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Abstract 
Approximately a third of the Programme for International Student Assessment (PISA) items in the 
core domains (mathematics, reading, and science) are constructed response and require human cod-
ing. This process is time consuming, expensive, and prone to error. The shift in PISA 2015 from 
paper- to computer-based assessment digitized all responses and associated coding, providing oppor-
tunities to introduce technology and analytical methods to improve data processing and analyses in 
future cycles. The current study explains the framework and approach for improving the accuracy 
and efficiency of the coding process in constructed-response items for future PISA cycles. Using the 
frequency distributions, consistencies of responses in coding categories, analysis of coder agreement, 
and graphic representations, we investigated the efficiency of the proposed machine-supported cod-
ing system for all human-coded items across multiple countries using PISA 2015 data and demon-
strate how the proposed system was implemented in the PISA 2018 field trial. 
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The move toward computer-based assessment (CBA) holds out promise for significant 
improvements in data quality, leading to greater precision and increased validity (e.g., von 
Davier, Gonzalez, Kirsch, & Yamamoto, 2012). CBA allows for capturing responses di-
rectly into the system for both multiple-choice and constructed-response items. It provides 
the possibility of automatic scoring for both response types – using scoring keys for mul-
tiple choice and machine scoring for constructed responses.  
Human coding of constructed responses is time consuming, expensive, and prone to error 
due to a lack of consistency among human coders. Such coding tasks become burdensome, 
considering multilingual environments in an international large-scale assessment, such as 
the Programme for International Student Assessment (PISA). The PISA, given triennially, 
is one of the largest internationally standardized assessments and is aimed at evaluating 
education systems worldwide by testing the skills and knowledge of 15-year-old students. 
In PISA 2018, students representing more than 80 economies in almost 120 languages 
(including 116 languages in CBA) will participate, with a focus on assessing their capacity 
to demonstrate preparedness in various domains, particularly reading, mathematics, and 
science. The core (or major) domain rotates by cycle. In the PISA 2018 cycle, the major 
domain is reading and will be administered to all students, while the minor domains of 
science and mathematics will be administered to about a third of the students each. Nearly 
a third of the items in mathematics and science and about a half in reading domains in 
PISA 2015 are constructed response and require human coding.3 
For the first time, PISA 2015 delivered the assessments of all subjects via computer. The 
shift in PISA 2015 from paper- to CBA digitized all responses and associated coding, 
providing opportunities to introduce technology and analytical methods to improve data 
processing and analyses in future cycles. 
The current study explains the framework and approach for improving the accuracy and 
efficiency of the coding process in constructed-response items for future PISA cycles. 
Specifically, the research questions focus on (1) what is the commonality of correct and 
incorrect responses by items across country/languages, (2) whether and how much we can 
take advantages from the computer-supported coding given the small number of unique 
responses generally found among correct responses, and (3) whether the commonality of 
responses is consistent across cycles and country/languages. Based on these research find-
ings, we aim at building up a system that could reduce the number of items that have to be 
coded by human coders. In this paper, we define coding as a process that initially catego-
rizes written responses into discrete classes, thus facilitating scoring in a later step. Using 
the frequency distributions, consistencies of responses in coding categories, analysis of 
coder agreement, and graphic representations, we investigated the efficiency of the pro-
posed machine-supported coding system (MSCS) for all human-coded items across mul-
tiple countries using PISA 2015 data and demonstrate how the proposed system was im-
plemented in the PISA 2018 field trial. The ability to collect students’ raw responses and 
                                                                                                                         
3There are two kinds of coding methods for constructed-response items in PISA, computer- and human-
coded. Items with numeric responses (i.e., only numbers, commas, periods, dashes, and back slashes can 
be entered) and responses involving choices from a drop-down menu or selecting rows of data are coded 
via computer. All others, typically answered by inputting text-based entries, are coded by human raters.  
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potentially automate the coding of more complex response types – such as extended, con-
structed answers–is expected to dramatically enhance PISA’s overall data quality and has 
proved effective in its first implementation in the PISA 2018 field trial.  

