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LOO and WAIC as model selection 
methods for polytomous items 

Yong Luo1 

Abstract 
Watanabe-Akaike information criterion (WAIC; Watanabe, 2010) and leave-one-out cross valida-
tion (LOO) are two fully Bayesian model selection methods that have been shown to perform better 
than other traditional information-criterion based model selection methods such as AIC, BIC, and 
DIC in the context of dichotomous IRT model selection. In this paper, we investigated whether 
such superior performances of WAIC and LOO can be generalized to scenarios of polytomous IRT 
model selection. Specifically, we conducted a simulation study to compare the statistical power 
rates of WAIC and LOO with those of AIC, BIC, AICc, SABIC, and DIC in selecting the optimal 
model among a group of polytomous IRT ones. We also used a real data set to demonstrate the use 
of LOO and WAIC for polytomous IRT model selection. The findings suggest that while all seven 
methods have excellent statistical power (greater than 0.93) to identify the true polytomous IRT 
model, WAIC and LOO seem to have slightly lower statistical power than DIC, the performance of 
which is marginally inferior to those of AIC, BIC, AICc, and SABIC.  
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Introduction 

Item response theory (IRT; Lord, 1980), a family of mathematical models relating the 
probability of correct item responses to item characteristics and examinees’ abilities, is 
currently the dominant measurement framework in large-scale testing. Comparing to the 
classical test theory (CTT), IRT boasts theoretical advantages such as the invariance 
property of item and person parameters. Such advantages, however, can materialize only 
when the IRT model fits the data adequately (Cohen & Cho, 2016). In other words, be-
fore the benefits offered by IRT can be reaped, model evaluating endeavors that investi-
gate the alignment between the IRT model and data need to be conducted. 
IRT model evaluation consists of model comparison and model fit check, two comple-
mentary procedures that assess absolute and relative fit of the proposed IRT model re-
spectively. As IRT can be estimated with both frequentist (e.g., Bock & Aitkin, 1981) 
and Bayesian methods (e.g., Patz & Junker, 1992a, 1992b), model fit check and model 
comparison procedures can be either frequentist or Bayesian. To date, both IRT model fit 
check and IRT model comparison remain two actively-researched lines of research in the 
psychometric literature (e.g., Chalmers & Ng, 2017; Li, Jiao, & Xie, 2017; Luo & Al-
Harbi, 2017). In this paper, we focus on model comparison techniques, both frequentist 
and Bayesian, for IRT models. Readers are referred to Glas (2016) and Sinharay (2016) 
for comprehensive and relatively recent reviews of frequentist and Bayesian IRT model 
fit analysis. 
For model comparison purposes, information criteria based methods such as Akaike’s 
information criterion (AIC; Akaike, 1973, 1974), Bayesian information criterion (BIC; 
Shwarz, 1978), and deviance information criterion (DIC; Spiegelhalter, Best, Carlin, & 
van der Linde, 2002) have been routinely used to choose the best fitting model among a 
group of candidate ones. Despite their popularity, Vehtari, Gelman, and Gabry (2017) 
pointed out that these methods are not fully Bayesian and recommended the use of two 
emerging model selection methods, namely leave-one-out cross-validation (LOO) and 
widely available information criterion (WAIC; Watanabe, 2010), due to their fully 
Bayesian nature. 
Luo and Al-Harbi (2017) investigated whether such a fully Bayesian nature of LOO and 
WAIC translated into superior performances in the context of dichotomous IRT model 
selection. They found that LOO and WAIC had higher statistical power than likelihood 
ratio test (LRT), AIC, BIC, and DIC, especially when the generating model was the 
three-parameter logistic (3PL) model. However, whether the superior performances of 
LOO and WAIC in the case of dichotomous IRT model selection can be generalized to 
the polytomous case remains unknown. As polytomous items have become a ubiquitous 
presence in educational and psychological testing (Ostini & Nering, 2010) due to their 
provision of richer information than dichotomous ones (e.g., Cohen, 1983; Samejima, 
1975, 1979), it is important that a proper model selection method should be used to 
choose a proper polytomous IRT model for the analysis of data based on responses to 
polytomous items. 
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The purpose of this study is to investigate the statistical power of LOO and WAIC as 
model selection methods in choosing the optimal polytomous IRT model, in comparison 
with other five model selection methods. These five model selection methods include 
AIC, BIC, DIC, AIC corrected for bias (AICc; Sugiura, 1978), and sample-size-adjusted 
BIC (SABIC; Sclove, 1987). The rest of this article is organized as follows. First, we 
describe each of the seven model selection methods (AIC, AICc, BIC, SABIC, DIC, 
LOO, and WAIC) adopted in the current study and explain why a method is considered 
non-Bayesian, partially Bayesian, or fully Bayesian.  Second, we provide a literature 
review of simulation studies that investigate performances of various model selection 
methods in the IRT context, with an emphasis on Luo and Al-Harbi (2017) study. Third, 
we present a simulation study conducted to compare the statistical power of LOO and 
WAIC in selecting the correct model with the other five methods. The fourth section is 
an illustration with a real dataset whether the seven methods produce inconsistent results 
regarding the choice of the best-fitting model. We conclude this article with discussion 
and practical suggestions regarding the use of model selection methods with polytomous 
data. 

