
Psychological Test and Assessment Modeling, Volume 56, 2014 (4), 332-347 

The structural validity of the FPI 

Neuroticism scale revisited in the 

framework of the generalized linear model 

Karl Schweizer
1
 & Siegbert Reiß

2
 

Abstract 

The structural validity of the FPI Neuroticism scale that is composed of binary items is investigated 

by means of confirmatory factor analysis. Because of the binary nature of the items a link function 

is integrated into the model of measurement that turns it into a generalized linear model, and proba-

bility-based covariances serve as input. The structural investigation reveals that the scale shows a 

substructure that reflects the contents of the items originating from two different domains: the 

mental and physical domains. The weighted congeneric bifactor model shows that the general 

factor is the dominating factor besides two less prominent factors referring the mental and physical 

domains. A sufficient degree of homogeneity is indicated by McDonald’s Omega coefficient. The 

use of factor scores is recommended for the representation of neuroticism. 
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Introduction 

Many personality scales constructed in the 50ies, 60ies and 70ies include binary items, as 

for example the neuroticism scale that is in the focus of this paper. At the time of the 

construction of these scales the use of factor-analytic methods was undisputed. But now-

adays, other than in previous times special emphasis is given to the fit of the data and the 

model. The same properties are expected to characterize each one of them, as for exam-

ple the same scale level (Raykov, 2012; Skrondal & Rabe-Hesketh, 2004). As a conse-

quence of the change, structural investigations by means of confirmatory factor analysis 

must meet specific demands. In this paper the investigation of the structure of a personal-

ity scale is described within the framework of the generalized model of measurement 

with a coefficient of association as input to confirmatory factor analysis, which takes the 

binary nature of the data into consideration. 

The FPI Neuroticism scale (Fahrenberg, Hampel, & Selg, 1984), the origin of which 

dates back to the 60ies, is one of these scales. The items of this scale are interspersed 

among the other items of a personality questionnaire so that it is not easy to identify the 

trait, which they represent in order to avoid acquiescence, reactance or other forms of 

bias in responding. At the time of the construction of this scale there were several rea-

sons for giving preference to binary items. A major reason was the expectation that this 

way the respondents could be forced to come to a decision in cases in which they would 

prefer to avoid it. Another major reason was the expectation that scores computed from 

binary items would show interval level or would at least come closer to the interval level 

than scores computed from ordered-categorical items. 

Since neuroticism is considered as a broad upper-level trait (Eysenck, 1952; McCrae & 

John, 1992), a scale for assessing it must meet a special demand: it must represent a 

number of specific facets simultaneously. Each one of these facets can give rise to an 

own scale that shows a high degree of homogeneity. However, because of the differences 

between the various facets the degree of homogeneity of a scale representing such an 

upper-level trait can be impaired. There is even the danger that subsets of items repre-

senting specific facets may show larger correlations among each other than with items 

representing other subsets. As a consequence, there may be inhomogeneity among the 

items that can lead to a low degree of homogeneity of the overall scale. 

A special characteristic of the FPI Neuroticism Scale is that it is constructed according to 

Eysenck’s PEN model (1952, 1967) that extends psychological concepts to the level of 

biological phenomena. Accordingly one half of the items of the scale refer to mental 

events or states, as for example anxiety and depression, and the other half to indicators of 

corresponding physical processes or states, such as the observation of unrest or nervous-

ness. Therefore this scale is considered as especially useful for research focusing on the 

relationship between processes referring to the psychological and biological levels. Al- 

though this scale is expected to show a one-dimensional structure, the consideration of a 

subset of items representing physical processes and states besides another subset of items 

representing mental events and states can mean a deviation from uni-dimensionality. In 

the construction of the scale according to the guidelines of classical test theory (Novick, 
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1966) and by means of the factor-analytic methods of the time this potential impairment 

may not have been obvious. 

Modeling binary data 

Confirmatory factor analysis has become a preferred tool for the investigation of the 

structural validity of a scale. It is usually conducted on the basis of the congeneric model 

of measurement (Jöreskog, 1971) that is a linear model for continuous data. If binary 

data are to be investigated, data and model do not fit together. The formal representation 

of the model of measurement is helpful in revealing the discrepancy. This model de-

scribes the n1 vector of observations y, which are also addressed as manifest variables, 

as the sum of the n1 vector of intercepts μ , of the product of the nm matrix of factor 

loadings  and the m1 vector of latent variables (=latent factors) η and of the n1 

vector of error components ε : 

   y μ Λη ε .  

