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Performances of LOO and WAIC as IRT 
model selection methods 
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Abstract 

The widely available information criterion (WAIC) and leave-one-out cross-validation (LOO) are 
considered fully Bayesian model selection methods due to their utilization of the whole posterior 
distribution other than the point estimates. Despite their theoretical advantage of being fully Bayes-
ian, how such an advantage translates into practical performance remains unknown. In this paper, 
we conducted a simulation study to compare the performances of WAIC and LOO with other four 
commonly used methods, which are the likelihood ratio test (LRT), AIC, BIC, and DIC, in the 
context of dichotomous IRT model selection. We also used a real data set to illustrate that those six 
model selection methods can lead to different conclusions. The findings suggest that WAIC and 
LOO perform better than the other four methods, especially when the data were generated with 
3PLM. In addition, it was found that AIC, one of the most widely used model selection method, can 
become inconsistent with different sample sizes and test lengths. 
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Introduction 

The field of Bayesian item response theory (IRT) has been growing rapidly since Al-
bert’s seminal paper (1992), in which he showed that the two-parameter normal ogive 
model can be estimated with the Gibbs sampling, and Patz and Junker’s groundbreaking 
papers (1999a, 1999b), in which they proposed Metroplis-Hastings algorithm for estima-
tion of various dichotomous and polytomous IRT models. The development of those 
Monte Carlo Markov Chain (MCMC) methods and their implementation in various 
software programs have made Bayesian IRT increasingly popular among researchers and 
practitioners. 

In contrast to the frequentist IRT paradigm in which point estimates of item and ability 
parameters are of interest, with Bayesian IRT we obtain posterior distributions of model 
parameters, upon which further analysis can be conducted. Sometimes posterior distribu-
tions are used to gain point summarizations such as Expected A Posteriori (EAP) and 
Maximum A Posteriori (MAP), which can be viewed as the Bayesian analogs of the 
point estimate of a model parameter obtained through marginal maximum likelihood 
estimation (MMLE) with EM algorithm (Bock, & Aitkin, 1981) in the frequentist IRT 
paradigm. It should be noted that, however, EAP and MAP are merely point summariza-
tion of the corresponding posterior distribution and are not, in any regard, intended to be 
estimates of a true model parameter that is believed to exist in the frequentist paradigm.  

With an expanding body of literature on Bayesian IRT (e.g., Beguin & Glas, 2001; Bolt 
& Lall, 2003; Cao & Stokes, 2008; Fox & Glas, 2003; Jiao & Zhang, 2015), the topic of 
Bayesian model checks and comparison in the IRT context has also received increasing 
attention (e.g., Levy, Mislevy, & Sinharay, 2009; Li, Xie, & Jiao, 2016; Sinharay, 2005; 
Sinharay, Johnson, & Stern, 2006; Zhu & Stone, 2011). As nicely summarized by Sin-
haray (2016), some popular Bayesian model checking techniques that have been applied 
to IRT include Bayesian residual analysis, prior predictive checks, and posterior predic-
tive checks, and Bayesian model comparison methods include the deviance information 
criterion (DIC; Spiegelhalter, Best, Carlin, & van der Linde, 2002), the Bayes factor 
(Kass & Raftery, 1995), and cross-validation likelihood and partial Bayes factor 
(O’Hagan, 1995). Complementary in nature, Bayesian model checks and comparison 
serve different purposes: the former allow a researcher to examine whether a model 
captures the important features of a data set, while the latter answers the question of 
which model out of a group of candidate models fits a data set the best. In this paper, we 
focus on Bayesian model comparison methods. 

In the Bayesian IRT literature, one of the most popular model comparison methods is 
DIC. DIC is more Bayesian than other commonly used model comparison methods such 
as Akaike’s information criterion (AIC; Akaike, 1973, 1974) and Bayesian information 
criterion (BIC; Shwarz, 1978) in that its computation requires use of the whole posterior 
distribution. However, as will be discussed later, DIC computes its deviance term based 
on EAP other than the whole posterior distribution and hence should only be considered 
partially Bayesian. A truly fully Bayesian model selection method does not involve point 
estimates in its computation. The widely available information criterion (WAIC; 
Watanabe, 2010) is such a fully Bayesian model selection method. As its name suggests, 
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WAIC is based on information criterion and is considered an improved version of DIC 
(Vehtari, Gelman, & Gabry, 2016a) because “WAIC has the desirable property of aver-
aging over the posterior distribution rather than conditioning on a point estimate” (Gel-
man, Hwang, & Vehtari, 2013, p. 1003). WAIC utilizes the whole posterior distributions 
to compute its deviance and penalty terms (which will be shown later), and hence is 
believed to be superior to other information criterion based model selection methods that 
use point estimates in the computation.  

Another fully Bayesian model comparison method is the Bayesian leave-one-out cross-
validation (LOO; Geiser & Eddy, 1979), to which AIC, DIC, and WAIC have been 
shown to be asymptotically equal (Shibata, 1989; Stone, 1977; Watanabe, 2010). LOO 
requires taking out one data point at a time and using it to cross-validate the model esti-
mated with the remaining data. Due to its iterative nature, LOO can be computationally 
prohibitive for large sample datasets in that the model needs to be fitted for n (the sample 
size) times and computational shortcuts such as importance sampling techniques (e.g., 
Gelfand, Day, & Chang, 1992; Ionides, 2008) have been proposed to approximate the 
posterior distribution without re-fitting the model for multiple times. In this paper we 
evaluate the performance of LOO computed with a relatively new importance sampling 
technique, namely Pareto smoothed importance sampling (PSLS; Vehtari, Gelman, & 

Gabry, 2015)
4
.  