Model comparison methods 

AIC, BIC, AICc and SABIC are information criterion indices based on maximum likeli-
hood estimation (MLE) that can be expressed as the sum of a deviance term and a penal-
ty term. Specifically, they are computed as  

 ˆ2log ( | ) 2 ,mleAIC p y k    (1) 

 ˆ2log ( | ) ln( ),mleBIC p y k N      (2) 

 ˆ2log ( | ) 2 ,
1mle

NAICc p y k
N k

  
 

  (3) 

and 

 2ˆ2log ( | ) ln .
24mle

NSABIC p y k       
 

  (4) 

As can be seen, the four model comparison indices share the same deviance term
ˆ2log ( | )mlep y  , in which m̂le  is the MLE-based point estimate and ˆlog ( | )mlep y   is 

the log likelihood of data based on m̂le .  For the penalty term, AIC uses 2k and BIC uses 
ln( ),k N with k being the number of parameters and N the sample size. AICc is a varia-

tion of AIC that is corrected for bias inherent in AIC when the ratio of sample size N and 
number of parameters k is small. SABIC is a variation of BIC that penalizes model com-
plexity (as expressed by number of parameters k) less harshly than BIC. It should be 
noted that AICc and SABIC have been rarely used in simulation studies on IRT model 
selection with one exception (Choi, Paek, & Cho, 2017), in which it was found that in 
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the case of mixture Rasch models, while no methods had superior performances consist-
ently across simulation conditions, AICc and SABIC tended to outperform AIC and BIC. 
As the above four model comparison methods compute their deviance term with MLE 
point estimate and their penalty term with only sample size and number of parameters, 
they are typically considered non-Bayesian. 
DIC and WAIC are Bayesian information criterion indices that can also be expressed as 
the sum of a deviance term and a penalty term. Specifically, DIC is computed as  

 ˆ2log ( | ) 2 ,EAP DICDIC p y p     (5) 

and 

 ˆ2(log ( | ) (log ( | ))).DIC EAP postp p y E p y     (6) 

As can be seen in equation 5, DIC uses ˆ
EAP , a point estimate based on the posterior 

mean estimate, to compute the log likelihood of data ˆlog ( | )EAPp y  . The penalty term is 
computed in equation 6, where the second term in the parenthesis is the posterior mean 
of log likelihood of data and its computation involves the use of the whole posterior 
distribution of  .  As only the penalty term uses the posterior distribution, DIC is con-
sidered partially Bayesian. 
The deviance term used in the computation of WAIC requires log pointwise predictive 
density (LPPD), which is computed as 

 
1
log ( | ) ( ) .

n

i post
i

LPPD p y p d  


    (7) 

As the computation of LPPD uses the whole posterior distribution ( )postp  , LPPD can be 

viewed as a fully Bayesian analog of ˆlog ( | )mlep y   in the computation of AIC and BIC 

and ˆlog ( | )EAPp y   in the computation of DIC. Similar to LPPD, the penalty term of 
WAIC is fully Bayesian and can be expressed as 

 
1

var (log ( | )),
n

WAIC post i
i

p p y 


   (8) 

where the penalty term  is “the variance of individual terms in the log predictive density 
summed over the n data points” (Gelman, Carlin, Stern, & Rubin, 2014, p. 173). WAIC 
is computed as  

 2 2 .WACWAIC LPPD p    (9) 

LOO differs from the aforementioned information criterion based indices in that its com-
putation requires no penalty term. Specifically, LOO is computed as 
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1

2 2 log ( | ) ( ) ,
n
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i

LOO LPPD p y p d  


        (10) 

where ( ) ( )post ip   is the posterior distribution based on the data minus data point i. Un-
like LPPD that uses data point i is for both the computation of posterior distribution and 
the prediction, here LPPDloo only uses it for prediction, and hence there is no need for a 
penalty term to correct the potential bias introduced by using data twice. 

