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Abstract 

In this article several latent trait models for the joint distribution of the responses and response 

times in rating scales are compared. Among these models are two generalizations of established 

models for binary items, namely a generalization of the approach of Ferrando and Lorenzo-Seva 

(2007a) and a generalization of the approach of Ranger and Ortner (2011). Two new models and a 

variant of the hierarchical model of van der Linden (2007) are also considered. All these models 

combine the graded response model with a response time model based on the log-normal distribu-

tion. The models differ in the assumed relationship between the expected log response time and the 

underlying latent traits. Although the proposed models have different interpretations and implica-

tions they can all be calibrated within the same general framework using marginal maximum likeli-

hood estimation and an application of the ECM-algorithm. The models are used for the analysis of 

an empirical data set. According to the AIC index, the generalization of the model of Ranger and 

Ortner (2011) can represent the data best. 
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The analysis of response times in psychological tests has a long history (Thurstone, 

1937; Furneaux, 1952). The focus of psychological research has thereby been on 

achievement tests, and substantial progress has been made in this area. A major step 

forward was the development of latent trait models that can be used for the joint analysis 

of the responses and response times in a test. In comparison to the simple indices, which 

have formerly been used in order to combine the accuracy and speed of a respondent, the 

usage of a latent trait model has several advantages. First, some latent trait models have 

an epistemological foundation as these models can be derived from the principle of spe-

cific objectivity, which states that the result of a comparison of two individuals must not 

depend on the specific item used for the comparison (Fischer, 1989). And second, latent 

trait models allow for more sophisticated research questions and applications. Latent trait 

models have been used for item selection in adaptive testing (van der Linden, 2008), the 

detection of collusion between test takers (van der Linden, 2009a) and the detection of 

aberrant responses (van der Linden & van Krimpen-Stoop, 2003).  

Much progress has been made in the field of achievement testing, where a large number 

of different models for responses and response times has been proposed. For an overview 

over the different models proposed so far see van der Linden (2009b) as well as Lee and 

Chen (2011). Some of these models explicitly refer to the concept of specific objectivity 

and have a sound measurement theoretic foundation. See for example Scheiblechner 

(1979) who proposed a response time model based on the exponential distribution. In 

this model the total test time has a similar function as the sum score in the Rasch model, 

being a sufficient statistic for the speed of a test taker. Other models have been derived 

from assumptions about the response process. The components of such process models 

are closely related to psychological concepts, such that these models go beyond the usual 

measurement models of item response theory (Tuerlinckx & De Boeck, 2005; van der 

Maas, Molenaar, Maris, Kievit, & Boorsboom, 2011; Vandekerckhove, Tuerlinckx, & 

Lee, 2011). 

Less progress has been made in the area of attitudinal scales and personality tests. The 

latent trait models devised for the responses and response times in achievement tests can 

not simply be transferred to this area of application. This is due to a different relation 

between the time needed to give a response and the trait that is intended to be measured 

with the test. In personality and attitudinal scales the individuals located at either end of 

the trait continuum usually respond fast, a data pattern that is described as an inverted-U 

relationship (Kuiper, 1981; Ferrando, 2006; Akrami, Hedlund, & Ekehammar, 2007). 

This inverted-U relationship can not be found in achievement tests, where the average 

response time and the test score are related monotonously (Lavergne & Vigneau, 1997; 

MacLennan, Jackson, & Bellantino, 1988; Rafaeli & Tractinsky, 1991). Therefore, dif-

ferent latent trait models are needed for achievement tests and personality scales. 

Models that are based on a nonmonotone relation between the time needed to give a 

response and the underlying latent trait are less numerous than models based on a mono-

tone relation. A nonmonotone model for binary items has been proposed by Ferrando 

and Lorenzo-Seva (2007a) as well as by Ranger and Ortner (2011). Ferrando and Lo-

renzo-Seva (2007a) use the two-parameter logistic model for the responses and combine 

this model with a response time model based on the log-normal distribution. The re-
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sponse time model relates the expectations of the log response times to two determining 

factors. The first factor is the distance between the item location given by the two-

parameter logistic model and the trait level of an individual. The second factor consists 

in an additional latent trait that reflects the general work pace of an individual. The mod-

el of Ranger and Ortner (2011) is similar in spirit, likewise combining a two-parameter 

logistic model with a response time model based on the log-normal distribution. The 

major difference consists in the implementation of the inverted-U relationship. Instead of 

using the distance between the item location and the individual as a determining factor of 

the expected response times, the authors use the probability of the given response im-

plied by the item response model. Which of the two models is the right one, or the better 

approximation to reality respectively, can not be assessed on basis of the available re-

search findings, as the relative fit of both models has not been compared so far. 