Numerous model selection methods have been used in the context of IRT model compar-
ison and selection, and the performances of some of those methods in selecting the cor-
rect IRT model have also been systematically investigated using simulation studies. To 
date, WAIC and LOO have not been applied to choosing IRT models in empirical stud-
ies, nor have their performances as model selection methods been studied in simulation 
studies. This study aims to fill the gap in the psychometric literature by investigating 
how WAIC and LOO perform, in comparison with other four commonly used methods, 
in an IRT model selection scenario through a simulation study. We intend to address two 
research questions in this study. First, how does the theoretical superiority of WAIC and 
LOO translate into practical performance in the context of dichotomous IRT model com-
parison and selection? Second, does WAIC perform equally well as LOO in our simulat-
ed conditions?  

The remainder of this article is organized into five sections. We start with a literature 
review of IRT related simulation studies that investigate the performances of various 
model selection methods. Then we provide a brief description of the six methods used in 
this study. In the third section, we conduct a simulation study to compare the perfor-
mances of WAIC and LOO with the other four methods, followed by a demonstration 
using a real data set in the fourth section. We close our paper with conclusions and dis-
cussions of the implications of using WAIC and LOO in practice. 

 

                                                                                                                         
4
 Due to space limitation and its technical nature, we do not describe the PSLS and its implementation 
here. Interested readers are referred to Vehtari, Gelman, and Gabry (2015, 2016a).  
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Model selection studies in IRT literature 

Model selection methods, especially those based on information criterion, have been 
widely applied in the IRT literature. As nicely summarized by Cohen and Cho (2016), 
applications of information criterion based methods to IRT model comparison and selec-
tion fall into the following five categories: exploring the number of dimensions (e.g., 
Yao & Schwarz, 2006), a general model with different constraints (e.g., Hickendorff, 
Heiser, van Putten, & Verhelst, 2009), nested models (e.g., Revuelta, 2008), multilevel 
IRT models (e.g., May, 2006), and IRT models from different families (e.g., Rijmen & 
De Boeck, 2002). 

While there are a large number of studies applying model selection methods to IRT 
model selection, only a limited number of them (Kang & Cohen, 2007; Kang, Cohen, & 
Sung, 2009; Li, Bolt, & Fu, 2006; Li, Cohen, Kim, & Cho, 2009; Whittaker, Chang, & 
Dodd, 2012, 2013; Zhu, & Stone, 2012) in the literature have systematically investigated 
the performances of different model selection methods with simulation studies.  

Kang and Cohen (2007) conducted a simulation study to compare the performances of 
the likelihood ratio test (LRT), AIC, BIC, DIC, and the cross-validation log-likelihood 
(CVLL; O’Hagan, 1995) in selecting the correct model among the one-parameter logistic 
model (1PLM), the two-parameter logistic model (2PLM), and the three-parameter lo-
gistic model (3PLM). They found that those five methods tend to produce inconsistent 
results and overall, CVLL is the best model selection method in their simulation condi-
tions.  

In another simulation study, Kang, Cohen, and Sung (2009) compared the performances 
of AIC, BIC, DIC, and CVLL in selecting the correct model among the graded response 
model (GRM; Samejima, 1969), the partial credit model (PCM; Masters, 1982), the 
generalized partial credit model (GPCM; Muraki, 1992), and the rating scale model 
(RSM; Andrich, 1978). They found that while the simulated condition affects how well 
each method performs, CVLL, on average, has the best performance.  

Whittaker, Chang, and Dodd (2012) investigated the performances of LRT, AIC, the 
finite sample corrected AIC (AICC; Hurvich & Tsai, 1989), BIC, Hannon and Quinn’s 
information criterion (HQIC; Hannon & Quinn, 1979), and consistent AIC (CAIC; 
Bozdogan, 1987) in selecting the correct model combination among several competing 
mixed-format IRT models in a simulation study. It was found that those methods gener-
ally perform well in their simulation conditions, although they tend to choose less pa-
rameterized models when the generating model is more parameterized. Whittaker, 
Chang, and Dodd (2013) replicated their previous simulation study by increasing the 
variance of the generating item discrimination parameters and found that those methods 
perform well in all simulation conditions. They concluded that the anomaly found in 
their previous study is due to the small variance of the generating item discrimination 
parameters.  

Whereas the previous four studies focus on the performances of different methods in 
selecting a correct unidimensional IRT model, the following studies target more complex 
IRT models. Li, Cohen, Kim, and Cho (2009) investigated the performances of AIC, 
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BIC, DIC, the pseudo-Bayes Factor (PsBF; Gerisser & Eddy, 1979; Gelfand, Dey, & 
Chang, 1992), and posterior predictive model checks (PPMC; Gelman, Meng, & Stern, 
1996) in selecting the correct model among several competing mixture IRT models. 
They found that BIC and PsBF are most effective; AIC and PPMC tend to choose more 
complex models in some simulating conditions; DIC is the least effective method. Li, 
Bolt and Fu (2006) compared the performances of PsBF, DIC, and posterior predictive 
checks (Gelman, Carlin, Stern, & Rubin, 2014) in selecting the correct model among 
different testlet models, and found that DIC performs worse than the other two methods. 
Zhu and Stone (2012) investigated the performances of DIC, conditional predictive ordi-
nate (CPO), and PPMC in selecting among GRM and several alternative models that are 
modified or extended from GRM, which include the one-parameter GRM (Muraki, 
1990), two-dimensional GRM with simple- and complex structures, and the testlet ver-
sion of the GR model. They found that the three methods perform equally well in their 
simulated conditions. 