Previous simulation studies on IRT model selection 

While there are many studies applying model selection methods to choose the best-fitting 
IRT model (e.g., May, 2006; Hickendorff, Heiser, van Putten, & Verhelst, 2009; Revuel-
ta, 2008; Rijmen & De Boeck, 2002; Yao & Schwarz, 2006), relatively few use simula-
tion studies to systematically investigate their performances. Among those simulation 
studies, some focus on unidimensional IRT (UIRT) model selection (Kang & Cohen, 
2007; Kang, Cohen, & Sung, 2009; Luo & Al-Harbi, 2017; Whittaker, Change, & Dodd, 
2012), some on multidimensional IRT (MIRT; Reckase, 2009) model selection (Li, Bolt, 
& Fu, 2006; Revuelta & Ximénez, 2017; Zhu & Stone, 2012), and some on mixture IRT 
(e.g., Rost, 1990) model selection (e.g., Choi, Paek, & Cho, 2017; Li, Cohen, Kim, & 
Cho, 2009; Preinerstorfer & Formann, 2012) 
In the case of UIRT model selection, Kang and Cohen (2007) investigated the perfor-
mances of likelihood ratio test (LRT), AIC, BIC, DIC, and the cross-validation log-
likelihood (CVLL; O’Hagan, 1995) as model selection methods for dichotomous IRT 
models. They found that CVLL had the best overall performance, and the five methods 
sometimes disagreed with each other. In Kang, Cohen, and Sung (2009) study, they 
compared the performances of AIC, BIC, DIC, and CVLL in choosing the correct poly-
tomous IRT model among the graded response model (GRM; Samejima, 1969), the 
rating scale model (RSM; Andrich, 1978), the partial credit model (PSM; Masters, 
1982), and the generalized partial credit model (GPCM; Muraki, 1992). They found that 
AIC and BIC performed better than CVLL and DIC, a finding which is in contrast to 
what was found in Kang and Cohen (2007) study. Whittaker, Chang, and Dodd (2012) 
compared the performances of LRT, AIC, BIC, AICc, Hannon and Quinn’s information 
criterion (HQIC; Hannon & Quinn, 1979), and consistent AIC (CAIC; Bozdogan, 1987) 
as IRT model selection methods with mixed-format data. They found that no method 
performed consistently well, and which method to choose depended on conditions such 
as sample size and the ratio of dichotomous and polytomous items. Luo and Al-Harbi 
(2017) compared the performances of LOO and WAIC with LRT, AIC, BIC, and DIC as 
model selection methods for dichotomous IRT models. Similar to Kang and Cohen 
(2007) study, they manipulated sample size (500, 1000), test length (20, 40), ability 
distribution with different means (-1, 0, 1), and generating IRT models (1PL, 2PL, 3PL), 
which resulted in a fully-crossed simulation design with 36 simulation conditions. They 
found that for LOO and WAIC the average power to identify the correct dichotomous 
IRT model was 0.98, DIC 0.93, LRT 0.88, AIC 0.85, and BIC 0.67. In addition, they 
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found that when the generating model was the 3PL and the ability distribution was 
N(1,1), LRT, AIC, BIC, and DIC performed poorly with average power all less than 0.5, 
while the power of LOO and WAIC was 0.89 and 0.94, respectively. They concluded 
that the fully Bayesian nature of LOO and WAIC did result in superior performances in 
the context of dichotomous IRT model selection. 
In terms of MIRT model selection, Li, Bolt, & Fu (2006) investigated the performances 
of DIC, PsBF, and PPMC to choose the correct model among a group of testlet models. 
They found that PsBF and PPMC performed equally well, and DIC performed noticeably 
worse. Zhu & Stone (2012) compared the performances of DIC, PPMC, and conditional 
predictive ordinate (CPO) in selecting the correct model among a group of unidimen-
sional and multidimensional models based on the GRM, which include the one-
parameter GRM (Muraki, 1990), multidimensional GRM with simple and complex struc-
tures, and the graded response testlet model. They found that all three methods per-
formed equally well, and CPR and PPMC were more versatile than DIC in that they 
provided fit information at the item level. Revuelta and Ximénez (2017) compared the 
performances of standardized generalized dimensionality discrepancy measure 
(SGDDM; Levy, Xu, Yel, & Svetina, 2015), DIC, WAIC, and LOO in assessing dimen-
sionality for the multidimensional nominal response model (MNRM). They found that 
the PPMC-based SGDDM performed considerably better than the other three methods, 
among which WAIC and LOO outperformed DIC, and they concluded that for MNRM, 
SGDDM should be used.  
In terms of mixture IRT model selection, Li, Cohen, Kim, and Cho (2009) compared the 
performances of AIC, BIC, DIC, posterior predictive model checks (PPMC; Gelman, 
Meng, & Stern, 1996), and the pseudo-Bayes factor (PsBF; Gerisser & Eddy, 1979) in 
the context of mixture IRT model selection. They found that BIC and PsBF performed 
better than AIC and PPMC, which were more likely to choose more complex models, 
and DIC was the least effective method among all. Preinerstorfer and Formann (2012) 
investigated the performances of AIC and BIC in selecting mixture Rasch models that 
were estimated with conditional maximum likelihood estimation, and they found that 
BIC performed better than AIC. Choi, Paek, and Cho (2017) manipulated class-
distinction features in a two-class mixture Rasch model and compared the performances 
of AIC, BIC, AICc, and SABIC under different manipulated conditions. In contrary to 
the previous finding that BIC consistently performed better than AIC, they found that 
these four methods performed differentially with different class-distinction features. In 
addition, AICc and SABIC performed better than or equally with AIC and BIC, respec-
tively.  
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Methods 

Simulation design 

Following the simulation design in Kang, Cohen, and Sung (2009) study, we manipulat-
ed sample size (SS; 500, 1000), test length (TL; 10, 20), number of response categories 
(NC; 3, 5), and the generating model (GM; GRM, RSM, PCM, GPCM), which results in 
a fully crossed simulation design with 2*2*2*4=32 conditions. Within each condition 
100 datasets were generated based on a data generation procedure described later in this 
section. 
The outcome variable of the current simulation study is statistical power of each of the 
seven model selection methods. To compute the statistical power of a given method, we 
record within each simulation condition how many times the true model is selected based 
on that method and divide that number by 100. 