Since the scale level of the right-hand part of the equation is continuous, the left-hand 

part also has to be continuous. Binary data do not fit to this model since they show the 

categorical level. Another discrepancy is regarding the distributions. The binary data 

follow the binomial distribution, Yi ~ Bin(2, p) for i=1,…,n, where p denotes the proba-

bility of the selected binary event whereas the latent variables are assumed to be normal-

ly distributed, j  ~ N(0, 1) for j=1,…, m. Consequently, it is necessary to transform the 

scale level and to establish a relationship between the distributions before or as part of 

confirmatory factor analysis.  

The switch from the binomial distribution to the normal distribution can be accomplished 

by means of a link transformation. It means the replacement of the linear model by a 

generalized linear model (McCullagh & Nelder, 1985; Nelder & Wedderburn, 1972). 

Such a generalized linear model includes a link function g( ) that related two random 

variables  and  that follow different distributions to each other: 

  g  .  

Most link transformations apply to data characterizing individuals. But there is also the 

possibility of transforming sample statistics. The method of computing tetrachoric corre-

lation (Pearson, 1900) includes a link transformation that applies to the probabilities of 

the binary events observed in the sample. The transformation is conducted by means of 

the normal distribution function. This correlation is suggested for the use as input to 

confirmatory factor analysis (Muthen, 1984). This correlation between binary variables 

is assumed to provide an estimate of the relationship between the continuous variables 

from which the binary ones originate. Because of its special sensitivity to skewness, it is 

recommended to use tetrachoric correlations as input to confirmatory factor analysis in 

combination with robust maximum likelihood estimation (Finney & DiStefano, 2013). 

However, the robust estimation only performs a correction of the fit statistics; it does not 
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change the factor loadings in any way that may be important for the evaluation of the 

results of confirmatory factor analysis. 

Furthermore, there is the possibility to transform variances by a link function (McCul-

lagh & Nelder, 1985, p. 21). This possibility is especially useful for confirmatory factor 

analysis since confirmatory factor analysis is a method for analysing covariances in the 

first place (Jöreskog, 1970). Consequently, a link transformation of the variances and 

covariances can compensate for the difference between the distributions. Different link 

functions are used in combination with models including free and constrained factor 

loadings (Schweizer, Ren, & Wang, 2015). These link functions produce weights, which 

moderate the relationships between items and factors. 

The link transformation can be achieved by integrating the nn diagonal matrix W that 

includes the link function as weights into the congeneric model of measurement:   

    y μ Λ Wη ε .  

Since free factor loadings cannot be weighted, W is merged with  (=latent factors) but 

not with . As a consequence, some redefinitions are necessary:  becomes a nn diag-

onal matrix and η a n1 vector. Furthermore a second-order structure has to be added 

that serves the constraint of the first-order structure:  

  η Γξ ζ   

where  is the nm matrix of second-order factor loadings that are also addressed as 

gamma coefficients,  the n1 second-order vector of latent variables and  the n1 

vector of unique components. The matrix of second-order factor loadings is composed of 

zeros and ones in order to establish fixed relationships among the first-order factors. This 

way it is assured that the model is a one-factor model although there are several first-

order factors. 

Figure 1 provides an illustration of such a weighted congeneric model. 

The arrows with dashed shafts represent parameters that are constrained whereas the ar-

rows with solid shafts represent parameters that need to be estimated. Furthermore, there 

are squared weights. In the step from the model of measurement to the model of the covari-

ance matrix that is finally investigated some parameters and also the weights are squared. 

These weights contribute as squares to the variances of the first-order latent variables.   

