constant level of effort over the course of a test (Ackerman & 
Kanfer, 2009). Therefore, IP effects can be expected to vary across individuals (Debeer & 
Janssen, 2013) and to be related to individuals’ cognitive and motivational resources that 
are relevant for maintaining a constantly high level of effort and precision.  
This article focuses on IP effects in a reading comprehension test administered to fifth-
grade students. Three research questions were addressed. First, we examined the test for 
the existence of individually varying IP effects. For this purpose, we proposed and tested 
different versions of the two parameter logistic (2PL) item response theory (IRT) model, 
including individual differences in IP effects. Second, we extended IRT models with ran-
dom IP effects to include variables hypothesized to be related to students’ motivational 
(reading enjoyment) and cognitive (decoding speed) resources that are relevant for main-
taining a constant level of effortful and precise processing. Finally, we investigated 
whether disregarding IP effects influences the estimated relationship between test scores 
and covariates.  

Item position effects 

Mollenkopf (1950) noted that changing the positions of items in a test affects item charac-
teristics. IP effects of the first kind (IP1) make items appear to be harder or easier when 
presented in later positions. Alternatively, IP1 effects make individuals appear to be more 
or less able. Leary and Dorans (1985) referred to IP1 effects that lead to decreasing item 
difficulties, so that individuals appear to be more able, as practice effects, whereas IP1 
effects in the opposite direction were referred to as fatigue effects. Practice and fatigue 
effects as defined by Leary and Dorans (1985) refer only to the direction of IP1 effects. 
The authors did not theorize about the psychological processes underlying IP1 effects; 
thus, the terms should be understood as loose circumscriptions rather than well-defined 
constructs. 
IP effects of the second kind (IP2) lead to changes in an item’s potential to discriminate 
between different levels of ability. They make items appear to be more or less reliable 
when located toward the end of a test. Such effects have been intensively investigated in 
the areas of personality and attitude assessment (e.g., Hartig, Hölzel, & Moosbrugger, 
2007), but have rarely been examined in the area of cognitive testing.  
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Item position effects affecting item difficulties (IP1 effects) 

Many studies have provided evidence for negative IP1 effects in achievement tests (Debeer 
& Janssen, 2013; Hartig & Buchholz, 2012; Hohensinn, Kubinger, Reif, Holocher-Ertl, 
Khorramdel, & Frebort, 2008; Kingston & Dorans, 1984; Le, 2007; Meyers, Miller & 
Way, 2009; Schweizer, Schreiner, & Gold, 2009). Most studies treated IP1 effects as fixed 
effects (FIP1 effects) that do not vary across individuals. A more realistic point of view is 
that IP1 effects reflect individuals’ reactions to a test-taking situation, which means that 
they should be conceptualized as random effects (i.e., RIP1 effects) that vary across indi-
viduals.  
Debeer and Janssen (2013) provided evidence for RIP1 effects in various achievement 
domains tested in the PISA 2006 study and in a test measuring listening comprehension. 
Similar findings were reported by Robitzsch (2009), using mathematics achievement tests 
assessed in lower secondary schools, and by Hartig and Buchholz (2012), who analyzed 
RIP1 effects in the PISA 2006 science achievement test. In addition, in the PISA 2009 
reading test, Debeer, Buchholz, Hartig, and Jansen (2014) found RIP1 effects that also 
varied between schools, but between-school differences in RIP1 effects were negligible in 
other assessments (Weirich, Hecht, Penk, Roppelt, & Böhme, 2017). In all studies, the 
sign of the mean RIP1 effect was negative. Some studies investigated RIP1 effects in ap-
titude tests. Schweizer, Schreiner, and Gold (2009; see also Ren, Goldhammer, Moosbrug-
ger, & Schweizer, 2012) found evidence for an RIP1 effect in the Advanced Progressive 
Matrices test, and Schweizer, Troche, and Rammsayser (2011) reported an RIP1 effect in 
a numerical reasoning test.  
The correlates of RIP1 effects have been investigated in several recent studies. RIP1 ef-
fects in an aptitude test were found to be positively related to general intelligence 
(Schweizer et al., 2011), and to executive attention (Ren, Goldhammer, Moosbrugger, & 
Schweizer, 2012). In addition, the RIP1 effect in a science test was found to be correlated 
with decreases in self-reported test-taking effort (Weirich et al., 2017), so that students 
with steeper declines in test-taking effort had a more negative IP1 effect. Similarly, Qian 
(2014) found motivation to be an important predictor of the IP1 effect in the writing task 
included in the 2007 National Assessment of Educational Progress, although IP1 effects 
were also impacted by institutional characteristics. Profound school-type differences in the 
size of the IP1 effect were found in the German PISA 2012 assessment, both for the PISA 
tests (Nagy, Lüdtke, & Köller, 2016; Nagy, Lüdtke, Köller, & Heine, 2017) and for the 
tests of the German educational standards (Nagy, Haag, Lüdtke, & Köller, 2017). Most 
recently, Lindner, Nagy, Ramos, and Retelsdorf (2017) showed that experimentally de-
pleting students’ self-control resources resulted in a stronger IP1 effect in a mathematics 
test. 
These results suggest that the correlations of the ability variables with the covariates are 
affected by RIP1 effects. When RIP1 effects are not separated from the ability variables, 
the latter are confounded with RIP1 effects. The potential impact that RIP1 effects can 
have on the conclusions drawn has been exemplified in the longitudinal extension to the 
German PISA 2012 assessment. Nagy et al. (2016) found that ignoring IP1 effects and 
changes therein resulted in negative estimates of proficiency gains for reading and science 
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in nonacademic tracks, and that this effect vanished once IP1 effects were accounted for 
(see also Nagy, Lüdtke et al., 2017). Similarly, ignoring the IP1 effect resulted in differ-
ences in reading gains in favor of girls, but these differences disappeared once the IP1 
effect was controlled for (Nagy, Retelsdorf, Goldhammer, Schiepe-Tiska, & Lüdtke, 
2017).  

Item position effects affecting item discriminations (IP2 effects) 

IP2 effects on item discriminations have rarely been considered in the area of cognitive 
testing. Some studies indicate that item discriminations in cognitive tests tend to increase 
when presented in later positions (e.g., Le, 2007; Mollenkopf, 1950), whereas other find-
ings suggest that the pattern depends on the achievement domain (Kingston & Dorans, 
1982). Note, however, that all findings on IP2 effects have been derived on the basis of 
unidimensional measurement models. Situations in which item responses are affected by 
RIP1 effects call for multidimensional measurement models (Debeer & Janssen, 2013). 
The failure to separate the RIP1 effect from the ability variable means that the item dis-
criminations reflect the items’ connection with a composite of ability and RIP1 effects 
rather than the items’ connection with the “purified” ability variable. In this article, we 
propose a multidimensional IRT (MIRT) model in which the RIP1 effect is separated from 
the ability variable and the IP2 effect is defined solely with respect to the ability variable.  

IRT models assessing item position effects 

In this section, we describe IRT models that assess IP effects. Their application requires 
that individuals work on items presented in different positions. This requirement is ful-
filled in large-scale assessments that build upon matrix designs in which at least some 
items are presented in different positions (e.g., Frey, Hartig, & Rupp, 2009).  

