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Abstract 
Psychological testing aims at making inferences about individual differences or the estimation of 
distributions of psychological constructs in groups of interest. However, a test instrument’s rela-
tionship to the construct, the actual variable of interest, may change across subpopulations, or the 
instrument’s measurement accuracy is not the same across subpopulations. 

This paper introduces an extension of the mixture distribution general diagnostic model (GDM) 
that allows studying the population dependency of multidimensional latent trait models across 
observed and latent populations. Note that so-called diagnostic models do not aim at diagnosing 
individual test takers in the sense of a clinical diagnosis, or an extended case-based examination 
using multiple test instruments. The term cognitive diagnosis was coined following the develop-
ment of models that attempt to identify (diagnose?) more than a single skill dimension. The GDM 
is a general modeling framework for confirmatory multidimensional item response models and 
includes well-known models such as item response theory (IRT), latent class analysis (LCA), and 
located latent class models as special cases. The hierarchical extensions of the GDM presented in 
this paper enable one to check the impact of clustered data, such as data from students with differ-
ent native language background taking an English language test, on the structural parameter esti-
mates of the GDM. Moreover, the hierarchical version of the GDM allows the examination of 
differences in skill distributions across these clusters.  
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1. Introduction 

The assessment of measurement invariance in testing applications is central to statements 
about the validity of observed test results. Psychological testing aims at valid inferences 
about individual differences or the estimation of distributions of psychological constructs 
in groups of interest. However, a test instrument’s relationship to the construct, the actual 
variable of interest, may change across subpopulations, or the measurement accuracy of 
the test is not the same across subpopulations. In those cases, the validity of a test is 
threatened by the fact that additional information is needed to make valid inferences, i.e., 
information about variables that are seemingly not part of the construct. 
Most researchers in the field will agree that the assumed direction of causality is that 
differences in the psychological variable of interest cause the observed differences in 
response behavior among examinees: A more intelligent person will, on average, produce 
more correct responses on tests of cognitive ability, but the reverse direction does not 
necessarily hold: A person with more correct responses can be one that copied responses 
from a neighbor, or one that by mistake received a sheet with correct responses together 
with the test. Almost nobody, except maybe the lucky test taker, will argue that an in-
crease in the number of correct responses due to these factors makes him (or her) a more 
intelligent person.  
The assumed causal direction from psychological construct to test behavior is, in naïve 
applications, taken to be the sole agent at work: No thought is given to the possibility 
that there may be factors other than the variable of interest that are interfering with the 
test results. This is especially true for psychological and educational tests that leave the 
realm of research and scientific inquiry and enter applied or non-scientific use of tests. In 
these cases, a fixed scoring rule is applied that produces a test score from responses 
based on a previously defined rule, without regard that the score obtained may be falli-
ble, or might be affected by contingent variables other than the construct of interest. The 
mechanical process of scoring a test can be done with any set of responses, for example 
responses by a sample of examinees that were not part of the population the test was 
developed for, or by the proverbial chimp hitting the keyboard in a computer-
administered test. If there are factors that distinguish the population the test was designed 
for from the population the new sample was drawn from, unexpected results can occur: A 
sample of students who takes a math test first thing in the morning may show very dif-
ferent results compared to a sample of students that just finished 6 hours of other exams. 
In this case, we would identify the two populations as fatigued versus non-fatigued test 
takers. Effects of fatigue on test performance have been studied for almost a century now 
(Thorndike, 1914). A test that was built for high school students who intend to go to 
college may work well to assess skill differences between these test takers. However, if 
all students who finish high school are tested, those who do not intend to go on to college 
and university may already be considered as a different population. This is true because a 
college admissions test is most likely of less consequence for those students who do not 
intend to go to college, so that it can be expected that these test takers may not be as 
motivated as those who will depend on a good result to get into the college they want to. 
Nunnally (1967) names a host of contingent variables as potential factors influencing test 
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results, and thus moderating the relationship between the proficiency – the target of 
inference – and the observed success in a given test. In tests of language proficiency it 
was also found that test taker characteristics do contribute to observed response behavior. 
Bachman (1990) reports that characteristics such as cultural background, gender, cogni-
tive abilities, gender and age, among other things, can have an impact on test results.  
Unfortunately, the analyst faced with the data can often not see whether a test taker is 
motivated, is faking, has been cheating, or fell into a random response mode due to time 
running out (speededness; see for example Yamamoto & Everson, 1997) when only 
looking at the total score of correctly solved items. Also, the test administrator cannot 
really expect truthful responses when asking test takers whether they were faking good, 
or cheating, or in whether they in other ways tried to change their responses from what 
they would have been. In a foreign language comprehension test, the test agency cannot 
ask whether the responses are not so much based on learning the language over many 
years in school but rather are in part the memorized results of rote-learning in crash 
courses preparing inexperienced foreign language speakers. In these cases, a more in-
depth analysis of responses may reveal that test takers are indeed different with respect to 
more than what the test was intended to measure, the variable of interest.  
In this paper, a class of models is introduced that enables the researcher to investigate 
whether a sample of test takers can be identified as one where more than the intended 
factors are at work. Examples of models that incorporate different relationships between 
the variables involved depending on a grouping variable are numerous. Hierarchical 
linear models allow random intercepts and random slopes (Raudenbush & Bryk, 1992). 
Selection models (Heckman, 1979) assume that a regression cannot be observed for parts 
of the sample. Hybrid models (Yamamoto, 1989; von Davier 1994) assume that in some 
subpopulation there is systematic co-variation between latent trait and observed response 
variables, whereas in other subpopulations, there is no such relationship. Multiple group 
models (e.g. Bock & Zimowski, 1997) assume that the same item response model with 
different sets of parameters holds in different groups. The mixed Rasch model (Rost, 
1990; von Davier & Rost, 1995) assumes that the Rasch model holds, with different 
parameters, in different subpopulations. More general IRT models have been extended to 
mixture distribution models (Mislevy & Verhelst, 1990, Kelderman & Macready, 1990, 
von Davier & Yamamoto, 2004).  
The modeling framework used in this paper allows specification of a discrete mixture 
model with a hierarchical component. This hierarchical component of the model allows 
assessing the composition of observed groups with respect to a proficiency or personality 
variable, the primary variable of interest, as well as with respect to the potential existence 
of a contingent variable. In addition, the model enables an assessment of the distribution 
of the contingent variable in the observed clusters (e.g. language groups, classes, 
schools) of the sample. More specifically, the hierarchical extensions presented in this 
paper enable one to check the impact of the clustering of observed data, such as data for 
students within schools in large scale educational surveys, on the structural parameter 
estimates of the model. Moreover, the hierarchical version of the general diagnostic 
model (GDM) allows the study of differences in skill distributions across the clusters of 
the sample.  
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2. The general diagnostic model 