Motivation of developing a machine-supported coding system 

Bennett (2011) defined automated scoring as “a large collection of grading approaches 
that differ dramatically depending upon the constructed-response task being posed and the 
expected answer.” He categorized two general classes of assessment tasks for which auto-
mated scoring could be used. The first entails constructed-response tasks that can be 
graded using exact-matching techniques. For these problems, the scoring challenge is rel-
atively trivial: The correct/incorrect answer(s) are known in advance and can be used to 
evaluate the quality of the student’s response.  
The second general class consists of problems for which the responses are too complex to 
be graded through the exact-matching approach. Automated scoring of complex responses 
is generally accomplished via a scoring “model.” The model extracts features from the 
student response and uses those features to generate a score, such as the c-rater® (Leacock 
& Chodorow, 2003) and e-rater® scoring engines (Burstein, 2003). Tasks may be scored 
as right or wrong, but in many cases they also can be graded on a partial-credit scale ac-
cording to a scoring rubric. Such an automated scoring model is typically developed based 
on one language (e.g., English) to derive accurate scoring in the specific language envi-
ronment. Because of language diversity in spelling, grammar, wording, and so on, it is 
very challenging to generalize one single language model to other languages. Given con-
cerns about the multilingual environments in international large-scale assessments, the au-
tomated scoring model categorized in the second class by Bennett is less helpful in the 
current study.  
The MSCS typically follows the first class of automated scoring, that is, graded responses 
with exact-matching techniques based on historical data. The goal of the current system is 
to avoid repeated coding of the exact same response string by classifying constructed re-
sponses into equivalent response classes. For response classes with verified coding, the 
coding associated with the response class can then be applied to future observations of the 
identical response, namely, responses from the same equivalent response class.  
This approach parallels automated scoring in the sense that a scoring model is first trained 
on existing data and then applied to future data. However, unlike commonly used auto-
mated scoring processes that generally involve algorithms, the proposed method relies on 
human coding and exact matching of previously established classes of responses with 
newly observed student responses. That means no computer-based classifications or 
threshold approach are needed; only exactly matching responses receive a coding as pre-
viously established based on human coders. Such an exact matching rule could be easily 
applied to any language in multilingual-based international large-scale assessments such 
as PISA. 
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Human coding system in PISA 

Due to a lack of consistency among human coders, human coding sometimes results in 
low coding reliability. In PISA 2015, typically, the number of raw responses to be coded 
in a single country per language was around 180,000. Assuming 1,000 responses can be 
coded by a single human coder per day, it would take 180 person days to complete the 
task. The challenge is expected to be greater in PISA 2018 for two reasons: The major 
domain will be reading, which is more heavily text-based and utilizes a higher proportion 
of constructed-response items, and more countries are expected to participate. In the PISA 
2018 field trial, an average of eight human coders was assigned per country/language in 
reading for the standard sample size of 1,500 respondents per country. The number of 
human coders will be increased in the main survey with a bigger student sample size of 
over 6,000 per country. 
Coder reliability in PISA was evaluated at the within- and cross-country levels for all 
items, which was enabled by a coding design that involved multiple coding, or coding of 
the same response by different individuals. In general, each country needed to randomly 
select 100 student responses per human-coded item for multiple coding. The rest of the 
student responses were evenly split among multiple human coders for single coding. Mul-
tiple coding of all student responses in an international large-scale assessment like PISA 
is labor intensive and costly. The inconsistency of coders varied across items and coun-
tries. In PISA 2015, in terms of the student responses, 96 % of the CBA countries coded 
every item with proportion agreement higher than 85 % in mathematics, new science 
items, and financial literacy. More than 97 % of CBA countries had five or fewer items 
with proportion agreement lower than 85 % in the reading and trend science (items from 
previous cycles) domains; for further detail, see the PISA 2015 Technical Report (Organ-
isation for Economic Co-operation and Development, 2017). For most CBA countries, the 
standard inter-rater reliability of Cohen’s kappa agreement was above 0.9 for all domains 
(0.97 in mathematics, 0.90 in reading, 0.90 in new science, 0.93 in trend science, and 0.92 
in financial literacy).  
The following sections describe how the MSCS was developed and implemented as well 
as its overall performance in the first actual implementation in the PISA 2018 field trial. 
We first introduce the development of the MSCS, followed by a pilot study to illustrate its 
function and performance using the responses collected in PISA 2015 (Yamamoto, He, 
Shin, & von Davier, 2017). Next, the implementation of the MSCS in PISA 2018 field 
trial is presented with a focus on the development of a coded unique response (CUR) pool. 
An overview of the performance of the MSCS in PISA 2018 field trial is also reported. 
Finally, we discuss how to expand the CUR pool and further enhance the reliability and 
efficiency of the MSCS for future PISA cycles.  