Formulation of IRT models 

All models envisaged are extensions of the traditional 2PL model, which is given as  

 
𝑙𝑜𝑔𝑖𝑡&𝑃(𝑦*+, = 1/0 = 𝛼+(𝜃* − 𝛽+/, (1) 

 
where 𝑦*+, stands for the individual’s 𝑖 = 1, 2,… , 𝑁 response to item 𝑗 = 1, 2,… , 𝐽, pre-
sented in position 𝑝 = 0, 1, … , 𝑃, 𝛼+ and 𝛽+ stand for the item discrimination and item dif-
ficulty, respectively, and 𝜃* reflects the value of the ability variable for individual i. Note 
that we indexed the item position starting from 𝑝 = 0 instead of from 𝑝 = 1. 
The 2PL model is extended to include FIP1, RIP1, and IP2 effects. Some models, which 
will subsequently be presented, have already been introduced in previous studies. We 
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present these models in a slightly different notation and parameterization and extend them 
to accommodate a more fine-grained assessment of IP effects, including RIP1 and IP2 
effects.  
Hohensinn and colleagues (2008) reformulated the linear logistic test model (Fischer, 
1973) to assess FIP1 effects. A 2PL version of their model can be written as    
 

𝑙𝑜𝑔𝑖𝑡&𝑃(𝑦*+, = 1/0 = 𝛼+(𝜃*= + 𝜆𝑝𝛿 − 𝛽+=/. (2) 

 
Here, the FIP1 effect is represented by 𝛿, which affects item responses according to a linear 
function of their position p. As a consequence, 𝛽+= now refers to the difficulty of item j 
presented in the reference position (i.e., 𝑝 = 0), and 𝜃*= stands for the ability of individual 
i, defined with respect to 𝑝 = 0. 𝜆 is a parameter to be fixed by the researcher. It serves 
the purpose of putting the FIP1 effect 𝛿 onto an interpretable scale. In Equation 2, 𝛿 re-
flects the change in all individuals’ 𝜃 values per unit change in 𝜆𝑝, that is, we could define 
the value of the ability variable assessed in different reference positions as: 𝜃*, = 𝜃*= +
𝜆𝑝𝛿 (e.g., Robitzsch, 2009). When 𝜆 is fixed to 1, 𝛿 reflects the change in 𝜃 when an item 
is moved one position towards the end of the test. By setting 𝜆 to 𝜆 = 1/𝑚, 𝛿 captures the 
change in 𝜃 when an item is moved m positions towards the end of a test. Negative values 
of 𝛿 indicate that individuals appear to be less capable when 𝜃 is defined with respect to a 
later position.  
One limitation of the model presented in Equation 2 is the assumption that 𝛿 has the same 
value for each person. This assumption can be relaxed such that 
 

𝑙𝑜𝑔𝑖𝑡&𝑃(𝑦*+, = 1/0 = 𝛼+(𝜃*= + 𝜆𝑝𝛿* − 𝛽+=/. (3) 

 
The difference between Equations 2 and 3 is that the subscript i is attached to 𝛿, which 
means that each person might have a different value of 𝛿. This results in an RIP1 effect. 
Because 𝛿 is assumed to differ between individuals, the ability variables defined in differ-
ent reference positions (𝜃*, = 𝜃*= + 𝜆𝑝𝛿*) might now exhibit different rank orderings of 
individuals. The model in Equation 3 is equivalent to the model proposed by Debeer and 
Jansen (2013). Besides the mean (𝜅=) and the variance of 𝜃= (𝜙==), the model estimates 
the mean (𝜅E) and variance of 𝛿 (𝜙EE), and the covariance between 𝜃= and 𝛿 (𝜙=E).  
The model in Equation 3 assumes that 𝜃= has a constant impact on an item regardless of 
its position. This assumption might be questioned because items become increasingly in-
fluenced by	𝛿. An alternative is to assume that the impact of 𝜃= changes across positions:  
 

𝑙𝑜𝑔𝑖𝑡&𝑃(𝑦*+, = 1/0 = 𝛼+=&𝛾H,(𝜃*= − 𝛽+=/ + 𝜆𝑝𝛿*0, (4) 
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where 𝛾 (𝛾 > 0) is a parameter introduced to capture the change of the impact of the ability 
variable 𝜃= on item responses observed in later positions.  
The value of 𝛾 stands for the change in an item’s discrimination for measuring 𝜃= when 
presented in position 𝑝 = 𝑚 relative to the initial position (𝑝 = 0), and 𝛼+= now stands for 
the item’s j discrimination for measuring 𝜃= when presented in the initial position 𝑝 = 0. 
Hence, 𝛾 can be interpreted as an indicator of the IP2 effect. A value of 𝛾 = 1 indicates 
that the impact of 𝜃= on an item is not altered by the item’s position (i.e., absence of IP2 
effects), values smaller than 1 indicate decreasing item discriminations, whereas values 
greater than 1 indicate increasing item discriminations the later the items are presented in 
a test.  
The model given in Equation 4 can be rewritten as 
 

𝑙𝑜𝑔𝑖𝑡&𝑃(𝑦*+, = 1/0 = 𝛼+=𝛾H,&𝜃*= + 𝛾JH,𝜆𝑝𝛿* − 𝛽+=0, (5) 

 
showing that the position-specific ability variable 𝜃, is given by 𝜃*, = 𝜃*= + 𝛾JH,𝜆𝑝𝛿*. 
The RIP1 effect is assumed to contribute in a nonlinear fashion to the value of the position-
specific ability variable. The impact is positively accelerated whenever 𝛾 < 1, it is nega-
tively accelerated when 𝛾 > 1, and it is linear when 𝛾 = 1. 

Examination of the consequences of item position effects 

In the IRT models given in Equations 2 to 4, 𝜃= is defined as the ability underlying the 
responses to items administered in the first position, which is, by definition, not affected 
by IP effects. Therefore, these IRT models provide estimates of the means and variances 
of ability distributions that are fully adjusted for IP effects. When the models are extended 
by covariates, they also provide estimates of the covariances of 𝜃= and 𝛿 with a covariate 
k, 𝜙=L and 𝜙EL, which can be interpreted as the covariance that is fully adjusted for IP 
effects, and the covariance with the RIP1 effect, respectively. In addition, the IRT models 
make it possible to study changes in the means (𝜅,), variances (𝜙,,), and covariances 
(𝜙,L) of the ability variables 𝜃,, defined with respect to different reference positions. If 
the loading of the IP1 effect is denoted by 𝜔, (i.e., 𝜔, = 𝜆𝑝 in the case of Equations 2 and 
3, and 𝜔, = 𝛾JH,𝜆𝑝 in the case of Equations 4 and 5), the mean of 𝜃, is given by  

 
𝜅, = 𝜅= + 𝜔,𝜅E. (6) 

 
The variance of 𝜃, is given by  

 
𝜙,, = 𝜙== + 𝜔,N𝜙EE + 2𝜔,𝜙=E. (7) 
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The covariances of covariate k with the position-specific ability variables adhere to 
 

𝜙,L = 𝜙=L + 𝜔,𝜙EL. (8) 

 

The covariances can be standardized to derive the correlations 𝜌,L (𝜌,L =
QRS

TQSSQRR
). 