Diagnostic models typically assume a multivariate, but discrete, latent variable that 
represents the absence or presence, or more gradual levels, of multiple skills. Note that 
these so-called diagnostic models do not aim at diagnosing individual test takers in the 
sense of a clinical diagnosis, nor do they aim at an extended case-based examination 
using multiple test instruments with the goal of identifying a specific syndrome. The 
term cognitive diagnosis was coined following the development of models that attempt to 
identify (diagnose?) more than a single skill dimension. Diagnostic models, also some-
times called diagnostic classification models (Rupp & Templin, 2008), are nothing else 
but latent structure models with a discrete, multivariate latent variable (von Davier, 
2009). While it is important to distinguish diagnostic models from diagnostic test batter-
ies, there are at least some commonalities. Diagnostic tests aim at the identification of the 
presence or absence, or the level, of indicators of clinical or educational relevance, while 
diagnostic models provide a framework of specifying statistical descriptions for the iden-
tification of binary (or binary and ordinal, as is the case in the GDM) profiles of skills. 
These skill profiles have to be inferred through model assumptions with respect to how 
the observed data relate to the unobserved skill profile. The absence or presence of skills 
is commonly represented by a Bernoulli (0/1) random variable in the model. Given that 
the number of skills represented in the model is larger than in unidimensional models 
(obviously greater than 2, but smaller than 14 skills in most cases), the latent distribution 
of skill profiles needs some specification of the relationship between skills in order to 
avoid the estimation of up to 214-1 = 16,383 separate skill-pattern probabilities. The 
GDM (von Davier, 2005a) allows ordinal skill levels and different forms of skill depend-
encies to be specified so that more gradual differences between examinees can be mod-
eled in this framework.  
This section introduces the GDM for dichotomous and partial credit data and binary as 
well as ordinal latent skill variables. Then the mixture distribution GDM (MGDM) will 
be introduced. The differences between the components of a discrete mixture model are a 
reflection of differential relationships between the construct of interest and the observed 
data. Third, an extension that allows utilizing information about the structure will be 
introduced. This hierarchical mixture GDM (HGDM) allows an assessment of the de-
pendency of the mixture components on the cluster structure of a hierarchically organ-
ized sample. Finally, examples of applications of the HGDM in large-scale data analysis 
will be presented. 
Assume an I -dimensional categorical random variable 1( )Ix x … x= , ,  with {0 }i ix … m∈ , ,  
for {1 }i … I∈ , , , referred to as a response vector in the following. Further assume that 
there are N  independent and identically distributed (i.i.d.) realizations 1 N…x x, ,  of this 
random variable x , so that nix  denotes the i -th component of the n -th realization nx . 
In addition, assume that there are N  unobserved realizations of a K -dimensional cate-
gorical variable, 1( )Ka a … a= , , , so that the vector 

 1 1( ) ( )n n n nI n nKx … x a … ax a, = , , , , ,  
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exists for all {1 }n … N∈ , , . The data structure 

 ( ) 1
( ) ( )n n n … N
X A x a = , ,
, = ,  

is referred to as the complete data, and ( ) 1n n … Nx = , ,
 is referred to as the observed data 

matrix. Denote ( ) 1n n … Na = , ,
 as the latent skill or attribute patterns, which is the unobserved 

target of inference.  

Let ( )1( ) ( ) 0KP a P A a … a= = , , >  for all a  denote the non-vanishing discrete count 
density of a . Assume that the conditional discrete count density 1( |IP x … x a, , ) exists for 
all a . Then the probability of a response vector x  can be written as 

 1( ) ( ) ( | )I
a

P x P a P x … x a= , , .∑  

1. Conditional Independence 

So far, no assumptions have been made about the specific form of the conditional distri-
bution of x  given a , other than that 1( | )IP x … x a, ,  exists. For the general diagnostic 
model, local independence (LI) of the components ix  given a  is assumed, which yields 

 1
1

( | ) ( | )
I

I i i
i

P x … x a p x x a
=

, , = =∏  

so that the probability ( | )i ip x x a=  is the one component left to be specified to arrive at 
a model for ( )P x .  