To date, there have been no studies in the IRT literature that investigate performances of 
WAIC and LOO in the context of IRT model comparison and selection. In this study, we 
focus on dichotomous IRT models and compare the performances of WAIC and LOO 
with other four commonly used methods, namely LRT, AIC, BIC, and DIC. In the next 
section, we provide a brief description of the six model selection methods.  

Model selection methods in the current study 

The six model selection methods that are of interest in this study fall into either the fre-
quentist or the Bayesian framework. Among them, LRT, AIC, and BIC are frequentist, 
and DIC, WAIC, and LOO are Bayesian. LRT is based on a deviance term that can be 
calculated using the following equation 

 ˆ2log ( | )θ= − mleDeviance p y , (1) 

where θ̂mle  is the maximum likelihood estimate, and ˆlog ( | )θmlep y  is the log likelihood 

based on the maximum likelihood estimate θ̂mle .  LRT only applies to model selection 

among a group of nested models. The reason is that the deviance difference between two 
nested models follows a chi-square distribution, and therefore can be used as a test statis-
tic to test whether the more parameterized model fits the data significantly better than the 
less parameterized one. Considering that there are nested relations among the three 
common dichotomous IRT models, LRT is applicable and therefore included in the 
current study. 

As one of the most widely used information-criterion-based model selection methods, 
AIC is more flexible than LRT and can be applied to scenarios where competing models 
are not nested. The computation of AIC is given as 

 ˆ2log ( | ) 2θ= − +mleAIC p y k , (2) 
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where ˆ2log ( | )θ− mlep y  is the same deviance term as in equation 1, and k is the number 

of estimated parameters with 2k serving as a penalty term for model complexity. 

Another common information-criterion-based model selection method is BIC. The com-
putation of BIC is given as  

 ˆ2log ( | ) (log )θ= − +mleBIC p y k N , (3) 

where N is the model sample size and the other terms remain the same as in equation 2. 
AIC and BIC only differ in the penalty term: for BIC the penalty term increases with the 
increase of sample size; for AIC, it remains constant regardless of the sample size. The 
penalty terms of AIC and BIC are equal when the sample size is 100 (log100 = 2), and 
when the sample size is larger than 100, BIC imposes a harsher penalty for model com-
plexity.  

DIC can be computed using the following equation 

 ˆ2log ( | ) 2θ= − +EAP DICDIC p y p , (4) 

where ˆ2log ( | )θ− EAPp y  is the deviance term based on the posterior mean estimate θ̂EAP  

and the computation of DICp is given as 

 ˆ2(log ( | ) (log ( | )))θ θ= −DIC EAP postp p y E p y . (5) 

In equation 5, (log ( | ))θpostE p y  is the posterior mean of the log likelihood and can be 

computed with the following equation 

 
1

1
(log ( | )) log ( | )θ θ

=
= 

S
s

post
s

E p y p y
S

, (6) 

where S is the number of simulation draws and θ s is the simulated value for parameter 
θ  at the sth draw. As mentioned in the introduction, DIC is only partially Bayesian in 
that the computation of its deviance term in equation 4 and the first term of its penalty 

term in equation 5 is based on θ̂EAP , which is the point summarization of the posterior 

distribution, and only the computation of the second term of its penalty term (equation 6) 
utilizes the whole posterior distribution. 

Before we discuss the computation of LOO and WAIC, it is necessary to introduce log 
pointwise predictive density (LPPD), which can be computed with the following equa-
tion (Gelman et al., 2014) 

 
1

log ( | ) ( )θ θ θ
=

= 
n

i post
i

LPPD p y p d . (7) 

LPPD can be viewed as a fully Bayesian analog of the term ˆlog ( | )θmlep y  used in the 

computation of AIC and BIC, or the term ˆlog ( | )θEAPp y  in the computation of DIC. It is 
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fully Bayesian because of its utilization of ( )θpostp , which is the posterior distribution of 

parameters, other than the use of point estimates θ̂mle  or θ̂EAP . According to Gelman et 

al., LPPD can be computed as   

 
1 1

1
log( ( | ))θ

= =
= 

n S

computed i
i s

LPPD p y
S

. (8) 

With LPPD defined, the computation of WAIC is given as 

 2 2= − + WAICWAIC LPPD p , (9) 

where WAICp  is the penalty term and can be computed in the following two ways:  

 1
1

2 (log( ( | )) (log ( | )))θ θ
=

= −
n

WAIC post i post i
i

p E p y E p y , (10) 

 2
1

var (log ( | ))θ
=

=
n

WAIC post i
i

p p y . (11) 

According to Gelman et al., the second approach (equation 11) is more computationally 
stable and is implemented in the R package loo (Vehtari, Gelman, & Gabry, 2016b), 
which will be discussed later. As can be seen from equations 7-11, the computation of 
both LPPD and the penalty term of WAIC utilizes the whole posterior distribution other 
than point estimates, which is why WAIC is considered fully Bayesian.  