The switch from the categorical level to the interval level can be accomplished in differ-

ent ways. One way is included in the computation of tetrachoric correlations. It requires 

the computation of thresholds that are continuous and associated with the probabilities of 

the binary events. The achievement of these thresholds is an intermediary step in the 

computation of the tetrachoric correlation. Another option is the probability-based covar-

iance. The computation of the probability-based covariance implicitly transforms the 

data level from binary to continuous since probabilities are computed in the first step and 

combined to give the probability-based covariance in the second step (Schweizer, 2013; 

Schweizer & Ren, 2013). This covariance can also be regarded as a pre-stage that is 

reached in the computation of Phi coefficient (McDonald & Ahlawat, 1974).  
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Figure 1: 

Illustration of the weighted congeneric model of measurement 

Modeling the structure of the FPI Neuroticism scale  

The properties of FPI Neuroticism scale described in the previous paragraphs do not give 

reason to expect one specific structure of the items only. Instead there are several alterna-

tive structures that may apply to the data. First there is the unidimensional structure. This 

one is the structure that represents the authors’ intention in constructing the FPI neuroti-

cism scale. Second there is the possibility that the items from the mental and physical 

domains constitute two homogeneous subsets of items. These subsets may give rise to 

two unique dimensions in a structural investigation. Because of the common background 

that is the trait there may be a correlation between these dimensions. Third if there is 

strong commonality among all items besides the special degrees of homogeneity of the 

subsets of items, a complex structure including two levels may describe the data well. 

The first hypothesis concerning structure can be assumed to be represented well by the 

congeneric model of measurement (Jöreskog, 1971). The second hypothesis requires the 
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representation by the two-dimensional congeneric model. Two factors characterize this 

model, and each item loads on one of these factors depending on whether the contents of 

the item refer to the physical or mental domains. The third alternative can be realized as 

hierarchical model or bifactor model (Chen, West, & Sousa, 2006). It includes a general 

factor besides specific factors. Since in an investigation of the structural properties of a 

scale the focus is on the evaluation of the usefulness as a scale as a whole, the bifactor 

model is given preference over the hierarchical model (for an overview see Canivez, in 

press). The bifactor model that originates from work by Holzinger and Swineford (1937) 

enables the evaluation of neuroticism by the general factor.         

The present study 

The major objective of the present study is the investigation of the structural validity of 

the FPI Neuroticism scale by means of confirmatory factor analysis with probability-

based covariances as input. The combination of probability-based covariances and the 

generalized linear model is given preference over confirmatory factor analysis as linear 

model with tetrachoric correlations as input because the sample size is too small for the 

computation of tetrachoric correlations but appropriate for probability-based covariances 

and because the accuracy of factor loadings is important. Whereas the model-data fit can 

be improved by robust estimation methods (Satorra & Bentler, 1994; Bryant & Satorra, 

2012), there is no corresponding improvement of the quality of the factor loadings. The 

structural investigation has to reveal which one of the models discussed in the previous 

paragraph provides the best account of the data.  

Method 

Participants 

The sample included 370 participants. It was randomly drawn from a big dataset that was 

representative of the German population according to gender (47 % males, 53 % fe-

males), age, educational level and some other characteristics.  

The scale 

The scale for the assessment of neuroticism was part of a personality inventory that was 

developed in several steps and widely used in German-speaking countries (Fahrenberg, 

Hampel, & Selg, 1984). This scale included 14 binary items. These items were inter-

spersed among the other items of the inventory. Although the manual did not report the 

subdivision of the neuroticism items referring either to the mental and physical domains, 

the contents of the items suggested such a subdivision that was consistent with PEN 

theory. This theory was very influential during the time of the construction of the ques-

tionnaire. Therefore, the neuroticism items were rated according to their mental and 

physical contents in the first step and subdivided accordingly in the second step. The 
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mental items were identified by the numbers 19, 42, 55, 82, 106, 110 and 112 while the 

numbers of the physical items were 28, 45, 49, 79, 115, 126 and 130.     

Characteristics of the models 

Several models were considered. The first model was the congeneric model of confirma-

tory factor analysis (Jöreskog, 1971) including weights based on the link function. This 

model represented the authors’ assumption that the neuroticism scale was a homogene-

ous scale. It included one factor and the 14 items as manifest variables. There were 14 

first-order latent factors and one second-order factor. In order to make sure that it was a 

one-factor model, all gamma coefficients relating the first-order factors to the second-

order factor were set equal to one. Weights for accomplishing the transformation from 

the binomial distribution to the normal distribution were added to the first-order latent 

variables. This model of measurement that was a generalized linear model is denoted 

weighted congeneric model. The first part of Figure 2 provides a graphical representation 

of the core of the weighted congeneric model. 