2. Logistic Model Specification 

Logistic models have widespread applications and apart from early disputes about the 
merits of probit versus logit models (Berkson as cited in Cramer, 2003) have secured a 
prominent position among models for categorical data. The general diagnostic model is 
also specified as model with a logistic link between an argument, which depends on the 
random variables involved and some real valued parameters, and the probability of the 
observed response.  
Using the above definitions, the GDM is defined as follows. Let  

 ( ) 1 1ikQ q i … I k … K= , = , , , = , ,  

be a binary I K×  matrix, that is {0 1}ikq ∈ , . Let  

 ( ) 1 1 1ikx ii … I k … K x … mγ , = , , , = , , , = , ,  
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be a cube of real valued parameters, and let ixβ  for 1i … I= , ,  and {0 }ix … m∈ , ,  be real 
valued parameters. Then define 

 
( )

( )1

exp ( )
( | )

1 exp ( )i

ix ikx ik kk
i m

iy iky ik ky k

h q a
p x a

h q a

β γ

β γ
=

+ ,
= .

+ + ,
∑

∑ ∑
 

It is often convenient to constrain the ikxγ  somewhat and to specify the real valued func-
tion ( )ik kh q a,  and the ka  in a way that allows emulation of models frequently used in 
educational measurement and psychometrics. It is convenient to use ( )ik k ik kh q a q a, = , 
and ikx ikxγ γ= ,  which defines the general diagnostic model for partial credit data (Mu-
raki, 1992).  

Von Davier (2005a,b) has shown that this model already contains several models from 
the areas of item response theory (IRT; Lord & Novick, 1968), latent-class analysis 
(Lazarsfeld & Henry, 1968), multiple classification latent-class models (Goodman, 1974; 
Haberman, 1979; Maris, 1999) and diagnostic models (see, for example, von Davier, 
DiBello, & Yamamoto, 2006).  

3. Mixture general diagnostic models 

Von Davier (2008b) introduced the discrete mixture distribution version of the GDM, 
referred to as the MGDM. In discrete mixture models for item response data (Mislevy & 
Verhelst, 1990; Rost, 1990; for an overview, see von Davier & Rost, 2006), the probabil-
ity of an observation x  depends on the unobserved latent trait in the case of the GDMs, 
a,  and on a subpopulation indicator g , which is also unobserved. The rationale for 
mixture distribution models is that observations from different subpopulations may either 
differ in their distribution of skills or in their approach to the items (e.g., in terms of 
strategies employed) or both. A discrete mixture distribution in the setup of random 
variables as introduced above includes an unobserved grouping indicator ng  for 

1n … N= , , . The complete data for examinee n  then becomes ( )nn nx ga, , , of which only 
nx  is observed in mixture distribution models. In multiple group models, ( )n ngx ,  is 

observed.  

The conditional independence assumption has to be modified to account for differences 
between groups, that is  

 1
1

( | ) ( | ) ( | )
I

I i i
i

P x a g P x … x a g p x x a g
=

, = , , , = = , .∏  

Moreover, assume that the conditional probability of the components ix  of x  depends 
on nothing but a  and g , that is,  

 
1

( | ) ( | ) ( | )
I

i i
i

P x a g z p x x a g P x a g
=

, , = = , = ,∏  (1) 
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for any random variable z . In mixture models, when the ng  are not observed, the mar-
ginal probability of a response vector x  needs to be found, that is,  

 ( ) ( | )g
g

P x P x gπ= ,∑  (2) 

where ( | ) ( | ) ( | )
a

P x g p a g P x a g= ,∑ . The ( )g P G gπ = =  are referred to as mixing 
proportions, or class sizes. The class-specific probability of a response vector x  given 
skill pattern a  in class g  is then 

 
1 1

exp
( | ) ( | )

1 exp

I I ixg i ikg ik kk
i

i i iyg ikg ik ky k

x q a
P x a g P x a g

y q a

β γ

β γ

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟= = ⎝ ⎠

⎡ ⎤+
⎢ ⎥, = , = .
⎢ ⎥+ +⎣ ⎦

∑∏ ∏ ∑ ∑
 (3) 

with class-specific item difficulties ixgβ . The ikgγ  are the slope parameters relating skill 
k  to item i  in class g .  

Note that mixture models and multiple group models are two extremes, for mixtures 
models no ng  is observed, while for multiple group models all ng  are observed. Von 
Davier and Yamamoto (2004) pointed this out and described an extension of the GPCM 
that includes the mixture GPCM, multiple-group GPCM, and partially observed grouping 
GPCM, where the ng  information is missing only for a portion of the sample.  

One important special case of the MGDM is a model that assumes measurement invari-
ance across populations, which is expressed in the equality of ( | )p x a g,  across groups, 
or, more formally:  

 ( | ) ( | ) for all {1 } and all {1 }i iP x a g p x a c i … I g c … G, = , ∈ , , , ∈ , , .  

This assumption allows one to write the model equation without the group index g  in 
the conditional response probabilities, so that  

 
1

( ) ( | ) ( | ) ( | )
I

g g i
g g a i

P x P x g p a g P x aπ π
=

= = .∑ ∑ ∑ ∏  (4) 

Note that the differences between groups are only present in the ( | )p a g ,  so that the skill 
distribution is the only component with a condition on g  in the above equation. The 
next section introduces hierarchical GDM based on mixture distribution versions of the 
GDM.  