Four polytomous IRT models 
Common polytomous IRT models for ordinal data include GRM, RSM, PCM, and 
GPCM. For nominal data such as multiple-choice item response data in educational 
testing, the nominal response model (NRM; Bock, 1972) is widely used, although it 
should be noted that there are other options such as the multiple-choice model (Thissen 
& Steinberg, 1984), the nested logit model (Suh & Bolt, 2010), and the sequential IRT 
model (Deng & Bolt, 2016). In this paper we focus on the four polytomous IRT models 
for ordinal data and provide a brief description in the following.   
These four IRT models can be divided into the difference model and the divide-by-total 
model (Thissen & Steinberg, 1986). As the only difference model, GRM first models the 
probability of responding below a certain category vs above that category; the probabil-
ity of responding at that category is then computed as the difference of the two probabili-
ties. The mathematical equation for GRM is given as 

 
1

1 1( | , , ) ,
1 exp( ( )) 1 exp( ( ))ij ij i j jk

j i jk j i jk
p u k a b

a b a b


  

  
     

  (10) 

where ijp is the probability of responding in a category k or higher, iju is the response of 

examinee i to item j, i  is the latent proficiency of examinee i, and aj and bjk are the item 
discrimination and the category difficulty of item j. 
GPCM, PCM, and RSM are all divide-by-total models. GPCM, as the name suggests, is 
a generalized case of the partial credit model (PCM; Masters, 1982). The probability of 
responding in category k based on GPCM is  
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where j  is the item location parameter of item j, jh is the step parameter for category h 
of item j, mj is the number of categories of item j, and the other terms remain the same as 
in equation 10. PCM can be obtained by constraining ja to be one across all items; RSM 
can be obtained by further holding jh  to be constant across items. 

Data generation 
Item parameter values used for data generation are listed in Table 1. As can be seen, the 
first 20 items have three response categories and the last 20 have five categories. Corre-
spondingly, when NC=3, the first 20 items were used for data generation; when NC=5, 
the last 20 were used. When GM=PCM, the item discrimination parameter a was fixed to 
one; when GM=RSM, in addition to the constraint imposed in PCM, only the threshold 
parameters of the first GPCM item with three categories (item 1) and the first GPCM 
item with five categories (item 21) were used. It should be noted that the item parameter 
values in Table 1 were deliberately chosen to be the same as in Kang, Cohen, and Sung 
(2009) to facilitate the comparison between the findings in their study and the current 
one by eliminating the potential confounding effect of using different generating item 
parameter values.  
The latent ability was generated from a standard normal distribution N(0,1) and the same 
set of generated latent ability values were used for the same SS. The item parameter 
values in Table 1 and the generated ability values were plugged in the corresponding GM 
equation to generate item response data. It is important to note that after each data set 
was generated, we checked to make sure that no item contained any null category, a 
situation which would make the maximum likelihood estimation of RSM problematic. If 
a generated data set contained item(s) with null categories, it was replaced with a new 
data set that satisfied this requirement. 

Estimation and computation 
The R package mirt (Chalmers, 2012) was used for maximum likelihood estimation and 
computation of AIC, BIC, AICc, and SABIC. For MCMC estimation, we used the R 
package rstan, the R interface to the Bayesian software program Stan (Carpenter et al., 
2016). Stan implements the no-U-turn sampler (NUTS; Hoffman & Gelman, 2014), 
which is an improved version of Hamiltonian Monte Carlo (HMC; Neal, 2011) – a pow-
erful and efficient MCMC algorithm that has been shown to work well for IRT models 
(e.g., Luo & Jiao, 2017; Luo & Liang, 2019). We adopted priors identical to those used 
by Kang, Cohen, and Sung (2009) for MCMC estimation. Specifically, for the item 
discrimination parameter in both GRM and GPCM, a lognormal distribution ln(0,1) was 
assigned as the prior; for the item location parameter in RSM, PCM, and RSM, a stand- 
 