Issues of model estimation 

All models presented can be estimated in a conventional IRT framework by means of mar-
ginal maximum likelihood techniques, employing the expectation maximization algo-
rithm. The models that include RIP1 effects (Equations 3 and 4) call for a multidimen-
sional specification, in which the IP effect 𝛿 is represented by a distinct dimension. We 
propose to treat each item × position combination as a separate item (e.g., Nagy et al., 
2016). The creation of “virtual” items does not affect the data likelihood as long as the 
necessary parameter constraints are imposed. In this research, the program Mplus 7.4 
(Muthén & Muthén, 2012) was used. The models can be estimated by any other software 
suitable for MIRT analyses that enables nonlinear parameter constraints. A description of 
the model setup is given in the appendix to this article. 

The present study 

Our study focused on IP effects in a reading comprehension test administered to fifth-
grade students. The analyses attempted to shed light on their size and meaning, as well as 
the consequences of IP effects for assessing students’ reading comprehension abilities. The 
data came from a study that used large student samples, which are representative of the 
lower secondary school types in two federal states in Germany.  
Three research questions of different scopes were examined. The first question addressed 
the nature of IP effects. Here, we explored (a) whether the reading comprehension test was 
impacted by a negative IP1 effect, (b) whether the IP1 effect could be conceptualized as 
varying across individuals (RIP1 effect), and (c) whether IP2 effects occurred. The second 
research question focused on the correlates of the RIP1 effect. We considered two varia-
bles: decoding speed and reading enjoyment. We chose these variables because they are 
prototypical exemplars of the cognitive capacities and motivational resources that are re-
lated to reading comprehension (Artelt, Schiefele, & Schneider, 2001; Kintsch, 1998). In 
addition, based on existing theories, expectations about the variables’ connection to the 
RIP1 effect can be deduced, although almost all investigations assume that the relationship 
of reading comprehension with decoding speed and reading enjoyment reflects ability re-
lations. The last research question addressed the consequences of ignoring IP effects when 
examining the correlates of students’ reading comprehension. Whenever RIP1 effects are 
not separated from the ability variable, the overall test score confounds two sources of 
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systematic variance. Consequently, the external correlations of the overall test score con-
found the covariates’ relationships with the ability variable and the RIP1 effect (e.g., Ren 
et al., 2012).  

Item position effects in tests of reading comprehension 

We expected the reading items to be affected by a negative IP1 effect. Furthermore, we 
expected IP1 effects to vary across individuals (RIP1 effects). This pattern of results would 
be in line with findings from related research projects (Debeer & Janssen, 2013; Debeer et 
al., 2014; Hartig & Buchholz, 2012; Robitzsch, 2009; Weirich et al., 2017). Given that IP2 
effects were not systematically investigated in conjunction with RIP1 effects, we were not 
able to formulate specific expectations about their occurrence. On a general level, we ex-
pected item discriminations to decrease rather than increase across positions. Such a pat-
tern would indicate that a second process (i.e., an RIP1 effect) gradually takes over. One 
consequence of such a phenomenon would be that items presented towards the end of a 
test provide less information about measures of reading comprehension ability. 

Correlates of item position effects in tests of reading comprehension 

We expected both variables, decoding speed and reading enjoyment, to be related to read-
ing comprehension as well as to the RIP1 effect. Individuals characterized by a high level 
of decoding speed read fluently and at a faster pace. A high level of decoding speed frees 
up resources for higher-level processing (e.g., Artelt, Schiefele, & Schneider, 2001; 
Kintsch, 1998). As reading is a less exhausting activity for good decoders, they are also 
more likely to show a higher level of persistence in a test-taking situation. 
The impact of motivational variables on reading comprehension is commonly assumed to 
operate on a long-term basis. Individuals who find reading to be an enjoyable activity are 
assumed to read more frequently, thereby raising their ability level (Retelsdorf, Köller, & 
Möller, 2011). One might speculate that individuals with a higher interest in reading might 
also be more motivated to sustain their effort while working on a test, as indicated in the 
results of Weirich et al. (2017) and Qian (2014).  

Method 

Sample 

This study drew on data from the Tradition and Innovation in School Systems Study 
(TRAIN) that included N = 2,830 fifth-grade students from 86 secondary schools in two 
German federal states (Saxony and Baden-Württemberg). For the analyses, we selected 
only those students who completed the reading comprehension test (N = 2,774; 46.4% 
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females; 27.2% students with a migration background; mean age M = 11.10, SD = 0.56). 
Of the students in our study, 36.6% were in the combined track in Saxony, whereas 40.5% 
were in the lower track in Baden-Württemberg and 22.9% were in the intermediate track 
in Baden-Württemberg. Students attending the highest track were not assessed in the 
TRAIN study.  

Instruments 

Reading comprehension. The test is composed of material taken from different well-es-
tablished German school achievement studies (Granzer, Köller, & Bremerich-Vos, 2009; 
Lehmann, Peek, & Poerschke, 1997; Nauck & Otte, 1980). Test material was selected on 
the basis of expert ratings that confirmed its appropriateness for fourth- and fifth-grade 
students. Students were given short reading passages accompanied by a number of ques-
tions. In-depth examinations of the test provided no evidence for passage effects. The test 
contained 51 items, which were administered in a booklet design (Frey, Hartig, & Rupp, 
2009). The test was made up of eight item clusters, which were combined into nine differ-
ent booklets (Table 1). Item clusters were composed so that they represented reading ma-
terial suitable for fourth-grade (Clusters A4, B4, and C4) and fifth-grade students (Clusters 
A5, B5, C5, and F5). Cluster S5 appeared at the end of each booklet and was composed of 
fifth-grade material.  
The test contained dichotomous and partial credit items. In order to avoid complications 
that would require the proposed models to be extended to cover partial credit items, we 
considered only the dichotomous items. In addition, we deleted items with nonsignificant 
discrimination parameters. Items shaded in gray in Table 1 were deleted (8 items in total). 
Relative to the first position, most clusters showed a maximum change in positions ranging 
from 19 to 22 (Clusters A4, B4, C4, A5, B5, C5, F5). The largest cluster, F5, took a variety 
of positions, reflecting changes ranging from five to 11 positions. Only Cluster S5 changed 
its position by a maximum of two positions. The items that respondents did not reach were 
coded as missing responses. The overall reliability of the test was good. Assuming a 2PL 
model resulted in a marginal reliability index of Rel. = .83. 
Decoding speed. This variable was assessed with the Salzburger Lesescreening test (Auer, 
Gruber, Mayringer, & Wimmer, 2008). The test consists of verbal statements, presented 
in a limited time condition. Students are asked to judge the correctness of each statement. 
The overall score is the number of items to which an individual responds. The internal 
consistency of the test was good (Kuder-Richardson Formula 20; KR-20 = .96).  
Reading enjoyment. This short scale consisted of three items assessed by means of a 4-
point Likert scale. Items were taken from the Habitual Reading Motivation Questionnaire 
(Möller & Bonerad, 2007). The scale had a consistency value of Cronbach’s a = .94. Item 
responses were analyzed by means of the graded response IRT model.  
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Table 1: 
Booklet Design of the Reading Comprehension Test. Cells Shaded in Gray Stand for Items 