Development of a machine-supported coding system 

The idea behind the MSCS is to capitalize on the regularity of students’ raw responses. 
Here, “regularity” refers to the extent to which a small number of “unique” responses 
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represent all students’ responses on constructed-response items.4 For example, high regu-
larity in correct responses means that a relatively small number of unique correct responses 
represents a large number of correct responses for a given item. In other words, variability 
among all correct responses for an item is small. In contrast, there can be numerous incor-
rect responses for a constructed-response item and are easily recognizable–for example, 
any number other than the correct number. Identical responses (one unique response) 
should receive the same code when observed a second time, meaning human coding can 
be replaced by machine coding in such a situation, reducing repetitive coding work per-
formed by humans. Further, machine coding can reduce inaccuracy caused by human 
coder error (e.g., not understanding the coding rubric, fatigue, not careful enough, etc.) by 
assigning “verified” codes established from the historic data (i.e., CUR pool). If the veri-
fied correct and incorrect codes could be assigned automatically for identical responses, 
coding the constructed-response items would be much more efficient and accurate as well 
as less resource intensive for each country.  
Raw responses can generally be categorized into two types: (a) responses with verified 
coding (including nonresponse) and (b) unique responses that require human judgment. In 
the implementation, response type (a) can be automatically coded based on the CUR pool, 
while only type (b) needs to be coded by human coders. For instance, if a constructed-
response item has 500 identical responses, the human coder should have to code only once 
for the unique response. The MSCS can code the other 499 instances, resulting in a 99.8 
% workload reduction. However, the proportion of workload reduction is item dependent 
as it depends on the level of response complexity and the consistency of codes given to 
that unique response. For instance, straightforward responses to short constructed-re-
sponse items (such as “3 meters” as the response to a question about finding a distance 
between two points) would more likely result in more consistent codes and, hence, lead to 
a larger workload reduction than moderately complex responses (such as explanations of 
how a drug functions). 
As Figure 1 shown, the workflow of the MSCS can be divided into two phases: (a) create 
the CUR pool by identifying the consistently coded frequent responses, and (b) comparing 
the new responses against the CUR list. In the first phase, historical data – for example, 
the coded raw responses from the PISA 2015 main survey – are analyzed, and a simple 
algorithm sorts raw responses by code categories (e.g., 0, 1, 2, 7, and 9). If there is a com-
mon code that applies to the sets of identical responses and is exclusive (i.e., if the same 
response exists in only the “correct” category, but not in the “incorrect” category), a CUR 
pool can be generated based on the equivalent code and the code is assumed to be verified. 

                                                                                                                         
4For example, “30m”, “30 m”, “30 meters” were treated as three “unique” responses, because they are 
different in terms of spaces or abbreviation used in the raw responses. No preprocessing (e.g., removing 
spaces) has been conducted for the PISA 2018 field trial. 
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Figure 1: 

Machine-supported coding system workflow for constructed-response items 
 
In the application, or the second phase, machine-supported coding is applied to new un-
coded responses: If a new respondent’s answer to a constructed-response item is found in 
the CUR pool for that item in the given country/language group for the PISA 2018 field 
trial, the stored response code is directly applied to the new respondent’s answer. The 
current MSCS system uses exact response match (including space, spelling mistake, punc-
tuation, etc.) with the CUR pool. Nonresponses such as blanks can be assigned the appro-
priate nonresponse code. Only those responses that cannot be matched to an identical re-
sponse stored in the CUR pool are assigned to (multiple) human coders.  

Pilot study: Machine-supported coding system in PISA 2015 

The potential gain of the MSCS was tested using 13 items from the reading domain in 
PISA 2015 across seven country/language groups – Australia (English), B-S-J-G (China) 
(Chinese)5, France (French), Germany (German), Japan (Japanese), Korea (Korean), and 
the Netherlands (Dutch) – in a pilot study (Yamamoto et al., 2017). The country/language 
group set was selected with a diversity in languages and culture: Both alphabetic-based 
languages (European languages such as English, French, German, and Dutch) and charac-
ter-based languages (Asian languages such as Chinese, Japanese, and Korean) were repre-
sented. In accordance with the policies regarding confidentiality and item disclosure, we 
anonymized all the countries’ names herewith after, instead, used “Country A to G” to 
                                                                                                                         
5In PISA 2015, only four provinces in China participated the assessment, including Beijing, Shanghai, 
Jiangsu and Guangdong. We abbreviated this group as “B-S-J-G (China)” to keep consistent with the PISA 
2015 technical report. 
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represent the seven countries in a random order. Also, only “altered” responses were used 
here to illustrate how regularity levels of responses were defined. 
The sample items were selected based on a wide range of regularities of responses. The 
level of regularities was defined as the ratio between total responses and unique responses 
per item. Three levels of regularities (i.e., high, medium, and low) were used in the current 
study. The ratio for an item with a high level of regularity responses was typically more 
than 20 to 1, meaning one unique response on average represented more than 20 responses 
in this item. The ratio threshold decreases to 2 to 1 for items with moderate-level regularity 
responses. When the ratio is lower than 2 to 1, it indicates the item with a low level of 
regularity responses.  