LOO and WAIC as model selection methods for polytomous items 169

Table 1: 
Generating Item Parameters 

Item  GRM GPCM
a b1 b2 b3 b4 a b τ1 τ2 

1 1.19 -1.21 1.77   1.16 -0.42 1.26  
2 0.96 -1.32 1.22   0.51 -0.24 0.66  
3 1.52 -0.36 1.84   1.43 0.61 1.47  
4 2.48 -0.62 1.82   2.25 -0.37 0.74  
5 0.58 -1.49 0.22   0.71 0.16 1.23  
6 1.13 -2.96 0.59   1.54 0.60 0.76  
7 1.63 0.24 2.21   1.87 0.11 0.52  
8 0.82 -2.41 0.81   0.45 -0.40 0.65  
9 1.97 -2.38 0.46   0.49 -0.38 1.57  
10 1.21 -2.08 1.17   1.33 0.15 0.72  
11 1.10 -1.78 1.04   0.82 -0.19 0.91  
12 0.80 0.68 2.43   1.41 -0.03 0.67  
13 2.02 -2.10 0.93   1.50 0.36 1.18  
14 1.85 -0.21 1.42   1.43 0.35 0.52  
15 1.48 -1.00 1.69   1.91 -0.29 1.03  
16 1.40 -1.97 0.15   1.40 -0.34 0.97  
17 2.47 -1.51 1.91   1.81 0.16 0.79  
18 0.93 -1.35 0.85   0.55 -0.25 0.98  
19 1.24 -1.14 2.25   0.99 0.21 0.37  
20 1.65 -1.10 1.31   0.92 0.19 1.27  
21 1.19 -1.59 -0.83 1.25 2.28 1.16 -0.42 2.56 -0.04 
22 0.96 -2.35 -0.29 0.60 1.84 0.51 -0.24 0.88 0.45 
23 1.52 -0.67 -0.06 1.28 2.39 1.43 0.61 3.05 -0.10 
24 2.48 -1.20 -0.04 1.22 2.42 2.25 -0.37 -0.41 1.88 
25 0.58 -1.84 -1.13 -0.17 0.62 0.71 0.16 2.35 0.11 
26 1.13 -3.68 -2.23 -0.30 1.48 1.54 0.60 1.45 0.08 
27 1.63 -0.58 1.06 1.81 2.62 1.87 0.11 1.27 -0.24 
28 0.82 -3.83 -0.98 0.49 1.12 0.45 -0.40 1.90 -0.60 
29 1.97 -3.51 -1.26 0.13 0.79 0.49 -0.38 3.17 -0.04 
30 1.21 -2.51 -1.65 0.72 1.62 1.33 0.15 1.59 -0.15 
31 1.10 -2.15 -1.40 0.59 1.48 0.82 -0.19 2.20 -0.38 
32 0.80 0.21 1.14 2.04 2.81 1.41 -0.03 0.73 0.60 
33 2.02 -3.07 -1.13 0.33 1.52 1.50 0.36 1.23 1.12 
34 1.85 -0.64 0.22 1.00 1.83 1.43 0.35 0.03 1.02 
35 1.48 -1.97 -0.03 0.96 2.41 1.91 -0.29 0.49 1.56 
36 1.40 -2.64 -1.30 -0.33 0.63 1.40 -0.34 1.68 0.27 
37 2.47 -2.09 -0.94 1.42 2.40 1.81 0.16 1.16 0.42 
38 0.93 -1.91 -0.79 0.44 1.26 0.55 -0.25 2.14 -0.18 
39 1.24 -1.61 -0.66 1.66 2.85 0.99 0.21 1.60 -0.86 
40 1.65 -2.05 -0.16 0.67 1.96 0.92 0.19 1.62 0.92 
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ard normal distribution N(0,1) was used as the prior; a normal distribution N(0,10) was 
assigned as prior for both the category difficulty parameter in GRM and the threshold 
parameter in the other three models. For model identification purpose, a standard normal 
distribution N(0,1) was used as the prior for the latent ability regardless of the IRT mod-
el; in addition, for GPCM, PCM, and RSM, the sum of the threshold parameters was 
constrained to zero. 
For computation of WAIC and LOO, we used the R package loo (Vehtari et al., 2016b) 
that computes LOO via Pareto smoothed importance sampling (PSLS; Vehtari, Gelman, 
& Gabry, 2015). Unlike WinBUGS that can be specified to compute DIC, Stan does not 
have such a feature and we wrote a R program to extract the posterior draws produced by 
rstan and computed DIC based on equations 5 and 6. 

Convergence check 
For MCMC estimation, the Gelman and Rubin’s convergence diagnostic (Gelman & 
Rubin, 1992) that computes the potential scale reduction factor (PSRF) was applied to 
check model convergence. A PSRF value close to one is considered indicative of model 
convergence and Gelman, Carlin, Stern, and Rubin (2014) recommend to use 1.1 as the 
threshold value. We found that in rstan, the PSRF values for all four models dropped to 
below 1.05 after 150 iterations and consequently, we ran three parallel chains with 400 
iterations each to make sure that model convergence was not an issue. It is worth noting 
that the efficient HMC algorithm implemented in Stan, as demonstrated by Luo and Jiao 
(2017), is the reason why usually several hundred iterations are adequate to reach model 
convergence for complex IRT models such as multidimensional and multilevel ones. In 
contrast, Kang, Cohen, and Sung (2009) ran 11,00 iterations in WinBUGS for the same 
set of IRT models. 

Results 

Model selection results are listed in Table 2. Specifically, it provides the statistical power 
of a model selection method under each simulation condition. For example, the first row 
in Table 2 indicates that when GM=GPCM, NRC=3, SS=500, and TL=10, the statistical 
power of AIC, BIC, AICc, and SABIC to identify GPCM as the true model is 0.91, DIC 
0.73, LOO 0.88, and WAIC 0.94. 
In Figure 1 a visual presentation of the mean statistical power comparison of the seven 
methods is presented, along with the corresponding 95% confidence interval for each 
method. As can be seen, all seven model selection methods have statistical power greater 
than 0.93. One noticeable pattern is that the frequentist-based methods (AIC, BIC, AICc, 
and SABIC) seem to perform better than the Bayesian ones (DIC, LOO, and WAIC). 
Among the frequentist-based ones, AICc (power = 0.981) performs slightly better than 
AIC (power = 0.977), and SABIC (power = 0.986) better than BIC (power = 0.970). 
Among the three Bayesian methods, DIC (power = 0.959) performs slightly better than 
LOO (power = 0.946) and WAIC (power = 0.935). 
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Figure 1: 