There are circles representing the first-order factors and ellipses the second-order factors. 

The arrows indicate that each first-order factor is tied to one second-order factor. Further-

more, there was the original congeneric model. It was characterized by the combination of 

one latent variable and 14 manifest variables referring to the 14 items. This model included 

no special weights. Although this original model was not appropriate for the data since it 

did not take the binary nature of the data into consideration, it was considered for demon-

strating the effect of the link transformation by means of weights. The third model was the 

weighted tau model. This model assumed that the latent source contributed equally to each 

item. As a consequence, it was expected that the items showed equal factor loadings before 

the link transformation was conducted. It showed a structure according to the original con-

generic model. However, it differed from this model because of the constraint of the factor 

loadings and the weighting. The fourth model was characterized by two instead of only one 

second-order factor. The first-order factors referring to items with mental contents loaded 

on one of the two second-order factors and the first-order factors referring to the other 

items on the other second-order factor. Another characteristic of this model was that the 

two second-order factors were allowed to correlate with each other. This model could be 

perceived as the combination of two weighted congeneric models. It was denoted weighted 

congeneric two-factor model and illustrated in the middle part of Figure 2. Finally, there 

was the weighted congeneric bifactor model. This model included three second-order fac-

tors and could be considered as the combination of the weighted congeneric model and the 

weighted congeneric two-factor model. There were the general second-order factor and the 

two specific second-order factors. The gamma coefficients relating all first-order factors to 

the general second-order factor were set equal to one. Furthermore, there were the two 

specific second-order factors that had factor loadings of the corresponding first-order fac-

tors. The three second-order factors were not allowed to correlate with each other in order 

to have a decomposition of the true variance and to make sure that the general second-order 

factor accounted for the common variance of the second-order latent variables. The last part 

of Figure 2 illustrates this model. 
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Figure 2: 

Illustrations of the latent levels of the weighted congeneric one-factor model, the two-factor 

model and the bifactor models 
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The weight transformations were conducted by link functions used in other studies. The 

weights used in combination with the weighted congeneric model were computed by 

means of the following function (Schweizer, Ren, & Wang, 2015): 

  
       

2 0.25 0.25
w / 2

var Pr 1 var Pr var Pr 1 var Pr
i

i i i i

X
 
 

  
         

  

where Xi (i=1, …, p) represented the binary random variable, w
2
( ) the squared weight 

for Xi and Pri the probability that Xi is equal to one. Since in this case the weight at Pr=.5 

was 1.244, it was necessary to divide the estimates of the factor loadings by this number. 

It needs be added that in realizing the model in using LISREL the squared weights minus 

one are to be set equal to the elements of the diagonal of the PSI matrix. The link func-

tion of the weighted tau model was  

  
 2

var Pr
w

0.25

i

iX  .  

Finally, the link transformation had to be completed by multiplying the factor loadings 

with the square root of two (Schweizer, 2013). This transformation could be expected to 

lead to factor loadings that corresponded to the factor loadings obtainable by investigat-

ing the continuous data from which the binary data originated by means of the confirma-

tory factor analysis.  

Estimation and evaluation 

The fit of the five models was investigated by means of LISREL (Jöreskog & Sörbom, 

2006). The maximum likelihood method was used for parameter estimation since the link 

transformation could be expected to compensate for deviations from equal probabilities 

of the binary events. The evaluation of the outcomes was conducted by means of the 

following statistics: 
2
, normed 

2
 (=

2
/df), RMSEA, SRMR, CFI, TLI, GFI. Criteria 

based on the work by Hu and Bentler (1999) and Kline (2005) were used (normed 
2
 ≤3, 

RMSEA≤.06, SRMR≤.08, CFI≥.95, TLI≥.95, GFI≥.90. Furthermore, the AIC that ena-

bles the comparison of non-nested models was included. Moreover, Kubinger’s F test for 

the comparison of two non-nested models (Kubinger, Litzenberger, & Mrakotsky, 2006) 

was considered. The investigation was conducted on the basis of the covariance matrix 

including probability-based covariances. 