Excluded from the Analyses. 
Pos. B1 B2 B3 B4 B5 B6 B7 B8 B9 
0 A4-01 B5-01 F5-01 B4-01 C5-01 F5-01 C4-01 A5-01 F5-01 
1 A4-02 B5-02 F5-02 B4-02 C5-02 F5-02 C4-02 A5-02 F5-02 
2 A4-03 B5-03 F5-03 B4-03 C5-03 F5-03 C4-03 A5-03 F5-03 
3 A4-04 B5-04 F5-04 B4-04 C5-04 F5-04 C4-04 A5-04 F5-04 
4 A5-01 B5-05 F5-05 B5-01 C5-05 F5-05 C5-01 A5-05 F5-05 
5 A5-02 B5-06 F5-06 B5-02 C5-06 F5-06 C5-02 F5-01 F5-06 
6 A5-03 F5-01 F5-07 B5-03 C5-07 F5-07 C5-03 F5-02 F5-07 
7 A5-04 F5-02 F5-08 B5-04 F5-01 F5-08 C5-04 F5-03 F5-08 
8 A5-05 F5-03 F5-09 B5-05 F5-02 F5-09 C5-05 F5-04 F5-09 
9 F5-01 F5-04 F5-10 B5-06 F5-03 F5-10 C5-06 F5-05 F5-10 
10 F5-02 F5-05 F5-11 F5-01 F5-04 F5-11 C5-07 F5-06 F5-11 
11 F5-03 F5-06 F5-12 F5-02 F5-05 F5-12 F5-01 F5-07 F5-12 
12 F5-04 F5-07 F5-13 F5-03 F5-06 F5-13 F5-02 F5-08 F5-13 
13 F5-05 F5-08 F5-14 F5-04 F5-07 F5-14 F5-03 F5-09 F5-14 
14 F5-06 F5-09 F5-15 F5-05 F5-08 F5-15 F5-04 F5-10 F5-15 
15 F5-07 F5-10 B4-01 F5-06 F5-09 C4-01 F5-05 F5-11 A4-01 
16 F5-08 F5-11 B4-02 F5-07 F5-10 C4-02 F5-06 F5-12 A4-02 
17 F5-09 F5-12 B4-03 F5-08 F5-11 C4-03 F5-07 F5-13 A4-03 
18 F5-10 F5-13 B4-04 F5-09 F5-12 C4-04 F5-08 F5-14 A4-04 
19 F5-11 F5-14 C5-01 F5-10 F5-13 A5-01 F5-09 F5-15 B5-01 
20 F5-12 F5-15 C5-02 F5-11 F5-14 A5-02 F5-10 B4-01 B5-02 
21 F5-13 C4-01 C5-03 F5-12 F5-15 A5-03 F5-11 B4-02 B5-03 
22 F5-14 C4-02 C5-04 F5-13 A4-01 A5-04 F5-12 B4-03 B5-04 
23 F5-15 C4-03 C5-05 F5-14 A4-02 A5-05 F5-13 B4-04 B5-05 
24 S-01 C4-04 C5-06 F5-15 A4-03 S-01 F5-14 S-01 B5-06 
25 S-02 S-01 C5-07 S-01 A4-04 S-02 F5-15 S-02 S-01 
26 S-03 S-02 S-01 S-02 S-01 S-03 S-01 S-03 S-02 
27 S-04 S-03 S-02 S-03 S-02 S-04 S-02 S-04 S-03 
28 S-05 S-04 S-03 S-04 S-03 S-05 S-03 S-05 S-04 
29 S-06 S-05 S-04 S-05 S-04 S-06 S-04 S-06 S-05 
30  S-06 S-05 S-06 S-05  S-05  S-06 
31   S-06  S-06  S-06   
 

Statistical procedures for estimating item position effects and their correlates 

We applied a hierarchy of increasingly complex models to the reading data. Model-data 
fit was judged by the BIC and AIC indices, which penalize highly parameterized models. 
Models with small AIC and BIC indices are preferable. All IRT models were identified by 
fixing the mean and the variance of the ability variable to 0 and 1. In order to put the IP 
effects on an interpretable metric, we fixed 𝜆 to 𝜆 = 1 20⁄ , so that 𝛿 stands for the expected 
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change in the logits of item responses, and 𝛾 for the proportional change in discrimination 
parameters when items are moved by 20 positions towards the end of the test.  
The best-fitting IRT model was extended by the inclusion of the covariates. Their relation-
ships to the ability variable and the RIP1 effect were assessed by latent correlations. De-
coding speed was measured by a single continuous variable using a single-indicator meas-
urement model, whereas reading enjoyment was modeled by the graded response model. 
For both constructs, latent variables were specified to have zero means and unit variances. 
The estimates provided by the IRT models that included the covariates were used to study 
the covariates’ relationships with 𝜃= and 𝛿, as well as their correlations with 𝜃, (Equation 
8). All models were estimated with the Mplus 7.4 software (Muthén & Muthén, 2012) 
using marginal maximum likelihood techniques, employing the expectation maximization 
algorithm utilizing standard integration with 15 integration points per dimension. 

Results 

IRT analyses of item position effects 

The fit statistics of the IRT models are summarized in Table 2. Beginning with the 2PL 
model, all subsequent models included components, which represented different aspects 
of the IP effect. Each component increased the model-data fit, as reflected by the AIC and 
BIC indices. Adding the FIP1 and RIP1 effects to the models provided the largest im-
provement in fit statistics. However, both fit indices indicated the presence of IP2 effects. 
Hence, we chose the most complex model as the final model. 
 

Table 2: 
Model-Data Fit of Alternative IRT Models 

 # Par. -lnL AIC BIC 
2PL 86 43810.4 87792.9 88302.7 
2PL + FIP1 87 43741.4 87656.9 88172.6 
2PL + RIP1 89 43678.4 87534.9 88062.5 
2PL + RIP1 + IP2 90 43670.4 87520.9 88054.4 

Note. –lnL = negative model log-likelihood; 2PL = 2-parameter logistic model; FIP1 = fixed item position 
effects on item difficulties; RIP1 = random item position effects on item difficulties; IP2 = fixed item po-
sition effects on item discriminations. 

 
In this model, the average RIP1 effect was estimated to be 𝜅̂E = -0.27 (SE = 0.04; p < .001). 
Moving the reference position for assessing students’ reading ability by 20 positions to-
ward the end of the test was expected to lead to an average decrease in ability estimates of 
-0.27 points. As we z-standardized the variance of the ability variable in the first position, 
this effect is given on a standardized metric. The RIP1 effect was found to exhibit a 
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significant degree of variability, 𝜙WEE = 0.26 (SE = 0.04; p < .001), and it was not correlated 
with the ability variable, 𝜌X=E = -.03 (SE = 0.09; p = .766). Finally, the IP2 effect resulted 
in lower discrimination parameters in later positions, 𝛾X = 0.84 (SE = 0.04). This estimate 
was significantly different from 1 (Wald-𝜒N = 16.88; p < .001). This effect indicates that 
moving an item by 20 positions toward the end of a test was expected to be related to a 
decrease in its item discrimination with respect to 𝜃= by a factor of 0.84. 