4. Hierarchical general diagnostic models 

Hierarchical models introduce an additional structure, often referred to as a cluster vari-
able, in the modeling of observed variables to account for correlations in the data. These 
are attributed to the complex structure of the environment in which the data are observed. 
More concretely, one standard example for clustered data is the responses to educational 
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assessments sampled from students within schools or classrooms. As a rather sloppy 
explanation, it seems plausible to assume that students within schools are more similar 
than students across schools (even though the amount to which this statement is true may 
depend on the educational system). Hierarchical models have been developed for linear 
models (e.g., Bryk & Raudenbush, 1992; Goldstein, 1987) as well as for Rasch-type 
models (e.g., Kamata & Cheong, 2006).  
For the developments presented here, the extension of the LCA to a hierarchical model 
(e.g., Vermunt, 2003, 2004) is of importance. In addition to the latent class or grouping 
variable g , the hierarchical extension of the LCA assumes that each observation n  is 
characterized by an outcome ns  on a clustering variable s . The clusters identified by 
this outcome may be schools, classrooms, or other sampling units representing the hier-
archical structure of the data collection. As Vermunt outlined, the (unobserved) group 
membership ng  is thought of as an individual classification variable; for two examinees 
n m≠  there may be two different group memberships, that is, both n mg g=  and 

n mg g≠  are permissible even if they belong to the same cluster (i.e., n ms s= ).  

Moreover, it is assumed that the skill distribution depends only on the group indicator g  
and no other variable, that is,  

 ( | ) ( | )P a g z P a g, =  (5) 

for any random variable z . More specifically, for the clustering variable s ,  

 
1

( ) ( ) ( | )
S

s
P g p s P g s

=
= .∑  

With Equation 5,  

 ( | ) ( | ) ( | )
g

P a s P g s P a g= ,∑  

since 

 ( | ) ( | ) ( | ) ( | ) ( | )P g s P a g p g s P a g s P a g s= , = , .  

 
As above for the MGDM, assume that the observed responses x  depend on the skill 
pattern a  and the group index g  only. Then  

 ( | ) ( | ) ( | ) ( | ) ( | ) ( | )
a a

P x g s p a g s P x a g s p a g P x a g P x g, = , , , = , =∑ ∑  

with Equations 1 and 5. Then the marginal distribution of a response pattern x  in the 
hierarchical GDM (HGDM) is given by  

 ( ) ( ) ( | ) ( | ) ( | )
s g a

P x p s P g s P a g P x a g= , ,∑ ∑ ∑  (6) 
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where, as before in the MGDM, the ( | )p a g  denote the distribution of the skill patterns 
in group g , and the ( | )p x a g,  denote the distribution of the response vector x  condi-
tional on skill pattern a  and group g . A hierarchical GDM that assumes measurement 
invariance across clusters and across groups is defined by 

 ( ) ( ) ( | ) ( | ) ( | )
s g a

P x p s P g s P a g P x a= ,∑ ∑ ∑  (7) 

with conditional response probabilities ( | ) ( | )ii
p x a p x a=∏  that do not depend on 

cluster or group variables.  

The increase in complexity of hierarchical GDMs over nonhierarchical versions lies in 
the fact that the group distribution ( | )P g s  depends on the cluster variable s . If effects 
of the group membership is considered a fixed effect, this increases the number of group 
or class size parameters depending on the number of clusters { }# s s S: ∈ . If the groups 
are considered to be random draws from a population, the group effect ( | )P g s  can be 
modeled as a random effect that follows a Dirichlet distribution. The estimation of item 
parameter ( )ix gβ and ( )ik gγ  as well as the estimation of the conditional probabilities of 
skill patterns given group ( | )P a g  and other quantities involved is outlined in the next 
section.  

5. Estimation of hierarchical general diagnostic models 

The case of fitting models with cluster-dependent response probabilities ( | )P x a s,  will 
not be discussed here. The reason is that a model in which both the skill distributions and 
the probability of correct responses depend on the cluster variable does not allow attribu-
tion of the variation of observed responses across clusters to differences in skill distribu-
tions. Such a model would essentially assume that items have different difficulty in dif-
ferent clusters. Even though this is a very empathic view of the world, this does not allow 
drawing any conclusions involving cluster differences other than clusters are different. 
Apart from that, the fact that most applications of hierarchical models offer only moder-
ate sample sizes within clusters makes the estimation of a multitude of cluster-specific 
parameters infeasible.  

The estimation of GDMs and MGDMs has been outlined in von Davier (2008a, 2008b). 
This approach is extended here to the estimation of HGDMs. The expectation-
maximization (EM) algorithm has been shown to be a suitable one for this kind of esti-
mation problems (Vermunt, 2003), so that other, more computationally costly methods 
are not necessary. For the most part, researchers will be concerned with fitting less 
highly parameterized versions of the HGDM, such as the models given in Equations 6 
and 7.  
The mdltm software (von Davier, 2005) enables one to estimate MGDMs and HGDMs 
according to Equations 6 and 7. The extensions to enable estimation of these models 
were recently implemented in mdltm based on the research presented in this paper.  
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Since the data are structured hierarchically, the first step is to define the complete data 
for the case of the HGDM. Let S  denote the number of clusters in the sample, and let 

sN  denote the number of examinees in cluster s , for 1s … S= , , . Then  

– let insx  denote the i -th response of the n -th examinee in cluster s  and let nsx  
denote the complete observed response vector of examinee n  in cluster s   

– let knsa  denote the k -th skill of examinee n  in cluster s  and let nsa  denote the skill 
pattern of examinee n  in cluster s   

– let nsg  denote the group membership of examinee n  in cluster s   

Note that only the insx  are observed, as are the cluster sizes sN  and the number of clus-
ters S . The knsa  and nsg  are unobserved and have to be inferred by making model 
assumptions and calculating posterior probabilities such as ( | )P g s  and ( | )P a g x s, , .  