Results 

The results concerning model fit 

The fit results obtained for the five models are provided in Table 1.  
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Table 1: 

Fit Results for the Models Considered in Investigating the Neuroticism Data (N=370) 

Model 

type 
 2

 df Normed2
 RMSEA SRMR CFI TLI GFI 

Model including one latent variable  

Weighted 

congeneric  

 271.1 77 3.1 .083 .064 0.91 0.89 0.91 

Original 

congeneric  

 271.1 77 3.1 .083 .064 0.91 0.89 0.91 

Weighted tau  317.9 90 3.5 .083 .091 0.89 0.89 0.89 

Models including more than one latent variable 

Weighted 

congeneric 

two-factor 

 166.9 76 2.2 .057 .053 0.95 0.94 0.94 

Weighted 

congeneric 

bifactor 

 166.7 77 2.2 .056 .054 0.95 0.95 0.94 

 

 

The first row gives the results for the weighted congeneric model. According to these 

results the model-data fit was not generally good. There were only two statistics that 

were within the range for good results: SRMR and GFI. The second row includes the 

results for the original congeneric model. These results exactly corresponded to the re-

sults of the weighted congeneric model. Different results were observed for the weighted 

tau model presented in the third row. No one of the fit statistics was within the range for 

good results. 

The second half of Table 1 provides the results for the models including more than one 

second-order factor. The results for the weighted congeneric two-factor model were 

generally good. There was only the TLI that was not within the range for good results. 

Furthermore, a high correlation between the two second-order latent factors was ob-

served: r=.68 (t=14.02, p<.05). A correlation of this size could be considered as the basis 

for a third-order latent variable and as a justification for the general factor included in the 

weighted congeneric bifactor model.  Virtually the same fit results were observed for the 

weighted congeneric bifactor model as for the weighted congeneric two-factor model. 

The only major difference was that in this model even the TLI was within the range of 

good results. In order to have a comparison between the weighted congeneric bifactor 

model and the weighted congeneric two-factor model the AICs that enabled the compari-

son of non-nested models were computed. The AICs were 222.7 and 224.9 for the 

weighted congeneric bifactor model and the weighted congeneric two-factor model indi-

cating a slightly better model-data fit for the first one of the two models. In contrast, the 

CFI that was also recommended for such comparisons did not indicate a difference, and 
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the results of Kubinger’s F test for the comparison of two non-nested models 

(F(75,76)=1.01, ns) also indicated that there was no difference.   

The evaluation of the factor loadings 

This section reports the results of investigating the factor loadings that provide infor-

mation on the appropriateness of the items serving as manifest variables of the model. 

The factor loadings and asymptotic t statistics obtained in investigating the one-factor 

model are listed in Table 2. 

The completely standardized factor loadings of the weighted congeneric model are in-

cluded in the first column of this Table. They varied between 0.37 and 0.75. The second 

column gives the corresponding asymptotic t statistics. They varied between 4.5 and 

11.0. All of them indicated significance at the one-percent level. The completely stand-

ardized factor loadings of the original congeneric model presented in the third column 

were considerably lower than the ones presented in the first column. The corresponding 

asymptotic t statistics of the fourth column differed only to a minor degree from asymp-

totic t statistics of the second column. All of them reached the one-percent level of sig-

nificance. Furthermore, there were the completely standardized factor loadings of the  

 

 

Table 2: 

Completely Standardized Factor Loadings Observed in the One-factor Models (N=370) 

 Factor loadings 

Item (Number in 

questionnaire) 

Weighted 

cogeneric 

t Original 

congeneric 

t Weighted 

tau 

1 (19) 0.75 11.0 0.58 11.0 0.71 

2 (42) 0.49 6.9 0.39 7.0 0.65 

3 (55) 0.37 4.5 0.25 4.5 0.64 

4 (82) 0.75 10.8 0.57 10.8 0.71 

5 (106) 0.68 10.0 0.53 10.0 0.69 

6 (110) 0.52 7.2 0.40 7.1 0.66 

7 (112) 0.58 8.3 0.45 8.3 0.68 

 
 

 
 

 

 8 (28) 0.74 11.0 0.58 11.0 0.59 

9 (45) 0.69 10.3 0.55 10.3 0.69 

10 (49) 0.63 8.9 0.48 9.0 0.68 

11 (79) 0.50 7.0 0.39 7.0 0.65 

12 (115) 0.57 7.9 0.43 7.9 0.66 

13 (126) 0.65 8.8 0.48 8.8 0.68 

14 (130) 0.66 9.5 0.51 9.5 0.69 
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weighted tau model presented in the fifth column. These factor loadings varied between 

0.59 and 0.71. In this case there were no asymptotic t statistics since these factor load-

ings were not estimated individually but showed variation because of the contribution of 

error in standardization. 