Correlates of item position effects  

Decoding speed and reading enjoyment were weakly related to one another (𝜌XZ[\,]^+ = 
.17; SE = .03; p < .001). Decoding speed was correlated with the ability variable 𝜃= (𝜌X=Z[\  
= .28; SE = .02; p < .001), and the IP effect 𝛿 (𝜌XEZ[\  = .21; SE = .04; p < .001). The same 
pattern was found for reading enjoyment, but this variable exhibited a weaker correlation 
with 𝜃= (𝜌X=]^+ = .11; SE = .03; p < .001) than the 𝛿-variable (𝜌XE]^+ = .23; SE = .05; p < 
.001). Hence, good decoders and students with high reading enjoyment were more likely 
to work on the test with higher persistence.  
Figure 1 presents the probability of correct answers as a function of the items’ positions 
and the student covariates at three levels. We used values of ±1.3 standard deviations from 
the mean because these values are close to the 10th and 90th percentiles of the normal 
distribution. Figure 1 shows that individuals scoring high on decoding speed were ex-
pected to be only weakly impacted by the negative IP1 effect. The (negative) IP1 effect 
was notably stronger in individuals scoring at or below the mean. IP effects were small for 
individuals scoring near the 90th percentile of the distribution of reading enjoyment. Stu-
dents with enjoyment scores that were 1.3 standard deviations below the mean were ex-
pected to show strong declines in their probabilities of providing correct responses. 
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Consequences of not accounting for individual differences in item position 
effects 

In order to study the consequences of ignoring the RIP1 effect, we proceeded as follows: 
First, we estimated the covariates’ relationship to the ability variable as assessed by the 
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traditional 2PL model (Equation 1). Second, we estimated the latent correlations of reading 
ability across a range of reference positions (1 to 32) by utilizing the comprehensive model 
(Equations 4 and 8). Finally, we compared the two results and identified the reference 
position in which the correlations were most similar to the results provided by the 2PL 
model (minimum square root of the sum of squared deviations between the two sets of 
correlations). 
In the unidimensional 2PL model, the correlation between reading ability and decoding 
speed was estimated to be 𝜌X_Z[\ = .34 (SE = .02; p < .001), whereas the correlation with 
reading enjoyment was estimated to be 𝜌X_]^+ = .17 (SE = .03; p < .001). Both correlations 
were higher than the correlations derived by the model including RIP1 and IP2 effects. 
This result demonstrates that ignoring IP effects might lead to changes in the correlations 
of ability with external variables. The reason for this discrepancy is that, in our proposed 
model, the ability variable is defined with respect to a specific reference position (here, the 
first position), whereas the ability variable embedded in the traditional 2PL model repre-
sents an ability averaged across all possible item positions in a test (Robitzsch, 2009). 
Figure 2 plots the correlations of the reading comprehension variable, defined with respect 
to all possible item positions. The correlations assessed by the traditional 2PL model most 
closely resembled the ability correlations assessed by the full model when reading com-
prehension was defined with respect to items presented in position 17. This result is in line 
with our arguments. Disregarding the RIP1 effect meant that the latent ability assessed in 
the unidimensional model represented an average of all possible ability variables defined 
with respect to all possible reference positions (i.e., 1 to 32). This average came close to 
the ability variable defined with reference to the middle position of the test.  
A noteworthy result shown in Figure 2 is that the construct relationships were affected by 
the reference position chosen to define the ability variable. This effect is clearly visible for 
reading enjoyment. The correlations with the reading ability variable increased from 
𝜌X=]^+ = .11 when 𝜃 was defined with respect to the first item position to 𝜌X`N]^+ = .24 when 
𝜃 was defined with respect to the last item position.  
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Figure 2: 

Correlations of reading comprehension as a function of the reference position used to de-
fine the ability variable (solid lines) and correlations assessed by the unidimensional 2PL 
model (open circles). The dotted gray line stands for the square root of the sum of squared 
deviations between correlations assessed in the IRT model with and without position ef-

fects. 

Discussion 

This article attempts to shed light on the role that IP effects play in school achievement 
tests and to provide an insight into the consequences of ignoring them when assessing the 
relationship between the ability variable and other constructs (see also Nagy et al, 2016). 
Based on an example taken from the realm of reading comprehension testing, the article 
extends previous work on this topic in multiple ways.  
First, we distinguished between two kinds of IP effects – those impacting on item difficul-
ties (IP1 effects) and those impacting on item discriminations (IP2 effects). In line with 
previous research, we found clear evidence for negative IP1 effects, which could be con-
ceptualized as random effects that vary across individuals (RIP1 effect; Debeer & Janssen, 
2013). This conceptualization reflects the assumption that IP effects are driven by pro-
cesses that take place within individuals (Ackerman & Kanfer, 2009). Consequently, the 
RIP1 effect indicates individual differences in the persistence with which test takers invest 
effort and work precisely on the test (Debeer et al, 2014; Hartig & Buchholz, 2012).  
Second, our analyses indicated the presence of IP2 effects, showing that the items’ poten-
tial to discriminate between ability levels decreased when they were presented in later 
positions. Our results indicate that a second process (i.e., an RIP1 effect) gradually takes 
over, which means that items presented in later positions are less reliable measures of 
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reading ability. Therefore, the IP2 effect appears to be intertwined with the RIP1 effect. 
However, whether RIP1 effects are generally accompanied by IP2 effects is an open ques-
tion that warrants further investigation. We believe that IP2 effects are especially likely to 
occur when the individual differences in RIP1 effects are large, and when tests are long. 
Third, we studied the relationship between the RIP1 effect and two person characteristics 
hypothesized to be related to the persistence of effortful processing: decoding speed and 
reading enjoyment. Both variables were related to the RIP1 effect. Our results are in line 
with the expectation that reading is a less exhausting activity for fluent readers, who are 
characterized by good decoding skills, and that individuals who enjoy reading are more 
motivated to persist with working on reading tasks.  
Finally, we studied the consequences of disregarding IP effects when assessing the rela-
tionship of the ability construct to external variables. Our analyses indicated that, in the 
presence of RIP1 effects, the correlations assessed by using the total score are a mix of at 
least two components. The correlations no longer reflect the relationship of the individu-
als’ “pure” ability levels. Rather, they represent a composite of the relationship of their 
ability levels and the relationship of their test-taking behavior (i.e., persistence) to the con-
structs under study (e.g., Nagy et al, 2016; Robitzsch, 2009; Ren et al., 2012). 