1. Marginal calculations in hierarchical general diagnostic models 

For the complete data (i.e, the observed data x  in conjunction with the unobserved skill 
profiles a  and group membership g ), the marginal likelihood is  

 
1 1

( )
sNS

ns ns ns
s n

L P g sx a
= =

= , , ; ,∏∏  

that is, a sum over cluster-specific distributions of the complete data. With the above 
assumptions,  

 
1 1

( | ) ( | ) ( | )
sNS

ns ns nsns ns ns
s n

L P g p g p g sx a a
= =

= , ,∏∏  

which equals 

 x a gL L L L= × × ,  

with 

 
1 1 1 1 1 1

( | ) ( | ) ( | )
s s sN N NS S S

ns ns nsx a g ns ns ns
s n s n s n

L L L P g p g p g sx a a
= = = = = =

⎛ ⎞⎛ ⎞⎛ ⎞
× × = , .⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠⎝ ⎠
∏∏ ∏∏ ∏∏  

Note that these components may be rearranged and rewritten as  

 ( )

1 1 1
( | ) ( | )

s
i

NS I
n x a g

nsx ins ns i
s n i g a i x

L P x g P X x a ga , ,

= = =
= , = = , ,∏∏∏ ∏∏∏∏  

with ( ) ( )i is
n x i a g n x i a g s, , , = , , , ,∑  is the frequency of category ix  responses on item i  

for examinees with skill pattern a  in group g . Also,  
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 ( )

1 1
( | ) ( | )

sNS
n a g

nsa ns
s n a g

L p g p a ga ;

= =
= = ,∏∏ ∏∏  

where ( )n a g;  is the frequency of skill pattern a  in group g . Finally,  

 ( )

1 1
( | ) ( | )

sNS
n g s

g ns
s n s g

L p g s p g s ;

= =
= =∏∏ ∏∏  

holds. The ( )n g s;  represent the frequency of group membership in g  in cluster s .  

2. Estimation of cluster-skill distributions with the EM algorithm 

Since unobserved latent variables are involved, the EM algorithm (Dempster, Laird, & 
Rubin, 1977) is a convenient choice for estimating GDMs (von Davier, in press-a) as 
well as MGDMs (von Davier, in press-b) and HGDMs. The EM algorithm cycles 
through the generation of expected values and the maximization of parameters given 
these preliminary expectations until convergence is reached. For details on this algo-
rithm, refer to McLachlan and Krishnan (2000). For the HGDM, there are three different 
types of expected values to be generated in the E-step:  
1. ( ) 1{ } ( | )ˆ nsi inss n

x a g x x P a g sxn , , = = , ,∑ ∑  is the expected frequency of response x  
to item i  for examinees with skill pattern a  in group g , estimated across clusters 
and across examinees within clusters  

2. ˆ( ) ( | )nss n
n a g P a g sx, = , ,∑ ∑  is the expected frequency of skill pattern a  and 
group g , estimated across clusters and across examinees within clusters  

3. ˆ( ) ( | )nsn
n g s P g sx; = ,∑  is the expected frequency of group g  in cluster s , esti-
mated across examinees in that cluster  

 
For the first and second type of the required expected counts, this involves estimating  

 ( ) ( | ) ( | ) ( | )( | )
( ) ( )

g g

P x s a g P x a g p a g p g sP a g x s
P x s g P x s g
, , , ,, , = = ,

, , , ,∑ ∑
 

with  

 ( ) ( ) ( | ) ( | ) ( | )
a a

P x s g P x s a g P x a g p a g p g s, , = , , , = ,∑ ∑  

for each response pattern nsx , for 1s … S= , ,  and 1 sn … N= , , . For the third type of ex-
pected count, use  

 ( | ) ( | )
a

p g x s P a g x s, = , , ,∑  
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which is equivalent to  

 
( | ) ( | ) ( | )( )( | )

( ) ( | ) ( | ) ( | )
a

g g a

P x a g p a g p g sP x s gp g x s
P x s g P x a g p a g p g s

,, ,, = = .
, , ⎡ ⎤,⎣ ⎦

∑
∑ ∑ ∑

 

This last probability then allows one to estimate the class membership g  given both the 
observed responses x  and the known cluster membership s . The utility of the clustering 
variable may be evaluated in terms of increase of the maximum a posteriori probabilities 

( | )p g x s,  over ( | )p g x . If the clustering variable s  is informative for the classification 
g , a noticeable increase of the maximum posterior probabilities should be observed. The 
improvement should also be seen in terms of the marginal log-likelihood if s  is informa-
tive for g.  The cluster group sizes ( | )P g s  for 1g … G= , ,  can be assumed to follow a 
Dirichlet distribution with parameters 1 Gnp … np, , . Maximum likelihood estimation of the 
parameters involved can be carried out following Ronning (1989) or Narayanan (1991). 