Mean power rates of different model selection methods 

 
To gain better insights into how the three manipulated factors (test length, sample size, 
number of response categories) affect the performance of each method with a given item 
response generating model, we provide visual presentations of marginal summaries of 
the performances of the seven methods with bar plots in Figures 2-4, in which the verti-
cal axis represents the probability of a true model being selected by a model selection 
method. Specifically, Figure 2 focuses on how test length (TL) affects the performance 
of each model selection method by aggregating the number of times a true model was 
chosen at a given test length over four simulation conditions (the combination of two SSs 
and two NCs result in 400 simulated datasets). As can be seen, when GM=GPCM and 
TL=10, LOO and WAIC perform approximately the same as the other four frequentist 
methods (GPCM is correctly identified with a probability close to one), and DIC seems 
to have a considerably higher probability to choose GRM (with a probability of approx-
imately 0.1) as the true model. The difference in performance between DIC and the other 
six methods, however, decreases when TL=20.  
When GM=GRM and TL=10, LOO and WAIC have higher probabilities (0.125 for LOO 
and 0.175 for WAIC) than the other five methods to choose GPCM as the true model. 
When TL=20, the tendency of LOO and WAIC to choose GPCM decreases noticeably.  
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Figure 2: 

Model selection by test length 
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When GM=PCM and TL=10, LOO and WAIC are considerably more likely (the proba-
bility being approximately 0.125 for LOO and 0.15 for WAIC) than the other methods to 
select GPCM (the more parameterized model) as the true model. When TL=20, the sta-
tistical power of LOO and WAIC increases considerably (they identify PCM correctly 
with probabilities higher than 0.95) and becomes only slightly lower than AIC, AICc, 
SABIC, and DIC.  
When GM=RSM and TL=10, LOO and WAIC show a similar pattern of having a higher 
probability of identifying a more parameterized model (PCM) as the true model. When 
TL=20, the statistical power of LOO and WAIC increases to almost one. To sum up, 
Figure 2 shows that when GM=GPCM, LOO and WAIC perform well (better than or 
equal to other methods) regardless of TL; when GM is not GPCM, LOO and WAIC 
perform worse than other methods when TL=10, and with the increase of test length 
(TL=20) LOO and WAIC perform equally well as other methods. 
Figure 3 focuses on how sample size (SS) affects the performance of each model selec-
tion method. Specifically, we consider the probability of a true model being chosen by a 
model selection method with a given sample size aggregated over four simulation condi-
tions (the combination of two TLs and two NCs). As can be seen, when GM=GPCM and 
SS=500, LOO and WAIC perform approximately the same as the other four frequentist 
methods, and DIC performs noticeably worse due to its higher probability to choose 
GRM as the true model. When SS=1000, all seven methods perform similarly and have 
statistical power close to one.  
When GM=GRM, LOO and WAIC are slightly more likely than the other five methods 
to choose GPCM as the true model regardless of SS, and the tendency of LOO and 
WAIC to choose GPCM decreases with the increase of SS from 500 to 1000. When 
GM=PCM, LOO and WAIC are considerably more likely than the other methods to 
select GPCM (the more parameterized model) regardless of SS, and their performance 
does not improve with the increase of SS from 500 to 1000.  
When GM=RSM, LOO and WAIC show a similar pattern of having a higher probability 
of identifying a more parameterized model (PCM) as the true model, and the tendency of 
LOO and WAIC to choose PCM does not seem to decrease with the increase of SS from 
500 to 1000. To sum up, Figure 3 shows that when GM=GPCM, LOO and WAIC per-
form well (better than or equal to other methods) regardless of TL; when GM=GRM, 
LOO and WAIC perform worse than other methods regardless of SS, and the perfor-
mances of LOO and WAIC improve with the increase of SS from 500 to 1000; when 
GM=PCM or GM=RSM, LOO and WAIC have higher probabilities to choose an incor-
rect model (more parameterized than GM) than other methods regardless of SS, and the 
increase of SS from 500 to 1000 does not seem to improve the statistical power of LOO 
and WAIC. 
Figure 4 focuses on how the number of response categories (NC) affects the performance 
of each model selection method. Specifically, we consider the probability of a true model 
being chosen by a model selection method with a given number of response categories 
aggregated over four simulation conditions (the combination of two TLs and two SSs). 
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Figure 3: 

Model selection by sample size 
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Figure 4: 

Model selection by number of categories 
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As can be seen, when GM=GPCM and NC=3, LOO and WAIC perform approximately 
the same as the other four frequentist methods, and DIC seems to have a considerably 
higher probability to choose GRM as the true model. When NC=5, the performances of 
all seven methods improve.  
When GM=GRM and NC=3, LOO and WAIC perform the worst and are more likely 
than the other five methods to choose GPCM as the true model. When NC=5, however, 
the tendency of all seven methods to choose GPCM virtually disappears. When 
GM=PCM and NC=3, LOO and WAIC are considerably more likely than the other 
methods to select GPCM (the more parameterized model). When NC=5, the performanc-
es of LOO and WAIC do not seem to improve, despite that all the other five methods 
perform better with the increase of NC.  
When GM=RSM and NC=3, LOO and WAIC have higher probabilities to identify PCM 
as the true model. When NC=5, the statistical power of all seven methods become one. 
To sum up, Figure 4 shows that when GM=GPCM, LOO and WAIC perform well (better 
than or equal to other methods) regardless of NC; when GM=PCM, LOO and WAIC 
perform consistently worse than other methods regardless of NC; when GM=GRM or 
GM=RSM, LOO and WAIC perform worse than other methods when NC=3, and when 
NC=5, LOO and WAIC perform equally well as other methods. 