             In cross validation, a dataset is partitioned into a training set and a validation set. 
Usually we fit a model of interest to the training set and obtain a posterior distribution, 
with which we evaluate the fit of the model to the validation set. A special case of cross 
validation is leave one out cross validation, in which we leave one data point out each 
time and compute LPPD with n-1 data points using the following equation (Gelman et 
al., 2014) 

 ( )
1

log ( | )θ−
=

=
n

loo post i i
i

LPPD p y , (12) 

where n is the sample size, and ( )log ( | )θ−post i ip y  is the log likelihood of the ith dataset 

that excludes the ith data point, whose computation is given by Gelman et al. as 

 ( )
1 1 1

1
log ( | ) log( ( | ))θ θ−

= = =
=  

n n S
is

post i i i
i i s

p y p y
S

. (13) 

In equation 13, θ is is the sth simulated value in the posterior distribution conditioning on 
the ith dataset without the ith data point. LOO is further computed as -2 times to be on 
the same scale as AIC, BIC, DIC, and WAIC. Similarly, the computation of LOO re-
quires the use of the whole posterior distribution (equation 13) and therefore, LOO is 
also fully Bayesian. 
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Methods 

Simulation design 

The current simulation study is similar to the one conducted by Kang and Cohen (2007), 
with CVLL replaced by WAIC and LOO. In the following, we provide a detailed de-
scription of their simulation study. To compare the performances of LRT, AIC, BIC, 
DIC, and CVLL in the context of dichotomous IRT model comparison and selection, 
Kang and Cohen conducted a simulation study with 36 conditions (two test lengths ×  
two sample sizes ×  three ability distributions ×  three generating dichotomous IRT mod-
els). The two test lengths included 20 and 40 items; the two sample sizes were 500 and 
1000; the three ability distributions were N(-1, 1), N(0, 1), and N(1, 1); and the three 
generating IRT models were 1PLM, 2PLM, and 3PLM. The item difficulty parameters 
were generated from a standard normal distribution N(0, 1), item discrimination parame-
ters from a lognormal distribution lnN(0, 0.5), and item pseudo-guessing parameters  

 
Table 1: 

Item Parameters Used for Data Generation 

Item a b c Item a b c 

Item 1 1.1005 0.4078 0.2228 Item 21 0.5659 -0.1257 0.3426 

Item 2 2.2093 0.5696 0.2332 Item 22 0.6128 -0.7826 0.1925 

Item 3 1.4493 -1.061 0.2337 Item 23 1.1037 0.0615 0.2324 

Item 4 0.7514 -0.2437 0.1445 Item 24 1.9886 0.4244 0.1396 

Item 5 1.5789 0.3206 0.2581 Item 25 0.5691 -0.735 0.2059 

Item 6 0.6425 -1.3762 0.2712 Item 26 1.0346 0.9836 0.3124 

Item 7 1.6254 -0.98 0.1232 Item 27 1.1384 -1.2651 0.1832 

Item 8 1.3415 -0.6881 0.1954 Item 28 3.3488 -0.2252 0.1811 

Item 9 0.918 -0.3526 0.2709 Item 29 2.6306 -0.6576 0.2537 

Item 10 1.8027 0.24 0.2984 Item 30 0.6652 1.7007 0.2184 

Item 11 0.8159 0.5917 0.0587 Item 31 1.0342 1.0805 0.2261 

Item 12 0.9375 1.8891 0.1405 Item 32 1.0163 -2.0452 0.3464 

Item 13 0.9126 -0.269 0.2339 Item 33 1.2945 0.1627 0.1455 

Item 14 1.9395 0.3673 0.2387 Item 34 1.6521 0.0573 0.3861 

Item 15 0.3746 -0.9681 0.3527 Item 35 0.9696 1.2171 0.1046 

Item 16 0.673 -1.2601 0.1206 Item 36 1.2369 2.1226 0.1656 

Item 17 0.4166 0.5225 0.1244 Item 37 0.7812 0.4228 0.2696 

Item 18 1.2093 -1.3356 0.1167 Item 38 0.7728 -0.1656 0.178 

Item 19 0.9486 0.9515 0.2787 Item 39 0.5441 -0.2055 0.1961 

Item 20 1.4916 0.9811 0.1923 Item 40 1.4025 1.2841 0.2917 
Note. a is item discrimination parameter; b is item difficulty parameter; c is pseudo-guessing parameter. 
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from a beta distribution beta(5, 17). When the generating IRT model was 1PLM, only 
the difficulty parameters were used with discrimination parameters all fixed to 1; when 
the generating IRT model was 2PLM, both the difficulty and discrimination parameters 
were used while the pseudo-guessing parameter was fixed to 0. When the test length was 
20 items, only the first 20 item parameters were used in generating item responses. The 
specific item parameters they generated are listed in Table 1. 

To compare the performances of those five model selection methods, Kang and Cohen 
ran 50 replications in each condition and computed the proportion of times when the 
generating model was selected as the best fitting model by each of the five methods. 

In the current simulation study, we use the same simulation design with the aforemen-
tioned 36 conditions, and in each condition we generated 50 datasets using the item 
parameters listed in Table 1. It should be noted that we set the number of replications 
within each simulation condition to 50 to keep the current study at a manageable level, 
due to the long computation time required for the implementation of MCMC algorithm. 
It is not uncommon for IRT simulation studies using MCMC algorithms to run only 25 
replications per condition (e.g., Jiao, Wang, & He, 2013), which is the minimum number 
of replications in IRT simulation studies considered acceptable (Harwell, Stone, Hsu, & 
Kirisci, 1996). For each generated dataset, we fit 1PLM, 2PLM, and 3PLM and compare 
the model fit using the six methods. Within each condition we record how many times 
each method chooses a model, and divide the number of times a correct model is chosen 
by 50 to obtain the power rate of a given method. The power rate is the dependent varia-
ble of the simulation study.  

Estimation methods 

For the computation of LRT, AIC, and BIC, we use the R package mirt (Chalmers, 
2012) that implements MMLE method. OpenBUGS (Spiegelhalter, Thomas, Best, & 
Lunn, 2010) is used for the computation of DIC. The R package rstan, which is the R 
interface to Stan (Carpenter et al., 2016), is used for model estimation and the R package 
loo (Vehtari et al., 2016b) is used for the computation of WAIC and LOO. It should be 
noted that Stan is a relatively new statistical software program that implements the no-U-
turn sampler (NUTS; Hoffman & Gelman, 2014), an extension to a powerful and effi-
cient MCMC algorithm called Hamiltonian Monte Carlo (HMC; Neal, 2011). Luo and 
Jiao (2016) provided a collection of Stan code for common dichotomous and polytomous 
IRT models and showed that Stan is an attractive alternative for Bayesian IRT model 
estimation.  