6. An application to language testing data 

Simulated data have advantages, such as the truth (i.e., the set of generating values) is 
known and comparisons of different levels of model complexity and misspecification can 
be made on the basis of known deviations from the true model. The disadvantage is that 
simulated data are by origin artificial, so that the impact of model assumptions on model-
data fit can only be studied under often less than realistic settings. The accuracy of pa-
rameter recovery using simulated data has been studied with quite satisfactory results for 
the GDM by von Davier (2005, 2008) using flat item response data with no missing 
values, and by Xu and von Davier (2006) for sparse matrix samples of item responses as 
collected in national and international surveys of educational outcomes.  
The current exposition focuses on the comparison of results based on two administration 
of a test of English language proficiency (TELP). The target of inference is the stability 
of estimates of English language reading and listening skills relating to clustering vari-
ables given by language group. The analyses carried out are independent scaling runs of 
two TELP administrations for which Q-matrices were produced. Von Davier (2005, 
2008) pointed out that the GDM applied to TELP data resulted in highly correlated skill 
variables, and found that a two-dimensional, two-parameter logistic (2PL) IRT model 
across reading and listening domains provided a more parsimonious data description. 
However, the eight-skill model across reading and listening domains was the subject of 
further investigation by TELP experts, so that this model is adopted for the analyses with 
the hierarchical GDM.  
In a first step, the HGDM was compared to the GDM without hierarchical extension, 
both adopting the same Q-matrix based on eight mastery/nonmastery skills for the Febru-
ary and November administrations of the TELP. The HGDM was estimated according to 
Equation 7. In other words, measurement invariance was assumed across mixture com-
ponents so that only the skill distribution could vary across clusters and the response 
probabilities ( | )P x a  depended on the skill profile only, not on cluster s  or mixture 
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component g . Table 1 shows the skill correlations for the February administration, as 
well as the marginal skill mastery probabilities for the GDM. Table 2 shows the same 
information for the November administration.  

The correlations range between 0.67 and 0.86 for skills of the same domain (i.e., among 
the four reading or four listening skills) and are slightly lower across the domains as 
expected. For correlations between one of the four reading skills and one of the four 
listening skills, the range is 0.56 to 0.77. These are still substantial correlations, which is 
due to the fact that overall reading and listening domains themselves are highly corre- 
 
 

Table 1: 
Skill Correlations and Marginal Probabilities of Skill Mastery for the February 

Administration Based on the Nonhierarchical Eight-Skill General Diagnostic Model Across 
76 Items Assuming Four Listening and Four Reading Skills  

 
 Skill 1 Skill 2 Skill 3 Skill 4 Skill 5 Skill 6 Skill 7 Skill 8 
Skill 1 1.00 0.76 0.73 0.80 0.75 0.60 0.69 0.57 
Skill 2   1.00 0.83 0.81 0.65 0.64 0.67 0.58 
Skill 3   1.00 0.75 0.68 0.69 0.70 0.63 
Skill 4    1.00 0.61 0.55 0.58 0.45 
Skill 5     1.00 0.79 0.76 0.66 
Skill 6      1.00 0.86 0.80 
Skill 7       1.00 0.80 
Skill 8        1.00 
P(master) 0.63 0.61 0.57 0.69 0.54 0.46 0.49 0.39 

 
 

Table 2: 
 Skill Correlations and Marginal Probabilities of Skill Mastery for the November 

Administration Based on the Nonhierarchical Eight-Skill General Diagnostic Model Across 
76 Items Assuming Four Listening and Four Reading Skills  

 

 Skill 1 Skill 2 Skill 3 Skill 4 Skill 5 Skill 6 Skill 7 Skill 8 
Skill 1 1.00 0.79 0.81 0.67 0.62 0.62 0.57 0.59 
Skill 2  1.00 0.86 0.68 0.60 0.61 0.56 0.59 
Skill 3   1.00 0.70 0.64 0.63 0.58 0.60 
Skill 4    1.00 0.71 0.67 0.77 0.67 
Skill 5     1.00 0.82 0.78 0.80 
Skill 6      1.00 0.85 0.72 
Skill 7       1.00 0.86 
Skill 8        1.00 
P(master) 0.63 0.62 0.62 0.44 0.48 0.47 0.40 0.43 
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lated. A two-dimensional 2PL IRT model estimated with the mdltm software (von 
Davier, 2005) results in estimated correlations between the reading and listening domains 
of 0.81 and 0.85 for the two administrations.  
When estimating the HGDM for the two administrations, the resulting statistics differ 
from those from the GDM in two ways. First, there are two skill distributions ( | )P a c  
estimated, one for each of two mixture components 1c =  and 2c = , representing the 
largest of the between-cluster differences (here language group) that can be expected. 
Then cluster-skill distributions are formed by a proportion ( | )P c s  modeled as a random 
effect following a Dirichlet distribution. This effect represents the probability of belong-
ing to each of the mixture component skill distributions. The parameters of the Dirichlet 
distribution were estimated using the procedures described in Ronning (1989). 

The log likelihood for the eight-skill GDM and HGDM are reported in Table 3 together 
with the number of estimated parameters and the average log likelihood per observation. 
Note that the November administration included a larger number of language groups, 
some of which were of rather small size. This led to a larger increase in the number of 
estimated parameters from GDM to HGDM for the November administration than for the 
February administration. 
The average likelihood per response pattern is improved by a small amount when includ-
ing the language group as clustering variable. However, compared to the gain by assum-
ing the GDM rather than independence of all observed variables, the gain in going from 
GDM to HGDM seems quite small. For comparisons, the log-likelihood, parameters, and 
average-response pattern likelihoods are also presented for the two-dimensional 
2PL/GPCM, which are estimated as a nonhierarchical model (2PL2) and a hierarchical 
model (H2PL2), and are also given in the table. As von Davier (2005, 2008) reported, the  
 
 

Table 3: 
Log Likelihood and Number of Parameters for the Eight-Skill General Diagnostic Model and 