Personality scales usually do not consist of items with just two response categories repre-

senting the endorsement or rejection of a statement. It is more common to use a response 

format consisting of several ordered response categories, each accompanied by a label 

that defines the extend of endorsement represented by the category. Such items are 

sometimes denoted as Likert-type items (Baker, 1992, p.222) and the response format is 

called a rating scale (Seiwald, 2003). The response time models proposed by Ferrando 

and Lorenzo-Seva (2007a) as well as Ranger and Ortner (2011) require binary scaled 

items and can not be used for such tests. Nevertheless, the idea that some sort of distance 

between the item and the individual is a predictor of the expected response time can also 

be implemented in rating scales. One implementation of this idea is due to Ferrando and 

Lorenzo-Seva (2007b). Although their model is intended for scales consisting of multiple 

ordered response categories, the authors start from the standard factor model for continu-

ous responses. The codes assigned to the response categories of the rating scale are then 

shrunk to the range of 0 and 1 by a linear transformation and the factor model is repa-

rameterized correspondingly. The item location is defined as the trait level that is needed 

for an expected response of 0.5 in the reparameterized factor model. This definition of 

the item distance resembles the item location in the two-parameter logistic model. Hav-

ing located the item on the scale, the distance of each individual to the item can be de-

termined. Similar to the model of Ferrando and Lorenzo-Seva (2007a) for binary items, 

the distance is then used as a predictor of the expected log response time. 

Although the model of Ferrando and Lorenzo-Seva (2007b) is a reasonable extension to 

scales with several response categories it has a drawback. In case of a continuous re-

sponse model, such as the standard factor model, the support of the responses ranges 

from −∞ to ∞ and can not be scaled to (0,1) by a linear transformation. In the case of 

rating scales with few numerically scored response options such a linear transformation 

exists. However, the numerical values assigned to the response categories are arbitrary 

and the actual range of agreement reflected by the response categories is unknown. 

Therefore, a transformation to (0,1) might only be possible under strong assumptions 

about the spreading of the response categories. A crucial question is the question whether 

the response categories can be assumed to be equidistant. This limits the applicability of 

the model. 
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A second limitation of the current state of research is the focus on single models. There 

are hardly any model comparison studies, which are essential for identifying the more 

fruitful approaches to data analysis. This is especially important as different models have 

different interpretations. The mechanisms behind the inverted-U relationship are far from 

clear. When responses to test items are given, individuals have to assess information, 

generate an internal response and map the internal response to the response options of-

fered by the rating scale. Which stage of the response process is accelerated by extreme 

trait levels is unknown. The distance to the item thresholds is only relevant for the last 

response stage, the mapping of the internal response to the given response options. 

Therefore, the usage of a distance measure as a predictor of the expected response time 

can only account for effects on the last response stage. One could also assume that it is 

the overall trait level that affects the response time, as information processing is facilitat-

ed in individuals with extreme trait levels. This is a more schema based interpretation of 

the inverted-U relationship: Strong self schemata enhance information processing. Sum-

ming up, it would be interesting to compare different models in order to locate the mech-

anism behind the inverted-U relationship within the response process. 

In this manuscript I compare several models for responses and response times in items 

with ordered categorical response format. All models respect the discrete nature of the 

responses by using the graded response model. The different response time models con-

sidered in this manuscript are based on the log-normal distribution. The models differ in 

the way they relate the expected log response time to the trait level the test is supposed to 

measure. One possibility is to use the distance between an individual and the item as 

defined in Ferrando and Lorenzo-Seva (2007b). This replicates the model of Ferrando 

and Lorenzo-Seva (2007b) with a graded response model instead of the standard factor 

model. Alternative approaches are the usage of the minimal distance of an individual to 

one of the response thresholds or the usage of the probability of the uttered response. All 

these new alternatives are considered in the manuscript. The manuscript is organized as 

follows. First, the different models are described. Then, a general framework for model 

calibration is proposed. And finally, the models are applied to a real data set. Models are 

compared according to Akaike’s information criterion (AIC) (Akaike, 1992).  

Response time modeling in rating scales 

The agreement with an item is a continuous quantity that has to be assigned to a discrete 

response category when the response is given on a rating scale. This process of trans-

forming a continuous quantity into a discrete response can be modeled with the graded 

response model, which can be derived from the following assumptions. Let the continu-

ous agreement to item g follow a standard factor model, such that the agreement *
gy  

depends on the trait level   according to the linear model * ' '
0 1g g g gy r     . The 

intercept parameter '
0g  determines the expected agreement in individuals with trait 

level 0   and the regression coefficient '
1g  regulates the strength of the relation be-

tween   and the level of agreement *
gy . The residual term 

gr  is assumed to be distrib-

uted according to a normal distribution with an expectation of zero and a variance of 
2 .
gr

  
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Each of the k = 1,…,K response categories of the rating scale corresponds to a bandwidth 

on the agreement continuum. These bandwidths are defined by the K−1 thresholds 1gc , 