Theoretical and practical implications 

The main implications of our article stem from the fact that the IP1 effects varied across 
individuals. This means that overall test scores are confounded by a minimum of two 
sources of variance (Robitzsch, 2009). Therefore, the following question arises: How large 
are the distorting effects of IP effects on the total test scores? Unfortunately, this question 
is hard to answer. Their influence is driven by two main factors: the mean and the varia-
bility of the RIP1 effect, and the test length. In addition, IP2 effects also affect the esti-
mates of abilities, although they appeared to have a weaker impact on the results in the 
present application. However, we expect IP2 effects that lead to a reduction in item dis-
criminations to play a more important role in longer tests, for example, those used in PISA. 
Disregarding IP effects leads to an estimate of an individual’s ability that is close to the 
average of the position-specific scores. Hence, the ability variable assessed in the unidi-
mensional IRT model incorporates the person-specific IP effect. Therefore, the unidimen-
sional model is a natural choice, when the degree of effort and precision maintained during 
a test is inherent to the definition of the ability construct. However, many applications call 
for estimates of ability that are, to some degree, corrected for the impact of individuals’ 
test-taking persistence. For example, large-scale assessments attempt to estimate ability 
distributions that quantify what students can do in real-life situations; this means that test 
scores that are assessed in low-stakes conditions are generalized beyond the test. Strong 
IP effects call the generalizability of test scores into question. Many real-life situations are 
more similar to high-stakes conditions in which individuals are motivated to sustain their 
effort. In addition, in real life, individuals are often required to draw on their abilities in 
rather short tasks, so that IP effects are unlikely to unfold.    
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The IRT models presented here can be used to study the sensitivity of results pertaining to 
the ability distributions, and the relationships of abilities with covariates to IP effects. Our 
approach implies that there are as many ways to define individuals’ ability levels as there 
are item positions (Robitzsch, 2009), which means that the mean and dispersion of the 
ability distribution as well as the relationships between ability and the covariates might 
change across positions. Therefore, researchers could track changes in the means, disper-
sions, and correlations across item positions in order to study their sensitivity to IP effects. 
If IP effects are found to affect results in a nontrivial way, researches could pick a reference 
position to adjust the results for IP effects. A natural choice is to select the first position 
because it provides results that pertain to a (hypothetical) situation in which all individuals 
maintain their initial effort and precision.  
As an alternative, the ability to be measured could be defined over a range of positions 
(e.g., the first quarter of a test), thereby partially adjusting for IP effects. This approach is 
useful when individuals’ persistence is an inherent part of the ability to be measured, but 
that there is reason to believe that giving IP effects full weight is not appropriate. The 
means, dispersions, and correlations of the partially adjusted ability variable can be derived 
from the parameter estimates provided by our IRT models, thereby obviating the need to 
exclude items.1 We do not feel able to provide advice about the number of item positions 
to be retained in this approach because this requires knowledge about the size of IP effects 
in the situations to which test scores are generalized. However, researchers can inspect 
different scenarios by defining the ability variable on the basis of different ranges of pos-
itons.  

Further research and conclusions 

The generalizability of our findings to other domains and populations remains an open 
question. We are optimistic that the essence of our results can be replicated in diverse 
settings (e.g., Debeer & Janssen, 2013; Debeer et al., 2014; Hartig & Buchholz, 2012; 
Robitzsch, 2009), including the results about the correlates of RIP1 effects (e.g., Qian, 
2014; Weirich et al., 2017). However, we believe that the list of the correlates of RIP1 
effects needs to be extended to include other variables from various domains (e.g., cogni-
tive variables, personality traits, interest, and self-concept measures). Future research 
could also study differences between achievement domains in order to gain a fuller under-
standing of the role that IP effects play (e.g., Nagy et al, 2016).  
In addition, the IRT models used are not without limitations. In all of the models, IP1 
effects were modeled by linear functions of item positions. Alternative specifications 
might use nonlinear effects, possibly accompanied by the effects of item cluster positions 
                                                                                                                         
1The ability variable defined across items provided from position p = 0 to p = L (L £ P) can be considered 

to be a combination of 𝜃= and 𝛿, such that 𝜃*a =
E
b
∑ (𝜃*= + 𝜔,𝛿*/a
,d= . The mean of 𝜃a is given by 𝜅a =

𝜅= + 𝜔ea𝜅E, where 𝜔ea =
E
b
∑ 𝜔,a
,d= . The variance of 𝜃a adheres to 𝜙aa = 𝜙== + 𝜔eaN𝜙EE + 2𝜔ea𝜙=E . Fi-

nally, the covariance between a covariate k and 𝜃a can be derived as 𝜙aL = 𝜙=L + 𝜔ea𝜙EL, which can be 
standardized to derive the corresponding correlation.  
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(e.g., Debeer et al., 2014). Unfortunately, it would not have been straightforward to include 
item cluster positions in the present situation because the item clusters differed greatly in 
the number of items they comprised (i.e., 4 to 15 items). Further studies utilizing item 
clusters of similar length could investigate whether position effects located on the item 
and cluster level can be separated from each other.  
IP effects caused by individuals’ test-taking persistence could be considered as a threat to 
the validity of inferences derived on the basis of full test scores because the extent to which 
they can be generalized to situations beyond the test is unclear. The IRT models presented 
in this article provide a means for investigating the sensitivity of test results to IP effects, 
and for adjusting such effects. Therefore, the approaches are of relevance for many large-
scale studies. 

 

Authors’ note 

The research reported in the article was supported by a grant from the Federal Ministry of 
Education and Research to the first author (Ref: 01LSA007). 

References 

Ackerman, P. L., & Kanfer, R. (2009). Test length and cognitive fatigue: An empirical 
examination of effects on performance and test-taker reactions. Journal of Experi-
mental Psychology: Applied, 15, 163–181. doi: 10.1037/a0015719 

Artelt, C., Schiefele, U., & Schneider, W. (2001). Predictors of reading literacy. European 
Journal of Psychology of Education, 16, 363–383. doi: 10.1007%2FBF03173188 

Asseburg, R., & Frey, A. (2013). Too hard, too easy, or just right? The relationship be-
tween effort or boredom and ability-difficulty fit. Psychological Test and Assessment 
Modeling, 55, 92–104.  

Auer, M., Gruber, G., Mayringer, H. & Wimmer, H. (2008). Salzburger Lesescreening für 
die Klassenstufen 5-8 (SLS 5-8) [Salzburg reading screening for 5th to 6th grade stu-
dents]. Bern: Huber. 

Debeer, D., Buchholz, J., Hartig, J., & Janssen, R. (2014). Student, school, and country 
differences in sustained test-taking effort in the 2009 PISA reading assessment. Jour-
nal of Educational and Behavioral Statistics, 39, 502–523. doi: 
10.3102/1076998614558485 

Debeer, D., & Janssen, R. (2013). Modeling item-position effects within an IRT frame-
work. Journal of Educational Measurement, 50, 164–185. doi: 10.1111/jedm.12009 

Fischer, G. H. (1973). Linear logistic test model as an instrument in educational research. 
Acta Psychologica, 37, 359–374. doi: 10.1016/0001-6918(73)90003-6 

Frey, A., Hartig, J. & Rupp, A. (2009). Booklet designs in large-scale assessments of stu-
dent achievement: Theory and practice. Educational Measurement: Issues and Prac-
tice, 28, 39–53. doi: 10.1111/j.1745-3992.2009.00154.x 



 Item position effects in a reading comprehension test 183 

Goff, M., & Ackerman, P. L. (1992). Personality-intelligence relations: Assessment of 
typical intellectual engagement. Journal of Educational Psychology, 84, 537–552. doi: 
10.1037/0022-0663.84.4.537 

Granzer, D., Köller, O. & Bremerich-Vos, A. (2009). Bildungsstandards Deutsch und 
Mathematik: Leistungsmessung in der Grundschule [Educational standards for Ger-
man and mathematics at the end of lower secondary school]. Weinheim, Germany: 
Beltz. 

Hartig, J., & Buchholz, J. (2012). A multilevel item response model for item position ef-
fects and individual persistence. Psychological Test and Assessment Modeling, 54, 
418–431. 

Hartig, J., Hölzel, B., & Moosbrugger, H. (2007). A confirmatory analysis of item relia-
bility trends (CAIRT): Differentiating true score and error variance in the analysis of 
item context effects. Multivariate Behavioral Research Methods, 42, 157–183. doi: 
10.1080/00273170701341266 

Hohensinn, C., Kubinger, K. D., Reif, M., Holocher-Ertl, S., Khorramdel, L., & Frebort, 
M. (2008). Examining item-position effects in large-scale assessment using the Linear 
Logistic Test Model. Psychology Science Quarterly, 50, 391–402. 