A real data example 

In this section, we demonstrate with a real data set the use of the seven model selection 
methods to choose the best fitting polytomous IRT model. Data were extracted from 
student responses to the Verbal Session of the General Aptitude Test (GAT-V), a high-
stakes test used in Saudi Arabia for university admission purposes. GAT-V consists of 
52 multiple-choice items that are scored dichotomously, and 20 of them are reading 
comprehension items. We created four polytomous items by extracting items nested 
within four reading comprehension passages and summing up the item scores within 
each passage. Since there are three items within each of the chosen passages, the created 
polytomous items have four response categories and the score range for each polytomous 
item is from zero to three. There are 4,960 examinees in the current data set, and we fit 
the four polytomous IRT models to the 4,960 by 4 item response matrix and computed 
the seven model fit indices. It should be noted that due to the large sample size, for 
MCMC estimation we ran three parallel chains of 600 iterations to ensure model conver-
gence and the computation of DIC, WAIC, and LOO was based on simulated samples of 
900 posterior draws. 
Table 3 presents the computed model fit indices for GRM, GPCM, PCM, and RSM. As 
can be seen, all seven model selection methods consistently point to GPCM as the best 
fitting model, and GRM has the second smallest model fit index value regardless of the 
model selection method. The fact that all seven model selection methods agree with each 
other in the current example is hardly surprising given the large sample size: as shown in 
the previous section, although these methods have difficulty in differentiating between  
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Table 3: 
Model Comparison for Four Polytomous Items  

 AIC BIC AICc SABIC DIC WAIC LOO 
GRM 43817.8 43921.0 43817.9 43870.2 42131.7 42308.8 42430.7 
GPCM 43714.4 43817.6 43714.5 43766.8 41971.6 42002.3 42234.4 
PCM 44012.6 44096.5 44012.7 44055.2 42469.4 42685.0 42873.9 
RSM 44708.1 44753.3 44708.2 44731.1 43202.3 43450.7 43630.8 

 
GPCM and GRM with a small sample size, with a larger sample size they tend to pro-
duce more consistent results. PCM has considerably worse model fit than GPCM, sug-
gesting that the constraint imposed by PCM that all items have the same discrimination 
power is not supported by the data. RSM has the largest model fit index values, which is 
expected given that it is the most stringent among the four polytomous IRT models. 

Conclusions and discussion 

WAIC and LOO are two fully Bayesian model selection indices that have been shown to 
perform better than other common indices such as AIC, BIC, and DIC in the context of 
dichotomous IRT model selection. In the current study, we investigated whether the 
superior performances of WAIC and LOO in the dichotomous case could be generalized 
to the context of polytomous IRT model selection. It was found that while both WAIC 
and LOO had excellent statistical power (mean power greater than 0.93) across the 32 
simulation conditions, their performances were slightly worse than the other five model 
selection methods investigated in this study, namely AIC, BIC, AICc, SABIC, and DIC. 
A closer examination of Figures 2-4 reveals why WAIC and LOO had slightly lower 
statistical power than the other model selection methods. When data was generated based 
on the GRM (GM=GRM) and either the test length was relatively short (TL=10), the 
sample size was relatively small (SS=500), or the number of response categories was 
relatively small (NC=3), WAIC and LOO were noticeably more likely to choose GPCM 
as the true model. With the increase of test length (TL=20), sample size (SS=1000), or 
the number of response categories (NC=5), WAIC and LOO performed similarly with 
other methods. Another scenario where WAIC and LOO performed worse than the other 
methods was when data was generated based on PCM (GM=PCM): WAIC and LOO 
were more likely to choose GPCM, the more parameterized model, as the true model. It 
is interesting to note that such a tendency to incorrectly choose GPCM over PCM only 
decreased with the increase of test length, but not with the increase of either sample size 
or number of response categories. 
The hypothesis that WAIC and LOO be superior to other model selection methods in the 
context of polytomous IRT model selection due to their fully Bayesian nature is not 
supported by the findings of the current study. The four model selection methods based 
on the frequentist framework (AIC, BIC, AICc, and SABIC) had higher statistical power 
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than their counterparts based on the Bayesian framework (DIC, LOO, and WAIC), 
among which DIC performed the best. This observed pattern in the case of polytomous 
IRT model selection is in contrast with what is observed in the case of dichotomous IRT 
model selection, where fully Bayesian methods (LOO and WAIC) performed better than 
the partially Bayesian method (DIC), which in turn performed better than the non-
Bayesian methods such as AIC, BIC, and LRT. 
As the current study was intended as an extension of Kang, Cohen, and Sung (2009) 
study, it is of interest to compare the two studies to see whether any inconsistencies in 
the findings have occurred. For the comparison, it should be noted that the same simula-
tion design and the same set of item parameters used for response data generation were 
used in both studies. The current study used an extension of the powerful Hamiltonian 
Monte Carlo (HMC) algorithm implemented in Stan for MCMC estimation, while Kang, 
Cohen, and Sung used the Gibbs sampler implemented in WinBUGS; and due to the 
advancement of computing power and the efficiency of HMC algorithm over the Gibbs 
sampler, we were able to increase the number of replications within each simulation 
condition from 50 to 100 in the current study2. In regard to the findings, what is con-
sistent between the two studies is that the frequentist model selection methods were 
superior to the Bayesian ones: Kang, Cohen, and Sung found in their study that AIC and 
BIC performed better than DIC and CVLL, and we found that AIC, AICc, BIC, and 
SABIC performed better than DIC, LOO, and WAIC. What is inconsistent between the 
two studies is the specific performances of DIC, which seemed to perform considerably 
worse in Kang, Cohen, and Sung study. For example, in their study when the data gener-
ating model was GRM and the number of response category was 3, DIC had a probabil-
ity of close to 0.5 to choose GPCM as the true model (p. 511) and such a probability did 
not decrease much with the increase of number of response categories; in the current 
study, however, DIC only had a probability of about 0.05 to choose GPCM when NC=3, 
and with the increase of the number of response categories, such a probability decreased 
to almost zero. As both studies used the same set of item parameters and same simulation 
design for data generation, we believe the different number of replications within each 
simulation condition (100 vs 50) cannot possibly cause such drastical differences regard-
ing the performance of DIC. 
One possible cause could be a model non-convergence as a result of the use of different 
MCMC methods: Kang, Cohen, and Sung (2009) used WinBUGS that implements the 
Gibbs sampler and ran one chain with 11,000 iterations, 5,000 of which were discarded 
as burn-in iterations; we used Stan that implements HMC algorithm and ran three chains 
with each having 400 iterations, half of which were discarded as warm-up iterations. To 
verify whether model convergence was the reason for the inconsistent performances of 
DIC in two studies, we fit the GPCM to the 100 simulated datasets under one simulation 
condition (GM=GRM, TL=20, SS=500, NC=5) using WinBUGS with the same priors 