… , ( 1)K gc  . The first category is chosen in case the agreement *
gy  is lower than the first 

threshold 1gc , the second category is chosen in case the agreement *
gy  falls between the 

first threshold 1gc  and the second threshold 2gc  and the last category K is chosen in case 

the agreement *
gy  is greater than the last threshold ( 1)K gc  . Instead of observing the 

continuous agreement *
gy  one can only register the chosen category, which will be de-

noted as gy  in the following. The probability that a respondent with trait level   selects 

category k or lower follows from the assumption of the linear model 
* ' '

0 1g g g gy r      as 
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when using the reparameterization 
'

1 1 /
gg g r     and  ' '

0 0 1/kg kg g gc    . Function 

Φ(x) is the cumulative distribution function of the standard normal distribution. A lo-

gistic version of the graded response model can be derived from the assumption that 

residual gr  is distributed according to the logistic distribution. Alternative models for 

ordered multicategorical data are described in Kubinger (1989) and Baker (1992). 

The inverted-U relationship suggests that the response times are related to the latent trait 

 . However, it is obvious that   is not the only systematic influence on the time needed 

to give the response. Response times also depend on further individual characteristics 

like reading speed, mental speed or impulsivity. Subsuming all these additional influ-

ences under the second latent trait   that represents general work pace, a log-normal 

model can be formulated that relates the log response time in item g to the latent trait   

and the work pace   via 

    0 1 g 2log fg g g g gt e          , (2) 

where residual ge  is a normally distributed random variate with expectation of zero and 

variance of 2

ge . By using the log transformation of the response times, the model 

amounts to an accelerated failure time model, a popular approach to the analysis of event 

times (Wei, 1992). For a more theoretical justification of the log transformation see van 

der Linden (2009a). In the accelerated failure time model the parameters can be inter-

preted as follows. Intercept 0g  determines the general time demand of an item and 

depends on the item length, wording and other characteristics of the item. The regression 

coefficients 1g  and 2g  control the strength of the relation between the latent traits and 

the response times. These parameters can be interpreted as accelerating factors, acceler-

ating the time scale by the factor   1 2exp fg g g      . The crucial component in 

Equation 2 is function  gf   that underlies the inverted-U relationship. Different as-

sumptions about the form of  gf   can be made, leading to different models. In the 
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following, four forms of  gf   will be considered. These forms can be classified into 

two classes, namely item-person distance models and scale location models. 

Item-person distance models 

Findings from experimental psychology, see for example Maddox, Ashby, and Gottlob 

(1998) as well as Ashby and Maddox (1994), suggest that a decision is hard for an indi-

vidual in case the latent agreement *
gy  is close to the decision criterion employed by the 

individual. This observation motivates the item-person distance models, which are based 

on the assumption that  gf   is some sort of distance measure between the location of 

the item and the location of the individual on the latent trait continuum. The inverted-U 

relationship is thereby due to the formatting of the internal, continuous response to the 

response format imposed by the item. Different definitions of the distance measure 

 gf   can be used: 

The approach of Ferrando and Lorenzo-Seva (2007b): Ferrando and Lorenzo-Seva 

(2007b) locate the item in the point of the latent trait continuum that corresponds to an 

average response, that is, to that value 0.5  of the latent trait   that corresponds to an 

expected response of 0.5 when the responses options are transformed to the range (0,1). 

The predictor of the log response times is   0.5f | |g     . As pointed out in the intro-

duction, the approach requires that the thresholds of the rating scales are equidistant. 

The approach based on the item thresholds kgc : In the latent agreement interpretation 

of the graded response model, the distance between the threshold kgc  and the systematic 

component of the latent agreement ' '
0 1g g    is  ' '

0 1kg g gc     . This quantity is 

proportional to 0kg  , such that the distance can alternatively be defined with the 

reparameterized model parameters. It is straightforward to use the minimal distance as a 

predictor of the log response time, such that in this case    g 0f mink kg    . 

Scale location models 

It is well known that the existence of strong self-schemata can facilitate the processing of 

information about the self. The effect of an articulated self-schema for response times in 

personality scales was demonstrated by Holden, Fekken, and Cotton (1991), who found 

that mean decision times for endorsed items were negatively correlated with relevant 

self-report scale scores, whereas mean decision times for rejected items were correlated 

positively with the corresponding self-report scale scores. This data pattern suggests that 

it is the absolute location of the individual on the trait continuum that determines the 

response time: Individuals with a strong self-schema are able to process self-information 

faster. Models based on this assumption will be denoted as scale location models. Two 

versions of such models are considered, namely: 
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The approach of Ranger and Ortner (2011): Based on the findings of Holden et al. 