Hierarchical General Diagnostic Model for Both Administrations  
 

 Log likelihood Parameters Average log-
likelihood 

Independence   -43.24 
FEB GDM -164435.2 194 -38.83 
FEB HGDM -163883.0 196 -38.70 
FEB 2PL2 -160799.2 160 -37.97 
FEB H2PL2 -160297.3 162 -37.85 
Independence   -41.92 
NOV GDM -196009.8 195 -37.44 
NOV HGDM -195480.1 197 -37.33 
NOV 2PL2 -191431.6 160 -36.56 
NOV H2PL2 -190905.6 162 -36.47 
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two-dimensional 2PL IRT model is a more parsimonious description of the TELP data 
than the eight-skill model, a result that holds up for both the February and the November 
administrations. The eight-skill model, however, is the focus of an ongoing methods 
comparison by TELP researchers, so it is adopted for subsequent comparisons between 
GDM and HGDM here without any comparisons to the two-dimensional 2PL/GPCM 
model.  
Table 4 shows the two resulting marginal skill distributions for the February administra-
tion, and Table 5 shows the same information for the November administration. For both 
administrations, the mixture component 1C  shows much lower mastery probabilities 
than component 2C . The mixture component 2C  is characterized by high probabilities 
of mastery of all eight skills for both administrations. The marginal sizes of the two 
components 2C Febπ ,  and 2C Novπ ,  for the two administrations differ somewhat; there is 
about 42 % in the high proficiency class in November, whereas there is about 51 % in 
February.  

The two mixture components 1C  and 2C  represent the largest possible differences 
between clusters (language groups) in the sample, since each cluster receives an estimate 
of a proportion ( 2 | )P C s  – and with that, implicitly, ( 1| ) 1 ( 2 | )P C s P C s= −  – of mem-
bers estimated to belong in the high versus low proficiency components 2C  and 1C . 
Since the mastery probabilities of all skills are much higher in 2C  compared to 1C  for 
both administrations, this proportion can be interpreted as the proportion of examinees in 
each language group who are highly proficient with respect to the assessment items re- 
 

 

Table 4:  
Marginal Skill Distributions for the Two Mixture Components 1C  and 2C  in the February 
Eight-Skill Hierarchical General Diagnostic Model With Skill Mastery Probabilities Given 

and Marginal Sizes of the Mixture Components Are 1 0 49Cπ = .  and 2 0 51Cπ = .  
 

 Skill 1 Skill 2 Skill 3 Skill 4 Skill 5 Skill 6 Skill 7 Skill 8 
P(mastery|C1) 0.33 0.28 0.16 0.38 0.15 0.05 0.13 0.06 
P(mastery|C2) 0.92 0.93 0.96 0.97 0.94 0.85 0.85 0.72 

 
 

Table 5: 
Marginal Skill Distributions for the Two Mixture Components 1C  and 2C  in the November 

Eight-Skill Hierarchical General Diagnostic Model With Skill Mastery Probabilities Given 
and Marginal Sizes of the Mixture Components Are 1 0 58Cπ = .  and 2 0 42Cπ = .  

 

 Skill 1 Skill 2 Skill 3 Skill 4 Skill 5 Skill 6 Skill 7 Skill 8 
P(mastery|C1) 0.40 0.38 0.38 0.16 0.16 0.11 0.04 0.09 
P(mastery|C2) 0.97 0.95 0.94 0.90 0.93 0.98 0.93 0.91 
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flected in the skill definitions. These proportions can be studied across administrations, 
so that the variation (or the lack thereof) of the proportion of highly proficient students in 
the language groups becomes a target of inference. This target delivers information about 
how well-aligned the English language test is for the different language groups repre-
sented in the sample.  
Figure 1 shows the proportion of students falling in the high performing class for the 
November and February administrations. The table contains only those language groups 
for which at least 10 students were observed for each administration of the test. It can be 
seen that the class sizes vary across administrations but are relatively stable when lan-
guages are compared. For example, the proportion of students with a Chinese (CHI) 
language background is smaller than the proportion of students with a French (FRE) 
language background (see the appendix for the language-specific class sizes). The corre-
lation between the two high proficient class-size estimates across 37 countries is 0.787. 
When a weighted correlation (with weights defined as the geometric mean of the two 
language-group-specific sample sizes, one for each administration) across all 116 lan-
guage groups is calculated, the correlation between the class-size estimates is 0.89.  
 
 

Figure 1: 
Plot of the high proficiency class-size correspondence across two administrations of the 

English language test based on 37 language groups for which sample sizes exceeded 10 in 
both administrations. 
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The consistency of the language-group-proportion estimates and the substantial correla-
tion of these estimates across the two administrations are evident from Figure 1. For 
estimates of the skill-mastery probabilities of language groups, the ( 2 | )P C s , and the 
mixture-component skill probabilities can be combined, resulting in  

 
2

1
( | ) ( | ) ( | )

C

c C
P a s P a c P c s

=
= ∑  

for the language-group-specific skill distribution. As an illustration, the marginal skill 
mastery probabilities for the November and February administrations have been calcu-
lated for the CHI and Spanish (SPA) language groups. Table 6 shows the language-
group-specific marginal skill mastery probabilities for CHI and SPA for the two admini-
strations. It can be seen that the skill mastery probabilities range between 0.54 and 0.69 
for the listening skills in the Spanish language sample and between 0.40 and 0.58 for the 
Chinese language sample for the November administration. For the reading skills, the 
mastery probabilities range between 0.32 and 0.41 for the Chinese language sample and 
between 0.49 and 0.55 for the Spanish language sample.  
It is important to note that the language-group proportions as well as the estimates of 
skill-mastery probabilities will vary somewhat across administrations, even though the 
ordering of language-group-specific mastery estimates may stay stable. The estimates 
presented here are based on 4 + 4 skills with high correlations within the reading and 
listening domains as well as across domains. Therefore, a similar analysis may be tried 
with a model that joins the four postulated skills per domain into one overarching dimen-
sion by estimating a two-dimensional model instead. However, for the purpose of provid-
ing statistics on skill mastery for ongoing language testing research, it was necessary in 
 