Estimation of the three IRT models with MCMC methods requires the specification of 
prior distributions for all model parameters, and we use priors similar to those used by 
Kang and Cohen (2007). For the 1PLM model, we assign a standard normal distribution 
N(0, 1) as the prior for the ability parameters for model identification, and a normal 
distribution with unknown mean and variance as the prior for the item difficulty parame-
ter; the unknown mean is assigned the distribution N(0, 25) as the hyperprior, and for the 
unknown variance, in OpenBUGS we assign the distribution gamma(1, 1) as the hyper-
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prior for the precision (reciprocal of the variance), and in Stan a half Cauchy distribution 
Cauchy+(0, 5) as the hyperprior for the standard deviation (square root of the variance). 
For 2PLM and 3PLM, we use same priors for parameters already in the 1PLM model, 
and assign the distribution truncated normal distribution N+(0, 4) as the prior for the item 
discrimination parameter, and a beta distribution beta(5, 23) for the pseudo-guessing 
parameter. It should be noted that the above prior choices are recommended and imple-
mented in the context of Bayesian IRT (e.g., Levy & Mislevy, 2016; Sahu, 2002; Sheng, 
2010), and we choose them so that the results regarding the performances of WAIC and 
LOO in the current study are relevant to practitioners and researchers who are likely to 
use the same priors. While a topic warranting further studies, the effect of prior choices 
upon the performances of WAIC and LOO is out of the scope of the current study and 
will not be further discussed in the remainder of this paper. 

Model convergence check 

To check convergence for models estimated with MCMC methods, we apply the Gelman 
and Rubin’s convergence diagnostic (Gelman & Rubin, 1992) that computes the poten-
tial scale reduction factor (PSRF). A PSRF value close to 1 indicates model convergence 
and in practice, the value of 1.1 has been recommended as the threshold to gauge wheth-
er the model has converged (Gelman, Carlin, Stern, & Rubin, 2014). In OpenBUGS all 
PSRF values converge to 1 within 2,000 iterations for the three IRT models, and we run 
three parallel chains with 5,000 iterations each to be conservative. The efficient HMC 
algorithm implemented in Stan needs approximately 200 iterations for the three models 
to converge, and to be conservative we run three parallel chains with 500 iterations each 
in Stan to ensure that model convergence is not a concern. 

Results 

Table 2 lists the model selection results based on the six methods. Specifically, it pro-
vides the number of times a given method chooses 1PLM, 2PLM, and 3PLM in a simula-
tion condition. For example, the first row of Table 2 shows that when the generating 
model is 1PLM with a sample size of 500 (simulated from a N(-1, 1) distribution) and a 
test length of 20, LRT chooses 1PLM 46 times and 2PLM 4 times; AIC, BIC, DIC, and 
LOO choose 1PLM 50 times; WAIC chooses 1PLM 49 times and 2PLM once.  

Figure 1 provides a visual comparison of the mean power rates comparison of the six 
methods across 36 simulation conditions. As can be seen, LOO and WAIC have the 
highest power (power = 0.98) and the performance of DIC is slightly worse (power = 
0.93); the other three methods in the frequentist framework perform considerably worse 
in that LRT (power = 0.88) performs slightly better than AIC (power = 0.85), and the 
average performance of BIC is the worst (power = 0.67). 
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Table 2:  
Model Selection Results 

Sample 
Size 

Ability 
Distribution 

Test 
Length

True 
Model

Model Selection Methods 

LRT AIC BIC DIC LOO WAIC 

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 

  
N(-1, 1) 

20 1 46 4 0 50 0 0 50 0 0 50 0 0 50 0 0 49 1 0 

2 0 50 0 0 50 0 1 49 0 0 50 0 0 50 0 0 50 0 

3 0 11 39 0 20 30 50 0 0 0 0 50 0 0 50 0 0 50 

40 1 46 4 0 50 0 0 50 0 0 50 0 0 50 0 0 50 0 0 

2 0 50 0 0 50 0 0 50 0 0 50 0 0 50 0 0 50 0 

3 0 0 50 0 3 47 43 7 0 0 0 50 0 0 49 0 1 49 

 
500 

 
N(0, 1) 

20 1 46 4 0 49 1 0 50 0 0 50 0 0 48 2 0 48 2 0 

2 0 50 0 0 50 0 0 50 0 0 50 0 0 50 0 0 50 0 

3 0 7 43 0 27 23 36 14 0 0 8 42 0 0 50 0 0 50 

40 1 47 3 0 50 0 0 50 0 0 50 0 0 50 0 0 50 0 0 

2 0 50 0 0 50 0 0 50 0 0 50 0 0 50 0 0 50 0 

3 0 0 50 0 21 29 0 50 0 0 0 50 0 0 50 0 0 50 

  
N(1, 1) 

20 1 46 4 0 49 1 0 50 0 0 50 0 0 48 1 1 48 1 1 

2 0 50 0 0 50 0 0 50 0 0 50 0 0 47 3 0 45 5 

3 0 48 2 0 49 1 29 21 0 0 31 19 0 6 44 0 3 47 

40 1 47 3 0 50 0 0 50 0 0 50 0 0 50 0 0 50 0 0 

2 0 50 0 0 50 0 0 50 0 0 48 2 0 50 0 0 50 0 

3 0 36 14 0 50 0 0 50 0 0 29 21 0 4 46 0 2 48 

  
N(-1, 1) 