The factor loadings and asymptotic t statistics obtained in investigating the weighted 

congeneric bifactor model are included in Table 3.  

The first column of this Table comprises the completely standardized factor loadings that 

were estimated for the complete model. These factor loadings varied between 0.36 and 

0.78 and the corresponding asymptotic t statistics given in the second column between 

7.4 and 12.6. All asymptotic t statistics reached the one-percent level of significance.  

Since the confirmatory factor models of the study did not provide factor loadings for the 

second-order factors directly, the relationships between the items and the three second-

order factors were estimated from the standardized gamma coefficients that were made 

available by LISREL. The results of estimating the factor loadings as relationships be-

tween items and second-order factors this way are presented in the third to fifth columns.  

 

 

Table 3: 

Completely Standardized Factor Loadings Observed in the Weighted Congeneric Bifactor 

Model (N=370) 

 Factor loadings 

Item (Number in  

questionnaire) 

Overall  

factor 

t Specific 

factor 1
1
 

Specific 

factor2
1
 

General 

factor 

1 (19) 0.74 11.4 0.43 0 0.60 

2 (42) 0.50 7.4 0.29 0 0.40 

3 (55) 0.36 4.9 0.21 0 0.29 

4 (82) 0.73 11.2 0.43 0 0.59 

5 (106) 0.71 11.9 0.41 0 0.57 

6 (110) 0.56 8.2 0.33 0 0.50 

7 (112) 0.63 9.5 0.37 0 0.51 

8 (28) 0.78 12.6 0 0.46 0.63 

9 (45) 0.63 9.7 0 0.37 0.51 

10 (49) 0.69 10.7 0 0.40 0.56 

11 (79) 0.49 7.3 0 0.29 0.40 

12 (115) 0.52 7.7 0 0.30 0.42 

13 (126) 0.59 8.7 0 0.34 0.47 

14 (130) 0.73 11.5 0 0.43 0.59 
1 These factor loadings were obtained by weighting the factor loadings on the overall  factor according to 

the second-order factor loadings. 
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In the third column these estimates of factor loadings are presented for the items with 

contents referring to the mental domain. They varied between 0.21 and 0.43. The results 

for the items with contents referring to the physical domain of the fourth column were 

between 0.29 and 0.46. The estimates of the factor loadings regarding the general sec-

ond-order factor of the last column varied between 0.29 and 0.63. Out of the 14 coeffi-

cients there were 13 ones that were equal or larger than 0.40. In the specific second-order 

factors only three out of six coefficients were larger than 0.40. 

The evaluation of the structural balance 

Since the investigation of the structure revealed that FPI Neuroticism scale included a 

substructure composed of two major units, it was necessary to investigate whether the 

overall scale was biased in the direction of one of these units so that it was mainly repre-

senting one of these substructures. This additional investigation was conducted by com-

paring the variances of the second-order factors of the weighted congeneric two-factor 

model. The variances were 6.97 and 3.27 for the factors associated with the mental and 

physical contents in corresponding order. The comparison was conducted by means of 

Hartley’s Fmax test. This test indicated that there was no difference between the amounts 

of variance for which the two factors accounted (Fmax(2,6)=2.13, n.s.). Consequently, the 

possibility of a structural imbalance could be excluded.  

The evaluation of the homogeneity 

The homogeneity of the FPI Neuroticism scale was investigated by means of McDon-

ald’s (1999) Omega coefficient. Since there was only one factor loading for each first-

order factor and the second-order factors established fixed relationships between the 

first-order factors, the Omega was based on the factor loadings on the first-order factors 

that were expected to reproduce the covariance pattern. The Omega associated with 

weighted congeneric model was 0.81. The computation based on the results for the 

weighted congeneric bifactor model revealed an Omega coefficient of 0.86. Furthermore, 

the contributions of the specific second-order factors were removed from the factor load-

ings in order to obtain an estimate of the homogeneity of the general factor. This Omega 

coefficient was 0.80.  