(1991), Ranger and Ortner (2011) developed a model that relates the expected log re-

sponse time to the probability of the given response. Although the original model was 

supposed for binary items it is straightforward to generalize the model to rating scales 

with several response options. This can be implemented by assuming that 

   gf P y |g   , where  gP y |  is the probability of the given response, which is 

determined by the graded response model in Equation 1. 

The approach based on a quadratic relationship: As an alternative to the approach of 

Ranger and Ortner (2011) one can simply assume that the expected response time de-

clines at both ends of the trait continuum. Such a relationship can be modeled with the 

quadratic function   2
2 1 0fg g g g        . The parameters 2g  to 0g  are ordinary 

regression coefficients. Note that when using the quadratic relationship the parameter 

1g  in Equation 2 is not needed any longer. Although the model is similar to the ap-

proach of Ferrando and Lorenzo-Seva (2007b), there is an important difference. The 

quadratic relationship is more flexible in choosing the location of the trait level   with 

the longest response time.  

Comparison of the models 

Two aspects of the different models have to be discussed. First, their ability to account 

for the inverted-U relationship and second their relevance for psychological assessment. 

Both aspects will be addressed in the following.  

The relation between   and  fg   is depicted exemplary in Figure 1 for an item with 

five response options and four thresholds located at 1 2.0gc   , 2 1.0gc   , 3 0.0gc   

and 4 1.0gc   and the four different models. The item thresholds are equidistant as it is 

assumed in the model of Ferrando and Lorenzo-Seva (2007b). Note that the functions 

 fg   in the plots are not the original functions, but were linearly transformed in order 

to have approximately the same range. This is possible as the response time model in 

Equation 2 contains an intercept ( 0g ) and a regression parameter ( 1g ) that can ac-

count for such a transformation. All models can reproduce the inverted-U relationship in 

case the regression coefficient 1g  is negative. Overall, the predictions of the different 

models are similar. The quadratic model is the most general model. The location of the 

minimal value can be chosen freely in this model. This is different to the alternative 

models where the location is determined by the item parameters of the graded response 

model. This flexibility however is bought with additional parameters. 

All models are relevant for psychological assessment. As the response times depend on 

the latent trait  , this relationship can be used in order to infer the latent trait from the 

response times. Thereby, the response times provide additional information about the 

latent trait value; see the empirical application described later for a demonstration of this 

effect. The response times also support the calibration of the graded response model. In 

two models, namely the threshold model and the model of Ranger and Ortner (2011), the 

response time model shares parameters with the graded response model. Thereby, when 

calibrating the graded response model and the response time model jointly, one can 
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reduce the standard error of estimation in the parameters of the graded response model; 

see the empirical application below for an example with real data. 

 

 

 

Figure 1: 

Plot of the different functions f ( )g   representing the inverted-U relationship in the different 

models for different values of the latent trait   and an item with four thresholds located at 

1 2.0c   , 2 1.0c   , 3 0.0c   and 4 1.0c  . Note that the range of the functions was 

rescaled to approximately the same span. 
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A model for the joint distribution of the responses and response times in tests 

A model for the joint distribution of the responses and response times in a test consisting 

of G items follows from the assumption of conditional independence typically made in 

latent trait models. This assumption comprises two aspects. First, the assertion that con-

ditional on the two latent traits   and   the responses and response times from differ-

ent items are independent. And second, the assertion that the responses and response 

times in the same item are independent. On the whole, these assumptions imply that the 

joint distribution of the responses  1' ,..., Gy yy  and the response times  1' ,..., Gt tt  

of an individual in a test consisting of G items follows as the product of the single distri-

butions 

      g g

1

f , | , P | f | ,
G

g

y t    


y t , (3) 

where  |gP y   is the response probability defined by the graded response model given 

in Equation 1 and  f | ,gt    is the density of the log-normal distribution corresponding 

to Equation 2. 

Model estimation 

In latent trait models not only the item parameters are unknown but also the latent traits 

of the individuals. The joint estimation of both quantities, item parameters and latent 

traits, is not feasible, as the number of unknown latent traits grows with the sample size, 

a fact that invalidates the consistency of standard maximum likelihood estimators. The 

problem of inconsistent estimators can be resolved with conditional maximum likelihood 

estimation. In conditional maximum likelihood estimation the dependency of the likeli-

hood function on the unknown latent traits is removed by conditioning on a sufficient 

statistic for the latent trait. The resulting conditional distribution of the data does not 

depend on the latent traits anymore and can be used for maximum likelihood estimation 

of the item parameters. This approach is denominated as conditional maximum likeli-

hood estimation. Conditional maximum likelihood estimation is possible in the Rasch 

model, where the required sufficient statistic is the sum score of the test (Kubinger, 

1989). The response time model of Scheiblechner (1979) also allows for conditional 

maximum likelihood estimation when conditioning on the total test time. Unfortunately, 

not all latent trait models can be estimated by conditional maximum likelihood estima-

tion. The approach requires the existence of an observable sufficient statistic, that is, a 

sufficient statistic that does not depend on the item parameters itself. In case of the grad-

ed response model (and the proposed response time model given in Equation 3), no such 

observable quantity exists, such that conditional maximum likelihood estimation is not 

possible. 