Kingston, N. M., & Dorans, N. J. (1982). The effect of the position of an item within a test 
on item responding behavior: An analysis based on item response theory. GRE Board 
Professional Report 79-12bP. Princeton NJ: Educational Testing Service.  

Kintsch, W. (1998). Comprehension: A paradigm for cognition. Cambridge, UK: Cam-
bridge University Press. 

Le, L. T. (2007). Effects of item positions on their difficulty and discrimination: A study in 
PISA Science data across test language and countries. Paper presented at the 72nd 
Annual Meeting of the Psychometric Society. Tokyo, Japan.  

Leary, L. F., & Dorans, N. J. (1985). Implications for altering the context in which test 
items appear: A historical perspective on an immediate concern. Review of Educational 
Research, 55, 387–413. doi: 10.3102/00346543055003387 

Lehmann, R. H., Peek, R., & Poerschke, J. (1997). HAMLET 3–4. Hamburger Lesetest für 
3. und 4. Klassen [Hamburg reading test for grade 3 and 4]. Weinheim, Germany: 
Beltz. 

Lindner, C., Nagy, G., Arhuis, W. A. R., & Retelsdorf, J. (2017). A new perspective on 
the interplay between self-control and cognitive performance: Modeling progressive 
depletion patterns. PloS one, 12, e0180149. doi: 10.1371/journal.pone.0180149 

Meyers, J. L., Miller, G. E., & Way, W. D. (2009). Item position and item difficulty change 
in an IRT-based common item equating design. Applied Measurement in Education, 
22, 38–60. doi: 10.1080/08957340802558342 

Mollenkopf, W. G. (1950). An experimental study of the effects on item analysis data of 
changing item placement and test-time limit. Psychometrika, 15, 291–315. doi: 
10.1007/BF02289044 

Muthén, L.K., & Muthén, B.O. (2012). Mplus user’s guide. Seventh edition. Los Angeles, 
CA: Muthén & Muthén. 



G. Nagy, B. Nagengast, M. Becker, N. Rose & A. Frey 184 

Nagy, G., Haag, N., Oliver, L., & Köller, O. (2017). Längsschnittskalierung der Tests zur 
Überprüfung des Erreichens der Bildungsstandards der Sekundarstufe I im PISA-
Längsschnitt 2012/2013 [Longitudinal IRT scaling of tests of the educational standards 
for lower secondary level in the PISA longitudinal assessment 2012/2013]. Zeitschrift 
für Erziehungswissenschaft, 20, 259–286. doi: 10.1007/s11618-017-0755-1 

Nagy, G., Lüdtke, O., & Köller, O. (2016). Modeling test context effects in longitudinal 
achievement data: Examining position effects in the longitudinal German PISA 2012 
assessment. Psychological Test and Assessment Modeling, 58, 641–670. 

Nagy, G., Lüdtke, O., Köller, O., & Heine, J. H. (2017). IRT-Skalierung der Tests im 
PISA-Längsschnitt 2012/2013: Auswirkungen von Testkontexteffekten auf die Zu-
wachsschätzung [IRT scaling of the tests in PISA longitudinal assessment 2012/2013: 
Impact of test context effects on the growth estimate]. Zeitschrift für Erziehungswis-
senschaft, 20, 229–258. doi: 10.1007/s11618-017-0749-z 

Nagy, G., Retelsdorf, J., Goldhammer, F., Schiepe-Tiska, A., & Lüdtke, O. (2017). Verän-
derungen der Lesekompetenz von der 9. zur 10. Klasse: Differenzielle Entwicklungen 
in Abhängigkeit der Schulform, des Geschlechts und des soziodemografischen Hinter-
grunds? [Changes in reading skills from 9th to 10th grade: differential trajectories de-
pending on school type, gender and socio-demographic background?] Zeitschrift für 
Erziehungswissenschaft, 20, 177–203. doi: 10.1007/s11618-017-0747-1 

Nauck, J. & Otte, R. (1980). Diagnostischer Test Deutsch (DTD 4--6) [Diagnostic Test 
German (DTD 4--6]. Braunschweig, Germany: Westermann. 

Qian, J. (2014). An investigation of position effects in large-scale writing assessments. Applied 
Psychological Measurement, 38, 518-534. doi: 10.1177/0146621614534312 

Ren, X., Goldhammer, F., Moosbrugger, H., & Schweizer, K. (2012). How does attention relate 
to the ability-specific and position-specific components of reasoning measured by APM? 
Learning and Individual Differences, 22, 1–7. doi: 10.1016/j.lindif.2011.09.009 

Retelsdorf, J., Köller, O., & Möller, J. (2011). On the effects of motivation on reading perfor-
mance growth in secondary school. Learning and Instruction, 21, 550–559. doi: 
10.1016/j.learninstruc.2010.11.001 

Robitzsch, A. (2009). Methodische Herausforderungen bei der Kalibrierung von Leistungstests 
[Methodological challenges in calibrating achievement tests]. In D. Granzer, O. Köller, A. 
Bremerich-Vos, M. van den Heuvel-Panhuizen, K. Reiss, & G. Walther (Eds.) Bild-
ungsstandards in Deutsch und Mathematik (pp. 42–107). Weinheim, Germany: Beltz. 

Schweizer, K., Schreiner, M., & Gold, A. (2009). The confirmatory investigation of APM items 
with loadings as a function of the position and easiness of items: A two-dimensional model 
of APM. Psychology Science Quarterly, 51, 47–64. 

Schweizer, K., Troche, S. J., & Rammsayer, T. H. (2011). On the special relationship between 
fluid and general intelligence: New evidence obtained by considering the position effect. 
Personality and Individual Differences, 50, 1249–1254. doi: 10.1016/j.paid.2011.02.019 

Weirich, S., Hecht, M., Penk, C., Roppelt, A., & Böhme, K. (2017). Item position effects are 
moderated by changes in test-taking effort. Applied Psychological Measurement, 41, 115–
129. doi: 10.1177/0146621616676791 



 Item position effects in a reading comprehension test 185 

Appendix 

Specification of the IRT model assessing RIP1 and IP2 effects 

Here we describe the implementation of the IRT model, given in Equation 4, in the Mplus 
software (Muthén & Muthén, 2012). We first restructured the data summarized in Table 
1. Each item × position combination was treated as a separate item. Second, we reformu-
lated the model as a hierarchical IRT model in which first-order latent variables are ex-
pressed as consequences of second-order latent variables. Third, we distinguished between 
two sets of variables: one set of individual difference variables and one set of fixed varia-
bles. 
The first-order model is represented as 
 

𝑙𝑜𝑔𝑖𝑡&𝑃(𝑦*+, = 1/0 = 𝛼+=𝜂*, + 𝛾H,𝜈+=, (A1) 

 
where 𝛼+=, and 𝛾H, are as defined above. Here, 𝜈+= is an item-specific threshold parameter 
defined in the first position. 𝜈=-parameters are modeled by means of J latent variables with 
zero variance and unrestricted mean structure. 𝜂*, refers to the value of an individual 's 
latent variable underlying her or his responses to the items provided in position p.  
The variables 𝜂, are modeled as being fully determined by 𝜃= and 𝛿, such that 

 

𝜂*, = 𝛾H,𝜃*= + 𝜆𝑝𝛿*. (A2) 

 
Inserting Equation A2 into Equation A1 gives 
 

𝑙𝑜𝑔𝑖𝑡&𝑃(𝑦*+, = 1/0 = 𝛼+=(𝛾H,𝜃*= + 𝜆𝑝𝛿*/ + 𝛾H,𝜈+=, (A3) 

 
which means that the 𝛽+=-parameters from Equation 4 can be derived as 𝛽+= = −𝜈+= 𝛼+=⁄ .  