                                                                                                                         
2 Despite the fact that 100 is considered a relatively large number for replications in simulation studies 
involving MCMC methods, as pointed out by one reviewer, width of the confidence interval associated 
with the power estimate for each method is a function of the number of replications, and 100 replications 
may not be sufficient to lead to confidence intervals that are sufficiently small.  
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and number of iterations as in Kang, Cohen, and Sung (2009), and instead of one Mar-
kov chain we ran three to facilitate the check of model convergence.  As for each data set 
there are 620 parameters to be estimated with GPCM (500 person parameters, 20 item 
discrimination parameters, 20 item location parameters, and 80 item step parameters), 
overall there are 620,000 parameters estimated across the 100 datasets. Among the 
620,000 PSRF values corresponding to the estimated parameters, with WinBUGS esti-
mation there are 322 values greater than 1.1 and 664 values greater than 1.05; in addi-
tion, the maximum PSRF value is 6.01. In contrast, with Stan estimation the maximum 
PSRF value is 1.08, and there are only four values greater than 1.05. In other words, 
using WinBUGS with 11,000 iterations for the estimation of GPCM under the chosen 
simulation condition still resulted in some cases where the model did not converge, while 
using Stan with 400 iterations enabled model convergence across all 100 datasets, a 
difference which we believe to be the reason why DIC performs so differently in the two 
studies.  
Among the seven model selection methods investigated in this study, LOO and WAIC 
had the lowest statistical power to detect the true model in the case of polytomous IRT 
model selection. This is somewhat counterintuitive given their superior performances in 
the case of dichotomous IRT model selection, which Luo and Al-Harbi (2017) attributed 
to their being fully Bayesian. Such a fully Bayesian nature does not seem to translate into 
better performances when it comes to the choice of a polytomous IRT model among 
several candidates. Despite their having the lowest statistical power among the seven 
model selection methods, WAIC and LOO are plausible Bayesian model selection meth-
ods that can be used for polytomous IRT model selection given the fact that their mean 
statistical power rates are greater than 0.93 and they can be easily computed through the 
combination of R packages rstan and loo; although DIC has slightly higher statistical 
power, there is not a readily available package that computes DIC based on rstan output 
and the users may have to write their own functions to compute DIC. WinBUGS does 
allow the computation of DIC, but as shown previously, the Gibbs sampler implemented 
in WinBUGS is much less efficient than the HMC algorithm adopted in Stan and conse-
quently, it requires considerably longer time to run before model convergence can be 
reached. Therefore, if a Bayesian method is preferred, we recommend the use of LOO 
and WAIC for polytomous IRT model selection due to their acceptable statistical power 
and ease of computation. If not, the four methods based on the frequentist framework, 
especially AICc and SABIC, should be used.  
The current paper only focuses on model selection, but it is worth reiterating that model 
selection and model fit check are two integral and complementary parts of any model 
checking endeavor. Being able to choose the best fitting model is no guarantee that the 
chosen model fits the data if there is not a true model among the candidate ones, and 
model fit check procedures should always be used in tandem with model selection meth-
ods. 

Author’s note 

The author is currently employed at Educational Testing Service, Princeton, New Jersey. 
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