One solution to this problem is the strategy to use the marginal response and response 

time distribution. The marginal distribution of the responses and the response times 

follows from Equation 3 after integrating the conditional distribution  f , | , y t  over 
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the distribution  f ,  , which describes the distribution of the latent traits in the popu-

lation of the test takers. Marginal maximum likelihood estimation is based on this mar-

ginal distribution; those parameter values are chosen that maximize the likelihood func-

tion corresponding to the marginal distribution. One method to find this maximum is the 

so called expectation conditional maximization (ECM) algorithm of Meng and Rubin 

(1993). The implementation of the ECM-algorithm proposed in this manuscript closely 

follows the estimation approach that was suggested by Ranger and Kuhn (2012) for the 

model of Ferrando and Lorenzo-Seva (2007a). As the general approach has already been 

described in Ranger and Kuhn (2012) its implementation will only be sketched here. 

Like the ordinary EM-algorithm, the ECM-algorithm consists of two steps, the E-step 

and the M-step. The M-step can be divided into several substeps, where the item parame-

ters are updated sequentially. This is the difference to the standard EM-algorithm. 

E-step 

In the E-step of the EMC-algorithm one determines the conditional expectation of the 

log-likelihood function when conditioning on the observed responses and response times. 

First, one has to specify the distribution  f ,   of the latent traits in the population of 

the potential test takers. In the following this distribution is assumed to be a bivariate 

standard normal distribution with coefficient of correlation  . And second, one needs 

preliminary values for the unknown parameters, that is, for the parameters of the graded 

response model, for the parameters of the response time model and for the correlation 

coefficient  . 

Let γ  represent the vector of the unknown parameters and denote by 'γ  some prelimi-

nary values. Having observed the responses iy  and the response times it , i = 1,…,N, of 

the N individuals in a test of G items, the conditional expectation of the log-likelihood 

function follows from Equation 3 as 

       i i i i i i

1 1

E log f , | , ; , ; ' log f , | , ; f , | , ; '
N N

i i

i i

       
 

     
    y t γ y t γ y t γ y t γ  (4) 

The distribution  f , | , ;i i  y t γ  depends on the specific version of the response time 

model of course. However, irrespective of the exact model, the integral can be simplified 

because the inner integral over   has a closed form solution. The components 

  i ilog f , | , ; y t γ  of the log-likelihood function are linear functions of   and 2 . 

This follows from the fact that the conditional distribution  f log( ) | ,git    of each 

logarithmized response time is just a normal distribution and all proposed models are 

linear in  . As a consequence, the conditional expectation of the log-likelihood function 

is a function of  
1

E | , ; '
N

i i

i




 y t γ  and  2

1

E | , ; '
N

i i

i




 y t γ . When conditioning on the 

latent trait  , the joint distribution of the response times it  and the second latent trait   

follow a multivariate normal distribution. Therefore, one can first determine the condi-
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tional expectations  
1

E | , , ; '
N

i i

i

 


 y t γ  and  2

1

E | , , ; '
N

i i

i

 


 y t γ , which can be given in 

closed form due to well known properties of the multivariate normal distribution. And 

then, one integrates over the latent trait  . No closed form solution exists for this inte-

gral but it can be approximated numerically by Gauss Hermite quadrature (Stroud, 

1971). The strategy of replacing   and 2  by their conditional expectation reduces the 

two dimensional integral over   and   to a one dimensional integral over  . This 

saves a large amount of computing time. 

M-step 

The M-step is based on the conditional expectation of the log-likelihood function given 

in Equation 4. As the latent trait values have been integrated out, the conditional expecta-

tion of the log-likelihood function is a function of the item parameters γ  only. In the  

M-step one improves the parameter estimates by setting them to the values that maxim-

ize the expected log-likelihood function. One advantage of the EM-algorithm is that 

these values can be determined itemwise, such that a time consuming search over a 

high-dimensional parameter space is avoided. Contrary to the standard EM-algorithm, 

the M-step of the ECM-algorithms consists of several substeps. In each substep, only a 

subset of the parameters of each item is improved while the remaining parameters of the 

item are set to fixed values. That is the reason why these substeps are denominated as 

conditional maximization (CM) substeps. 

The exact implementation of the M-step depends on the variant of the response time 

model, or to be more specific, on the question whether some parameters are shared by 

the graded response model and the response time model. I suggest the following updat-

ing scheme. In a first substep, the expected log-likelihood function is maximized over the 

coefficient of correlation  , the parameters of the graded response model that are not 

shared by the response time model and the parameters of the response time model that 

are not shared by the graded response model. The unknown item parameters that appear 

in both models are set to the preliminary values that were used during the E-step. Having 

improved these parameters in the first CM-substep, the expected log-likelihood function 

is maximized over the remaining item parameters that are shared by the graded response 

model and the response time model. During this second substep, the improved values are 

used for those parameters, which have already been updated in the first CM-substep. 