20 1 42 8 0 50 0 0 50 0 0 49 1 0 49 1 0 45 5 0 

2 0 50 0 0 50 0 0 50 0 0 50 0 0 50 0 0 50 0 

3 0 1 49 0 2 48 14 36 0 0 1 49 0 0 50 0 0 50 

40 1 50 0 0 50 0 0 50 0 0 50 0 0 50 0 0 50 0 0 

2 0 50 0 0 50 0 0 50 0 0 50 0 0 50 0 0 50 0 

3 0 0 50 0 0 50 0 50 0 0 0 50 0 0 50 0 0 50 

 
1000 

 
N(0, 1) 

20 1 44 6 0 50 0 0 50 0 0 50 0 0 49 1 0 47 3 0 

2 0 50 0 0 50 0 0 50 0 0 50 0 0 49 1 0 50 0 

3 0 0 50 0 2 48 0 50 0 0 2 48 0 0 50 0 0 50 

40 1 47 3 0 50 0 0 50 0 0 50 0 0 50 0 0 50 0 0 

2 0 50 0 0 50 0 0 50 0 0 50 0 0 50 0 0 50 0 

3 0 0 50 0 0 50 0 50 0 0 0 50 0 0 50 0 0 50 

  
N(1, 1) 

20 1 45 5 0 49 1 0 50 0 0 50 0 0 48 2 0 46 4 0 

2 0 50 0 0 50 0 0 50 0 0 49 1 0 50 0 0 50 0 

3 0 45 5 0 49 1 0 50 0 0 45 5 0 9 41 0 5 45 

40 1 49 1 0 50 0 0 50 0 0 50 0 0 50 0 0 50 0 0 

2 0 50 0 0 50 0 0 50 0 0 50 0 0 50 0 0 50 0 

3 0 22 28 0 50 0 0 50 0 0 13 37 0 3 47 0 2 48 
Note. The maximum selection rate within a cell is 50. In the True Model column, 1 denotes 1PLM, 2 
2PLM, and 3 3PLM. 
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Figure 1: 

Mean power rates comparison by methods 

 

Table 3 lists the power rates of each method in different simulating conditions, and tells 
how the choice of a generating model affects the performance of certain methods. For 
example, when the generating model is 1PLM the power of BIC is constantly one; when 
the generating model is 3PLM, however, its power becomes invariably zero. Another 
noticeable finding is that when the ability distribution is N(1, 1) and the generating mod-
el is 3PLM, WAIC and LOO have considerably higher power than the other four tradi-
tional methods, regardless of the sample size and test length. 

In Figures 2-4, we provide a visual presentation of the marginal summary of the perfor-
mances of the six methods using bar plots. Specifically, in Figure 2 we consider the 
mean power rates of a given test length combined with a given generating model by 
averaging the power rates across six simulation conditions (three ability distributions ×  
two sample sizes). When the generating model is 1PLM with the test length of 20, LOO 
and WAIC perform slightly worse than AIC, BIC and DIC, and WAIC has slightly lower 
power than LOO; when the test length increases to 40, LOO and WAIC perform as well 
as AIC, BIC, and DIC, whereas LRT performs worse. When the generating model is 
2PLM, all six methods perform approximately equally well. When the generating model 
is 3PLM, regardless of the test length both WAIC and LOO perform very well and have 
power rates above 0.90, while the performances of LRT, AIC, and DIC, which improve 
when the test length changes from 20 to 40, are considerably worse. 

In Figure 3 we consider the mean power rates of the combination of a given sample size 
and a given generating model by averaging across six simulation conditions (three ability 
distributions ×  two test lengths). When the generating model is 1PLM, LOO and WAIC 
perform slightly worse than AIC, BIC and DIC, and WAIC has slightly lower power 
than LOO, although the difference is negligible; LRT performs worse than the other five 
methods. When the generating model is 2PLM, all six methods perform approximately  
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Table 3:  
Power Rates of Different Methods 

Sample 
Size 

Ability 
Distribution

Test 
Length 

True 
Model 

Model Selection Methods 

LRT AIC BIC DIC LOO WAIC 

 
 
 
 
 

 
N(-1, 1) 

20 1 0.92 1 1 1 1 0.98 
2 1 1 0.98 1 1 1 
3 0.78 0.6 0 1 1 1 

40 1 0.92 1 1 1 1 1 
2 1 1 1 1 1 1 
3 1 0.94 0 1 0.98 0.98 

 
500 

 
N(0, 1) 

20 1 0.92 0.98 1 1 0.96 0.96 
2 1 1 1 1 1 1 
3 0.86 0.46 0 0.84 1 1 

40 1 0.94 1 1 1 1 1 
2 1 1 1 1 1 1 
3 1 0.58 0 1 1 1 

  
N(1, 1) 

20 1 0.92 0.98 1 1 0.96 0.96 
2 1 1 1 1 0.94 0.9 
3 0.04 0.02 0 0.38 0.88 0.94 

40 1 0.94 1 1 1 1 1 
2 1 1 1 0.96 1 1 
3 0.28 0 0 0.42 0.92 0.96 

 
 
 
 
 

 
N(-1, 1) 

20 1 0.84 1 1 0.98 0.98 0.9 
2 1 1 1 1 1 1 
3 0.98 0.96 0 0.98 1 1 

40 1 1 1 1 1 1 1 
2 1 1 1 1 1 1 
3 1 1 0 1 1 1 

 
1000 

 
N(0, 1) 

20 1 0.88 1 1 1 0.98 0.94 
2 1 1 1 1 0.98 1 
3 1 0.96 0 0.96 1 1 

40 1 0.94 1 1 1 1 1 
2 1 1 1 1 1 1 
3 1 1 0 1 1 1 

  
N(1, 1) 

20 1 0.9 0.98 1 1 0.96 0.92 
2 1 1 1 0.98 1 1 
3 0.1 0.02 0 0.1 0.82 0.9 

40 1 0.98 1 1 1 1 1 
2 1 1 1 1 1 1 
3 0.56 0 0 0.74 0.94 0.96 

Note. In the True Model column, 1 denotes 1PLM, 2 2PLM, and 3 3PLM. 
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equally well. When the generating model is 3PLM, regardless of the sample size both 
WAIC and LOO perform very well and have power rates well above 0.90, while the 
performances of LRT, AIC, and DIC, which improve slightly when the sample size 
changes from 500 to 1000, are noticeably worse. 