Discussion 

This study that makes use of the generalized linear model and a special coefficient of 

association in order to comply with the binary nature of the items reveals that the FPI 

Neuroticism scale shows a substructure. This substructure reflects the theoretical back-

ground influencing the selection of item contents for representing neuroticism, which is 

provided by Eysenck’s (1952) PEN theory. This substructure includes two major facets 

characterized by items from the mental and physical domains. It is this substructure that 
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makes the scale unique since the more recent developments in the framework of the BIG 

FIVE theory give preference to the psychological level (McCrae & John, 1992).  

Assuming that physical and mental phenomena are related to each other there is reason 

for including contents from both domains into one scale although there is the danger that 

specificities of the two domains may impair the homogeneity of the scale. Completely 

excluding such impairment complicates the construction of scales for the assessment of 

upper-level constructs. Only in the case that each facet is represented by one item solely 

an impairment of homogeneity is unlikely to occur. Another option is the possibility of 

computing an item parcel for each facet (Bandalos, 2008; Little, Cunningham, Shahar, & 

Widaman, 2002). However, in the case of FPI Neuroticism scale, which is investigated 

as an example, this provision does not work since there are only two major facets. 

Consequently, it is necessary to investigate whether the degree of impairment due to 

different facets is tolerable. There are two results that suggest that this is the case. First 

the general factor of the weighted congeneric bifactor model turns out to be the dominat-

ing factor. After disentangling the effects of the second-order factors all factor loadings 

on the general factor surmount the factor loadings on the specific factors. Second there is 

a balance between the items reflecting mental contents and the items reflecting physical 

contents. Furthermore, there is the possibility to estimate participants’ factor scores 

regarding the general factor. These factor scores could be expected to represent neuroti-

cism as trait anchored in two different areas quite well.  

The aim of the present study was not only to provide information on the Scale but also 

about the method used for investigating its quality. There are some observations that are 

in need of further interpretation. First of all, there is the observation that the change from 

the linear model to the generalized linear model does not have any effect on the model-

data fit, which may appear to be strange. The explanation is that the two models only 

differ according to the weights so that the difference is compensated in the estimation of 

the factor loadings. In the linear model all weights are equal to one and in the other mod-

el the weights reflect the deviations of the distributions of the individual item from the 

expected distribution. In models with free parameter estimation the factor loadings simp-

ly compensate for the difference between the weights so that the model-data fit is simply 

retained.  

Second the factor loadings of the linear and generalized linear models show a difference 

in the average level. This difference is because the factor loadings of the linear model 

reproduce the covariance matrix at hand whereas the factor loadings of the generalized 

linear model reproduce the covariance matrix of the continuous data from which the 

binary data originate. This is a characteristic that also characterizes confirmatory factor 

analysis with tetrachoric correlations as input.  

Third ignoring the difference in the average level of the factor loadings the differences 

between the profiles of the two types of factor loadings are only minor. This similarity is 

a surprising observation since differences are expected. The reason is that the scale does 

not exhibit a broad range of item difficulties or include a few items showing extreme 

degrees of difficulty among a majority of item with medium degrees of item difficulty.  
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There is only one other method that enables the investigation of the structural validity of 

a scale composed of dichotomous items in the framework of confirmatory factor analy-

sis: the other method is confirmatory factor analysis with tetrachoric correlations as input 

(Muthen, 1984). In this case the link transformation is part of the computation of the 

tetrachoric correlations. However, this method has occasionally been found to lead to 

problems regarding the model-data fit. Therefore, it is recommended to be applied in 

combination with robust estimation. Robust estimation improves the model-data fit but 

not the estimates of the factor loadings so that there is still a difference regarding the 

factor loadings. Furthermore, it needs to be mentioned that the method including the 

weighted congeneric model can be applied to covariances whereas confirmatory factor 

analysis with tetrachoric correlations as input to correlations only. In the first case the 

variances of the items contribute to the solution whereas in the second case they do not 

contribute because of the standardization.  
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