 

Table 6: 
Language-Group-Specific Mastery Probabilities Exemplified Using the November and 
February Administrations Based on Mixing Components and the Chinese and Spanish 

Language Groups 
 

CHI and SPA in Nov Skill 1 Skill 2 Skill 3 Skill 4 Skill 5 Skill 6 Skill 7 Skill 8 
C1: 0.68 (CHI), 0.49 (SPA) 0.40 0.38 0.38 0.16 0.16 0.11 0.04 0.09 
C2: 0.32 (CHI), 0.51 (SPA) 0.97 0.95 0.94 0.90 0.93 0.98 0.93 0.91 
P(SKILL|CHI) 0.58 0.56 0.56 0.40 0.41 0.39 0.32 0.35 
P(SKILL|SPA 0.69 0.67 0.67 0.54 0.55 0.55 0.49 0.51 

 
CHI and SPA in Feb  Skill 1 Skill 2 Skill 3 Skill 4 Skill 5 Skill 6 Skill 7 Skill 8 
C1: 0.79 (CHI), 0.33 (SPA) 0.33 0.28 0.16 0.38 0.15 0.05 0.13 0.06 
C2: 0.21 (CHI), 0.67 (SPA) 0.92 0.93 0.96 0.97 0.94 0.85 0.85 0.72 
P(SKILL|CHI) 0.45 0.42 0.33 0.50 0.32 0.22 0.28 0.20 
P(SKILL|SPA) 0.63 0.61 0.57 0.68 0.55 0.46 0.50 0.40 
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the current study to use the expert-generated eight-skill matrix. As a result, the language-
group-specific profiles of skill mastery will, due to the nature of the highly correlated 
skills, mostly reflect overall differences in the proficiency level of the applicant samples 
across language groups.  

7. Conclusions 

This paper introduces an extension of the GDM (von Davier, 2005), the hierarchical 
general diagnostic model (HGDM), and shows the effect of clustering through a com-
parison of results from two administrations of the English language assessment when 
estimating language-group-specific proficiencies. The HGDM provides reliable estimates 
of proportions of high proficiency across language groups. The correlation of the esti-
mates is 0.78 for the 37 largest language groups not weighted by sample size, and it 
increases to 0.89 when all language groups that are present in both administrations are 
weighted according to their pooled sample size.  
If the clustering is informative as it seems to be in the case presented here, the prediction 
of proficiency can potentially be improved, as seen in the slight increase of average log-
likelihood (see Table 3). The clustering, or language-group membership in the analyses 
presented here, acts as ancillary information, so that the fit of the HGDM to the observed 
cognitive item responses can be compared to models without a clustering variable. The 
results presented here indicate that a mixture of different class-specific skill distributions 
is a useful tool in conjunction with cluster-specific mixing proportions to model the 
dependency of skill distribution on a clustering variable. The approach estimates condi-
tional skill distributions across the whole sample representing different expected skill 
profiles in unknown subpopulations of a mixture distribution. The cluster-specific mixing 
proportions then estimate the composition of the clusters – here language groups – based 
on the assumption that the mixture-distribution subpopulations are represented in varying 
levels across clusters. In this example, the mixture components turned out to be ordered 
proficiency classes, due to the nature of the eight skills applied, which are known to be 
substantially correlated.  
The estimated proportions, more specifically the variance of these proportions across 
clusters, and the consistency of identified proportions across administrations can provide 
valuable information about the sources of proficiency variation in hierarchically organ-
ized data. The HGDM provides a tool to study such variations in the context of item 
response models, latent class models, and diagnostic models for profile scoring.  
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Appendix 

Proportions of High Proficiency Class Membership by Country for the February and 
November Administration of the English language test for 37 Language Groups for 
Which Sample Sizes Exceeded 10 in Both Administrations  
 

Lang. N(FEB) P(C2|FEB) N(NOV) P(C2|NOV)
CHI 609 0.2046 657 0.3185 
VIE 33 0.0883 92 0.2681 
KOR 604 0.2148 832 0.2094 
RUM 32 0.8560 35 0.5611 
FRE 467 0.7818 357 0.6850 
URD 29 0.3433 43 0.5167 
GER 458 0.9067 433 0.8412 
POL 27 0.8082 58 0.4816 
ITA 378 0.6154 331 0.4629 
IND 27 0.1886 45 0.3673 
SPA 294 0.6712 483 0.5125 
TAM 21 0.6182 26 0.6456 
JPN 245 0.2847 410 0.1344 
BEN 19 0.4665 19 0.6505 
ARA 119 0.3010 187 0.1382 
BUL 19 0.7412 19 0.5115 
TGL 82 0.5033 111 0.3377 
HEB 19 0.8938 28 0.6925 
RUS 74 0.7192 136 0.5592 
MAL 18 0.8636 25 0.6301 
TEL 60 0.6326 43 0.5539 
UKR 15 0.4151 15 0.3913 
POR 59 0.7922 73 0.5308 
ALB 14 0.4363 18 0.6206 
ENG 58 0.5389 66 0.5206 
CZE 13 0.6163 13 0.3456 
THA 48 0.1178 91 0.1669 
IBO 12 0.8651 13 0.4731 
HIN 48 0.7168 70 0.7504 
PAN 11 0.3585 15 0.3225 
TUR 48 0.3000 76 0.3310 
N/A 11 0.7544 20 0.6363 
FAS 43 0.4183 58 0.2420 
YOR 10 0.9075 11 0.7347 
GUJ 37 0.1997 40 0.3770 
AMH 10 0.1595 23 0.2089 

 