After the two CM-substeps the M-step is completed. 

The improved parameters are used for another E-step, where they replace the preliminary 

values. Then another M-step follows in order to improve the parameter estimates further. 

This sequence of E-steps and M-steps is repeated until the parameter estimates do not 

change considerably anymore. As has been shown by Meng and Rubin (1993), the  

ECM-algorithm converges to a local maximum of the marginal likelihood function under 

similar conditions as the ordinary EM-algorithm. 
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The ECM-algorithm was implemented within the statistical software environment R (R 

Development Core Team, 2009) for all model variants as suggested. The codes are avail-

able on request from the author. The performance of the algorithm was explored in a 

simulation study. Simulation samples were generated as follows. First, values of the 

latent traits were drawn from a bivariate normal distribution for fictitious test taker. 

Then, the responses and response times in a fictitious test of 20 items were generated 

according to one of the four models proposed before. The item parameters of the differ-

ent models were chosen in order to mimic the data typically observed in personality 

questionnaires. Observations were simulated for samples consisting of 1000 and 500 

subjects. Altogether 250 simulation samples were generated for each condition (4 models 

× 2 sample sizes). Each data set was analyzed according to the underlying response time 

model used for generating the data. The marginal maximum likelihood estimator was 

implemented as described before. Having estimated the item parameters in each simula-

tion sample, the estimates were inspected with respect to bias and root mean squared 

error of estimation. 

The algorithm was stable and converged in all data sets. Parameter recovery was good 

for most coefficients. All estimators were virtually unbiased. However, some of the 

estimators had a rather large standard error. Extreme item thresholds kc  corresponding 

to very infrequent response categories could not be estimated with high precision, a 

finding that is well known for the graded response model. Parameter recovery of the 

parameters corresponding to the response time part of the model was usually good. One 

exception was the estimator for 1g  in the model of Ranger and Ortner (2011), which 

had a rather large standard error of estimation. See the empirical application, in particular 

Table 2, for a similar result. Due to space limitations, a more thorough description of 

further results can not be given. More information, as well as the R codes used for the 

simulation study can be obtained from the author on request. 

Empirical data application 

A real data set was analyzed with the four models proposed before in order to compare 

their model fit under realistic conditions. The data set consisted of responses to the Neu-

roticism scale of the Spanish version of the Five-Factor Personality Inventory 

(Rodríguez-Fornells, Lorenzo-Seva, & Andrés-Pueyo, 2001) and of the corresponding 

response times. The data set has already been analyzed by Ferrando and Lorenzo-Seva 

(2007b), where a detailed description of the data and the process of data collection can 

be found. In short, the Neuroticism scale was composed of 20 items, which had to be 

rated on a scale with five ordered response options. The scale was running from “not at 

all applicable” to “entirely applicable”. The responses were given by 262 undergraduate 

students from a Spanish university. Data was collected via a computerized test. Although 

the original data set also included the responses to an Extraversion scale, the analysis 

was limited to the Neuroticism data. As in the Extraversion scale the extreme response 

categories of the rating scale were hardly used by the respondents, it was impossible to 

fit the graded response model with the necessary precision. 
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First, the data was preprocessed. Two items (item 3 and item 19) had to be removed as a 

preliminary analysis with the graded response model had revealed very low coefficients 

of discrimination ( 1g ) in the two items. This indicates that the items do not measure the 

same construct as the remaining items. Then the response times were screened for unu-

sual observations. Using boxplots, 17 subjects could be identified that had unusually 

large response times. As the extreme responses of these individuals would have had a 

large impact on the results of the data analysis, they were removed, reducing the sample 

size to 245 individuals. No further cleaning of the data was undertaken. 

Subsequently the graded response model was fitted to the responses, using the LTM 

package of the software environment R (Rizopoulos, 2006). Model fit was evaluated 

using the marginal tables up to order two, comparing expected and observed frequencies. 

This analysis did not indicate any evidence for model misfit, such that the graded re-

sponse model seems to be capable of representing the associations between the respons-

es. Finally, the proposed models for the responses and response times were fitted to the 

data with the ECM-algorithm described before. In addition to the four models, a variant 

of the model of van der Linden (2007) was considered. The model of van der Linden 

(2007) is probably the most popular model for responses and response times in achieve-

ment tests. In its original formulation, the model combines a linear factor model for the 

log response times with the three-parameter logistic model for the responses. Although 

on first sight the model of van der Linden (2007) is different to the approaches proposed 

in the manuscript, it can be integrated within the present framework after a slight modifi-

cation. One simply has to replace the three-parameter logistic model with the graded 

response model and delete the summand  1 fg g   in Equation 2. This simplifies the 

response time model to the standard factor model 0 2log( )g g g gt e     . Hence, the 

model of van der Linden (2007) can serve as a benchmark and allows the decision 

whether response times in personality tests are related to the target trait   via the as-

sumed inverted-U relationship. This is a crucial question as it amounts to the question 

whether response times in personality tests possess construct validity. 