In Figure 4 we consider the mean power rates of the combination of a given ability distribu-
tion condition (whether it matches with item difficulty) and a given generating model by 
averaging across four simulation conditions (two sample sizes ×  2 test lengths). Similar to 
Figure 3, when the generating model is 1PLM, LOO and WAIC perform slightly worse 
than AIC, BIC and DIC, and WAIC has slightly lower power than LOO, although the 
difference is negligible. When the generating model is 2PLM, all six methods perform 
approximately equally well. When the generating model is 3PLM, regardless of the ability 
distribution both WAIC and LOO perform very well and have power rates well above 0.90,  
 

 

 
Figure 2: 

Model selection by test length 
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although they have slightly higher power rates when the ability distribution matches the 
mean item difficulty. The ability distribution has a greater effect upon the performances of 
LRT, AIC, and DIC in that when the ability distribution does not match with the mean item 
difficulty, their performances drop markedly: the power rates of LRT and DIC are higher 
than 0.90 when the ability and difficulty match; when there is a mismatch, the power rates 
decrease to approximately 0.70 for DIC, 0.60 for LRT, and 0.45 for AIC. 

 

 

 
Figure 3: 

Model selection by sample size 

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1PL 2PL 3PL

Selected Model with Generating Model 1PL 
(N=500)

LRT

AIC

BIC

DIC

LOO

WAIC

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1PL 2PL 3PL

Selected Model with Generating Model 1PL 
(N=1000)

LRT

AIC

BIC

DIC

LOO

WAIC

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1PL 2PL 3PL

Selected Model with Generating Model 2PL 
(N=500)

LRT

AIC

BIC

DIC

LOO

WAIC

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1PL 2PL 3PL

Selected Model with Generating Model 2PL 
(N=1000)

LRT

AIC

BIC

DIC

LOO

WAIC

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1PL 2PL 3PL

Selected Model with Generating Model 3PL 
(N=500)

LRT

AIC

BIC

DIC

LOO

WAIC

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1PL 2PL 3PL

Selected Model with Generating Model 3PL 
(N=1000)

LRT

AIC

BIC

DIC

LOO

WAIC



Y. Luo & K. Al-Harbi 198

 
Figure 4: 

Model selection by ability distribution 
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=500), 1,000 (N =1000), and 2,000 students (N = 2000) from the data and for each sam-
ple size, we either use the whole test with 52 items (I = 52) or the first 30 items exclud-
ing the reading comprehension items (I =30). With the resulting six data sets (three sam-
ple sizes ×  two test lengths) we estimate the 1PLM, 2PLM, and 3PLM using the same 
software programs as in the preceding simulation section. 

Table 4 lists the model selection results based on the six methods with the six data sets. 
Note that in the LRT column, x indicates that the corresponding model is selected by 
LRT; for other five methods, the smallest value is highlighted in bold. As can be seen, 
LRT, DIC, WAIC, and LOO consistently select the 3PLM as the best fitting model re-
gardless of the dataset. AIC selects the 2PLM model in dataset 2, where the sample size 
is small (N = 500) and the test length is relatively short (I = 30). In the other five datasets 
AIC selects the 3PLM model. Same as in the simulation study where BIC never selects 
the 3PLM model, here it always selects the 2PLM model as the best fitting one.  

 

 

Table 4:  
Model Selection Results for GAT-V with Different Sample Sizes and Test Lengths 

Data Model Model Selection Method 

LRT AIC BIC DIC WAIC LOO 

 
Dataset 1 

1PLM  29873.88 30097.25 29230 29244.22 29244.15 

2PLM  29557.45 29995.77 28920 28871.08 28874.53 

3PLM x 29529.58 30187.06 28830 28792.89 28798.19 

 
Dataset 2 

1PLM  16548.03 16678.68 16070 16074.53 16075.15 

2PLM  16354.13 16607.01 15870 15841.28 15847.38 

3PLM x 16358.32 16737.63 15840 15820.38 15828.76 

 
Dataset 3 

1PLM  60100.95 60361.07 58870 58897.22 58897.10 

2PLM  59487.26 59997.67 58220 58170.82 58174.64 

3PLM x 59394.25 60159.86 58050 58032.48 58035.02 

 
Dataset 4 

1PLM  33262.98 33415.12 32360 32364.33 32365.35 

2PLM  32817.46 33111.93 31840 31817.87 31826.35 

3PLM x 32791.06 33232.76 31800 31773.59 31781.29 

 
Dataset 5 

1PLM  121827.50 122124.34 119400 119384.58 119384.31 

2PLM  120569.20 121151.70 117900 117882.11 117881.99 

3PLM x 120333.10 121206.85 117600 117576.64 117579.05 

 
Dataset 6 

1PLM  67792.89 67966.52 65950 65976.28 65978.30 

2PLM  66952.56 67288.62 64930 64910.44 64918.46 

3PLM x 66850.00 67354.08 64820 64789.52 64804.28 
Note. Dataset 1 (N = 500, I = 52); Dataset 2 (N = 500, I = 30); Dataset 3 (N = 1000, I = 52);  
Dataset 4 (N = 1000, I = 30); Dataset 5 (N = 2000, I= 52); Dataset 6 (N = 2000, I = 30). 
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Conclusions and discussions 