Here we present parts of the Mplus syntax that applies to the example used in this article. 
We cannot provide the full syntax because it recurs on 249 observed variables (i.e., com-
binations of items and positions), 32 𝜂-variables, and 43 𝜈-variables. Therefore, we focus 
on three items, each assessed in three positions. The example includes comments (indi-
cated by an exclamation mark) that provide advice on how to extend the syntax to more 
variables.  
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Title:      IRT model with RIP1 and IP2 effects 
Data:       file = reading.dat; 
Variable:   names =  
            A4011_00 A4019_15 A4015_22 ! A401 in booklets 1, 9, 5 at p = 00, 15, 22 
            B5012_00 B5014_04 B5019_19 ! B501 in booklets 1, 4, 9 at p = 00, 04, 19 
            C4017_00 C4016_15 C4012_21 ! C401 in booklets 7, 6, 2 at p = 00, 15, 21 
            ...;                       ! Extend variable list for remaining items 
            categorical are all;  ! Specification of categorical observed variables 
            missing are all (-9); ! Flag for missing values 
Analysis:   estimator = ml;       ! Maximum likelihood estimation 
            coverage = 0;         ! Minimum observed data coverage is 0 
Model:       
            ! Specification of eta-variables (for p = 00, 04, 15, 19, 21, 22) 
            eta00 by A4011_00*1 (aa401); 
            eta00 by B5012_00*1 (ab501); 
            eta00 by C4017_00*1 (ac401); 
            eta00 by ...                ! Extend for other items at p = 00 
            ...                         ! Include specifications for eta01 to eta03 
            eta04 by B5014_04*1 (ab501); 
            eta04 by ...                ! Extend for other items at p = 04 
            ...                         ! Include specifications for eta05 to eta14 
            eta15 by A4019_15*1 (ab501); 
            eta15 by C4016_00*1 (ac401); 
            eta15 by ...                ! Extend for other items at p = 15 
            ...                         ! Include specifications for eta16 to eta18 
            eta19 by B5014_04*1 (ab501); 
            eta19 by ...                ! Extend for other items at p = 19 
            ...                         ! Include specifications for eta20  
            eta21 by C4012_21*1 (ac401); 
            eta21 by ...                ! Extend for other items at p = 21 
            eta22 by A4015_22*1 (aa401); 
            eta22 by ...                ! Extend for other items at p = 22 
            ...                         ! Include specifications for eta23 to eta31  
 
            eta00-eta31@0; ! (Residual-)Variances of eta-variables fixed to 0 
             
            ! Specification of theta-variable 
            theta by eta00@1;         ! Fixed loading because gamma^0 = 1 
            ...                       ! Include specifications for eta01 to eta03 
            theta by eta04*1 (gam03); ! Labeled loading for p = 04 
            ...                       ! Include specifications for eta05 to eta14 
            theta by eta15*1 (gam15); ! Labeled loading for p = 15 
            ...                       ! Include specifications for eta16 to eta18 
            theta by eta19*1 (gam19); ! Labeled loading for p = 19 
            theta by eta20*1 (gam20); ! Labeled loading for p = 20 
            theta by eta21*1 (gam21); ! Labeled loading for p = 22 
            theta by eta22*1 (gam22); ! Labeled loading for p = 22 
            ...                       ! Include specifications for eta23 to eta31  
 
            theta@1; ! Variance of theta set to 1 
             
            ! Specification of delta-variable 
            delta by eta00@0.00; ! Fixed loading: 00/20 = 0.00 
            ...                  ! Include specifications for eta01 to eta03 
            delta by eta04@0.20; ! Fixed loading: 04/20 = 0.75 
            ...                  ! Include specifications for eta05 to eta14 
            delta by eta15@0.75; ! Fixed loading: 15/20 = 0.75 
            ...                  ! Include specifications for eta16 to eta18 
            delta by eta19@0.95; ! Fixed loading: 19/20 = 0.95 
            delta by eta20@1.00; ! Fixed loading: 20/20 = 1.00 
            delta by eta21@1.05; ! Fixed loading: 21/20 = 1.05 
            delta by eta22@1.10; ! Fixed loading: 22/20 = 1.10 
            ...                  ! Include specifications for eta23 to eta31  
            [delta*-0.5]; ! Mean of delta is free; 
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            ! Specification of item-difficulties  
             
            ! Thresholds fixed to 0 
            [A401$1-XXXX$1@0]; ! XXXX$1 = threshold of the last item 
             
            ! Latent variable for threshold of item A401 
            A401 by A4011_00*1 (gam00); ! A401 in booklet = 1 in position p = 00 
            A401 by A4019_15*1 (gam15); ! A401 in booklet = 9 in position p = 15 
            A401 by A4015_22*1 (gam22); ! A401 in booklet = 5 in position p = 22 
            ! Latent variable for threshold of item B501 
            B501 by B5012_00*1 (gam00); ! B401 in booklet = 2 in position p = 00 
            B501 by B5014_04*1 (gam04); ! B401 in booklet = 4 in position p = 04 
            B501 by B5019_19*1 (gam19); ! B401 in booklet = 9 in position p = 19 
            ! Latent variable for threshold of item C401 
            C401 by C4017_00*1 (gam00); ! C401 in booklet = 2 in position p = 00 
            C401 by C4016_15*1 (gam15); ! C401 in booklet = 4 in position p = 04 
            C401 by C4012_21*1 (gam21); ! C401 in booklet = 9 in position p = 19 
            ... ! Include specifications for remaining items 
 
            A401-XXXX@0;                    ! Var set to 0 (XXXX = last item) 
            A401-XXXX with A401-XXXX@0      ! Cov among thresholds set to 0 
            A401-XXXX with theta@0 delta@0; ! Cov with theta and delta fixed to 0 
            [A401-XXXX];                    ! Means of thresholds are free  
              
Model Constraint: 
            new(gam*1); ! Specification of gamma-parameter 
            gam01 = gam**0.05; ! Power of gam at p = 01/20 
            ...                ! Include specifications for p = 02 to 03 
            gam04 = gam**0.20; ! Power of gam at p = 04/20 
            ...                ! Include specifications for p = 05 to 14 
            gam15 = gam**0.75; ! Power of gam at p = 15/20 
            ...                ! Include specifications for p = 16 to 18 
            gam19 = gam**0.95; ! Power of gam at p = 19/20 
            gam20 = gam**1.00; ! Power of gam at p = 20/20 
            gam21 = gam**1.05; ! Power of gam at p = 21/20 
            gam22 = gam**1.10; ! Power of gam at p = 22/20 
            ...                ! Include specifications for p = 23 to 30 
            gam31 = gam**1.55; ! Power of gam at p = 31/20 
  
Output:     stand tech1 tech8;         

 
 