After model calibration, the fit of the models was evaluated with QQ-plots. These plots 

revealed that the log-transformation was not capable of normalizing the response times 

satisfactorily. Therefore, the reciprocal of the response times was used instead of the log 

response times. In fact, this transformation had already been utilized by Ferrando and 

Lorenzo-Seva (2007b) when analyzing the data set. This change improved the fit consid-

erably. Note that the reciprocal transformation inverts the order of the data. Hence, the 

inverted-U relationship requires positive 1g  coefficients. 

In general, the model estimates were reasonable, with coefficient 1g  being positive in 

most items, irrespectively of the model considered. This is further support for the exist-

ence of the inverted-U relationship in personality scales. In order to identify the best 

fitting model, the models were compared with respect to Akaike’s Information Criterion 

(AIC). The results can be found in Table 1. Note that smaller values correspond to a 

better fit of the model. 
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Table 1: 

 Akaike Information Criterion (AIC) for Five Different Models in the Neuroticism Data  

Model AIC 

Model of Ranger and Ortner (2011) 16160.12 

Quadratic model 16179.36 

Model of Ferrando and Lorenzo-Seva (2007b) 16185.19 

Threshold model 16210.10 

Model of van der Linden (2007) 16230.46 

 

 

All proposed models have a lower AIC than the model of van der Linden (2007), which 

was included as a benchmark. This is not surprising. The model of van der Linden (2007) 

was developed for achievement tests and assumes a monotone relation between the ex-

pected response time and the latent trait of an individual. The poor performance of the 

model clearly demonstrates that accounting for the inverted-U relation improves the 

representation of the data. Among the four proposed model variants that account for the 

inverted-U relation, the model of Ranger and Ortner (2011) performs best, although the 

difference to the quadratic model is not tremendous. This slightly suggests that it is the 

trait value itself that is responsible for the inverted-U relationship and not the item-

person distance. However, one must not over-interpret the results. The model of Ferran-

do and Lorenzo-Seva (2007b) requires equidistant item thresholds, an assumption that 

clearly was violated in the data set. This misfit of the response model might alone be 

responsible for the somewhat elevated AIC. The threshold model had the highest AIC. 

This casts the utility of the model into doubt. 

The estimates of the item parameters of the model of Ranger and Ortner (2011) are given 

in Table 2, as well as their standard errors of estimation. The coefficient of correlation 

was set to 0   because the two latent traits were almost independent. The standard 

errors of estimation were calculated by a Monte Carlo method using 500 simulation 

samples. Thus, the item parameters were estimated for 500 samples generated according 

to the model of Ranger and Ortner (2011) with the item parameters given in Table 2. The 

standard errors of estimation reported in Table 2 are just the standard errors of these 

estimates. A Monte Carlo approach was chosen because it was not clear whether the 

asymptotic distribution theory of maximum likelihood estimation already works satisfac-

torily in samples of 245 individuals. 

The Monte Carlo simulation did not only provide estimates of the standard error of esti-

mation, but also shed light on the utility of response time modeling. Even though one is 

not interested in the response times at all it can be beneficial to model responses and 

response times jointly. This finding was revealed when comparing two estimators of the 

parameters of the graded response model. First, the marginal maximum likelihood esti-

mator based on the responses only, which is the standard approach to calibrating the 

graded response model. And second, the marginal maximum likelihood estimator based  
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on the responses and response times, which was described before. Both estimators were 

used for every simulated sample of the Monte Carlo study. Comparing the root mean 

squared errors of both estimators revealed that this quantity was about 6.7% lower for the 

new estimator. This is equivalent to a reduction of the sample size of about 13%. The 

ratio of the root mean squared error of the new estimator incorporating response time and 

the root mean squared error of the standard estimator ignoring response time is depicted 

in Figure 2 for the different parameters. Note that 1 is a reference value: A value larger  

 

 

 

Figure 2: 

Ratio of the root mean squared error of two estimators for the parameters of the graded 

response model in the simulation study. Data was generated according to the model of Ranger 

and Ortner (2011) and the parameter values as given in Table 2. The ratio represents the 

relative size of the root mean squared error of the new estimator incorporating response time 

versus the root mean squared error of the standard estimator ignoring response time. Note that 

values lower than one denote higher efficiency of the new estimator.  
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than 1 indicates that the inclusion of response time does not improve the precision, while 

a value lower than 1 indicates the converse. As can be seen, jointly modeling responses 

and response times generally improves parameter estimation in the graded response 

model. 