This study compared the performances of LRT, AIC, BIC, DIC, LOO, and WAIC in an 
attempt to investigate whether LOO and WAIC, which are fully Bayesian and hence 
theoretically superior model selection methods, perform better than the other common 
methods in the context of dichotomous IRT model selection. Another purpose of the 
current study was to investigate whether WAIC, an asymptotic approximation of LOO, 
performs similarly as LOO computed through PSLS approximation. The findings suggest 
that on average WAIC and LOO have the highest power rate (0.98) among the six meth-
ods in selecting the true dichotomous IRT model, DIC performs slightly worse with a 
power rate of 0.93, and BIC performs the worst with the lowest power rate of 0.67. As 
mentioned earlier, LRT, AIC, BIC, and DIC use point estimates in their computation 
while LOO and WAIC are computed based on the whole posterior distribution. Intuitive-
ly, it is expected that methods using more information (the posterior distribution) should 
perform better than those using less information (point estimate), and our findings cor-
roborate such expectations: WAIC and LOO perform the best due to their full use of the 
posterior distribution, DIC comes the second due to its partial use of the posterior distri-
bution, and the other methods (LRT, AIC, and BIC) that do not use the posterior distri-
bution have the lowest statistical power in dichotomous IRT model selection. In other 
words, the theoretical advantage of WAIC and LOO being fully Bayesian indeed trans-
lates into superior performances regarding dichotomous IRT model selection in the cur-
rent study. In terms of comparative performance between WAIC and LOO computed 
through PSLS, it seems that WAIC does not perform any worse than LOO since they 
have the same mean power rates. Although their performances differ slightly in some 
conditions, we observe that such differences are negligible and it is reasonable to con-
clude they have nearly identical performances in the current study. 

Although WAIC and LOO seem to perform better than the other four methods, there are 
conditions in which they perform slightly worse. For example, when the generating 
model is 1PLM, both WAIC and LOO have a slightly higher probability of choosing a 
more parameterized model and hence slightly lower power. When 2PLM is the generat-
ing model, WAIC and LOO perform slightly worse, although the difference is smaller 
than in conditions where 1PLM is the generating model. WAIC and LOO outperform the 
other methods when 3PLM is the generating model. It is worth noting that with 3PLM as 
the generating model, BIC always chooses a less parameterized model and never selects 
the 3PLM model correctly. 

Similar to what Kang and Cohen (2007) observed, in general when ability parameters are 
simulated from N(1, 1) and the generating model is 3PLM, the performances of LRT, 
AIC, BIC, and DIC drop precipitously. Specifically, in our study the average power rate 
of LRT in such simulation conditions is 0.25, AIC 0.01, BIC 0, and DIC 0.41. Kang and 
Cohen attributed such drops in performance to that when ability parameters are simulat-
ed from N(1, 1), items generated with a mean difficulty of zero become easy and the 
pseudo-guessing parameters in 3PLM are not accurately estimated. However, WAIC and 
LOO are less affected by such inaccuracies: in the same simulation conditions the aver-
age power rates of WAIC and LOO are 0.94 and 0.89 respectively.  
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In the real data analysis section, we showed that with different subsets created from the 
same data set with varying sample sizes and test lengths, AIC produces inconsistent 
results: when the sample size is small (N=500) and test is short (I=30), AIC chooses 
2PLM; it chooses 3PLM with the other five datasets. BIC consistently chooses 2PLM, 
which is expected since in the simulation study section, it never chooses 3PLM even 
when it is the generating model. Consequently, we do not recommend AIC and BIC as 
model selection methods in practice when practitioners are interested in finding out 
which dichotomous IRT model fits their data best, especially when the sample size is 
small and the test length is short.  

As for the comparison between WAIC and LOO, despite their identical mean power 
rates, there are some simulation conditions in which LOO performs slightly better and 
vice versa. We believe that such fluctuations are due to the limited number of replica-
tions within each condition and with a sufficiently larger number of replications, such 
discrepancies will eventually disappear. We conclude that WAIC and LOO perform 
similarly regarding dichotomous IRT model selection in the current simulated condi-
tions. In addition, the time difference between the computation of WAIC and LOO in the 
R package loo is negligible. For researchers interested in selecting a dichotomous IRT 
model for their data, either method can be used. 

One limitation of the current study is its limited scope. We focus on the scenario of mod-
el selection and comparison among several competing IRT models that are unidimen-
sional and dichotomous, and it remains unknown how WAIC and LOO perform with 
more complex IRT models such as polytomous, multidimensional, multilevel, and mix-
ture IRT models. Future studies should investigate the performances of WAIC and LOO 
as model selection methods with those more complex IRT models.   

To sum up, WAIC and LOO perform well in the context of dichotomous IRT model 
selection, and we recommend that IRT researchers and practitioners consider them as 
desirable alternatives to the more traditional methods such as AIC and DIC, especially 
when items have low difficulty relative to examinees’ ability and hence the pseudo-
guessing parameter cannot be accurately estimated. In addition, as demonstrated by Luo 
and Jiao (2017), the powerful and efficient HMC algorithm implemented in Stan, which 
can be accessed through the R package rstan, allows quick estimation of dichotomous 
IRT models; the estimation results can be directly accessed by the R package loo, which 
provides an easy and free solution for the computation of WAIC and LOO.  
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