Having estimated the item parameters, the proposed models can be used as measurement 

models in order to estimate the latent traits. As can be seen from Equation 2, not only the 

responses are related to the latent trait  , but also the response times. This means that 

the response times provide additional information about   by increasing the test infor-

mation beyond the information provided by the responses, that is, the test information 

according to the graded response model. This reduces the variance when estimating  . 

The benefit of using the new model for psychological assessment was explored in a 

simulation study. In this study, response pattern were generated for a test consisting of 

18 items with item parameters as given in Table 2, using the model of Ranger and Ortner 

(2011). The data was generated for ten different levels of  , equally spaced between 

3    and 3  . The second latent trait   was randomly drawn from the standard 

normal distribution. Having generated the data, the two latent traits were determined  

 

 

 

Figure 3: 

Root mean squared error for the estimator of the latent trait   when employing the 

neuroticism test with the item parameters given in Table 2. With RT denotes the estimator 

when using the model of Ranger and Ortner (2011). Without RT denotes the estimator when 

estimation is based on the responses using the graded response model. 
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with maximum likelihood estimation. A first estimator was based on the responses only, 

using the graded response model. The second estimator considered responses and re-

sponse times, using the model of Ranger and Ortner (2011). The item parameters were 

regarded as known. Data analysis was repeated 1000 times for each trait level. The root 

mean squared error of the two estimators is given in Figure 3. As can be seen, the con-

sideration of response times always reduces the root mean squared error. The reduction 

is highest for very low trait levels. 

Discussion 

There is a large body of evidence that the time needed to respond to items of a person-

ality questionnaire is related to the trait level on an individual: Average response times 

are shorter for more extreme items (Dunn, Lushene, & O’Neil, 1972; Hanley, 1962; 

Kuncel, 1973; Rogers, 1973) and more extreme responses (Casey & Tryon, 2001). 

When factor analyzing questionnaire data, one can observe an inverted quadratic rela-

tionship between the factor score of a respondent and the average response time need-

ed by the respondent for responding to indicator items of the corresponding factor 

(Akrami et al., 2007). Findings of Ferrando (2006) suggest that the distance between 

the respondent and the item on the underlying trait continuum is correlated with the 

time needed to respond to the item. These findings are usually subsumed under the 

label inverted-U relationship. 

It is obvious, that any systematic relationship between an observable feature of the re-

spondent behavior and the latent trait can be used for diagnostic purposes by devising a 

measurement model based on this relationship. Popular measurement models are models 

from item response theory, which represent the relationship between the given response 

and the underlying latent trait. However, the inverted-U relationship suggests that not 

only the responses, but also the response times possess construct validity. One only 

needs a measurement model relating the response times to the latent trait in order to 

exploit this extra source of information about the latent trait. Unfortunately, such models 

barely exist for multi-categorical rating scales. The sole model proposed up to now is the 

approach of Ferrando and Lorenzo-Seva (2007b). However, a good principle of data 

analysis is never to fall in love with just one model (McCullagh & Nelder, 1983). Alter-

native models might be equally useful and equally supported by the data. This is espe-

cially true as the psychological mechanism behind the inverted-U relationship is unclear. 

Summing up, it is far too early to restrict the attention to just one model. What is needed 

are studies that compare different approaches, as this might help in understanding the 

true nature of the inverted-U relationship. 

In the actual manuscript several models were compared, among them a version of the 

original model of Ferrando and Lorenzo-Seva (2007b), but also alternative models with 

different assumptions about the relation between the latent trait and the expected re-

sponse time. All models are intended to account for the inverted-U relation somehow. 

The different models can crudely be classified into two classes, item-person distance 

models and scale location models, although one should not over-interpret the meaning 
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suggested by this distinction. The empirical application clearly demonstrates the superi-

ority of models that account for the inverted-U relationship. The question about the best 

model can not be answered as unambiguously. In the actual study, the best model was 

the model of Ranger and Ortner (2011), which relates the probability of the given re-

sponse to the expected response time. Probable responses are given faster than unex-

pected (improbable) ones. As unusual response times and outliers have been removed 

from the data set before analyzing the response times, the data pattern can not result from 

distortions like rapid guessing or daydreaming. It seems that extra cognitive effort is 

needed to overcome typical reactions. However, it is wise to interpret the results from a 

single study with care. More research is needed in order to assess the generalizability of 

the present findings. 

As has been shown in the manuscript, modeling responses and response times has sever-

al benefits. Considering response times improves the estimation of the item parameters 

of the graded response model and the estimation of the latent trait. The model might also 

be useful for other purposes like the identification of unusual responses, inappropriate 

response styles or untraited individuals. These applications will be addressed in future 

research. 
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