High level of regularities 

Table 1 lists the frequencies of identical response classes for an example item that could 
be classified as a large-gain machine-coding item with high level of regularities. This table 
provides frequencies separately by score given: full or no credit. Frequencies of nonre-
sponses are also listed in the rightmost column. Using the sample in Country A, there were 
1,838 raw responses in this item, with only 50 unique responses were found among them. 
This implies that human coders would only have been required to code 50 unique re-
sponses, or 3 %, for the identical responses to receive the same credit.  
For this simple constructed-response item, the answer should be “30” or “30 minutes,” and 
responses including numbers other than “30” should have been coded as incorrect. Among 
all responses, 1,467 students responded correctly with “30,” and the second-most fre-
quently observed unique response was “30 minutes,” which came from 23 students. 
Among responses that received no credit, the most frequently observed were “10” and “5,” 
each of which was observed from six students. Also, we detected a miscode (italicized in 
the table) from a human coder who gave the wrong score: one student who answered “12” 
received full credit even though he or she should have received no credit. This example 
illustrates how our proposed approach can be utilized to improve coding accuracy by au-
tomatically assigning no credit to clearly wrong responses. Finally, 252 students’ re-
sponses (14 %) were nonresponses. One incorrect response received a missing code from 
a human coder although it should have been assigned no credit.  
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Table 1: 
Large-Gain Machine-Coding Item with High Level of Regularities (Country A) (Item 3) 

Response Frequencies 
(full credit) 

Frequencies 
(no credit) 

Frequencies 
(missing) 

30 1,467 0 0 
30 minutes 23 0 0 

30mins 7 0 0 
… 

10 0 6 0 
5 0 6 0 
12 11 3 0 

… 
(No response) 0 0 252 

Total 1,509 76 253 
Note.1 Italics here indicates a miscode. “Altered” responses were shown in the table to illus-
trate the high level of regularities of responses. 

 
Figure 2 illustrates the visual representation of this item across seven country/language 
groups using bar plots. Each bar plot in Figure 2 shows the cumulative proportion of 
unique responses by each country (vertical axis), with the frequency of unique responses 
sorted by three categories on the horizontal axis from left to right: full-credited unique 
responses, no credit, and nonresponses.  
At the bottom right corner of the figure, we present a table showing the number of total 
responses (T) (i.e., the number of respondents) and the number of unique responses (U) 
(i.e., the sum of unique responses in correct and incorrect groups) in the items. The fol-
lowing row “proportion of potential duplicate responses” exhibits the maximum expecta-
tion (i.e., upper boundary) that the duplicate responses can be removed from human coding 
workload if a machine coding engine is applied. The percentage of reduction is calculated 
as !"#

$
. Note that the additional workload of using multiple human raters (for examining 

coders’ reliability) was not considered in the calculation. In this high-level-regularity-re-
sponse example, the proportion of potential duplicate responses is very high if the MSCS 
is used – a range of 94-98 % across seven countries. The last two rows present the number 
of unique responses that satisfy the rules to be included in the CUR pool, and the propor-
tion of potential duplicate responses that can be matched in the CUR, which could be re-
garded as a lower boundary as the minimum expectation from the MSCS. The major rules 
applied to building up the CUR pool will be addressed in more details in the next section. 
The nonresponse and unique responses with frequency not less than five times in one and 
only one coding category were included in the CUR pool. It is noticeable that in such a 
high-level-regularity-response item, the CUR unique responses are very powerful to save 
a large proportion of duplicate coding tasks from human coders. Especially in Country G, 
90 % duplicate coding tasks could be saved by only two unique responses. 
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As listed in Table 1, for this item in the Country A, the most frequently observed response 
was given in 1,467 full-credited responses (80 %). That is the starting point in Figure 2 
from the first bar. It is notable that the cumulative proportion rises slowly after the first 
bar, implying there are few additional regularities for the rest of the unique responses. 
Regularities among no-credited responses are very small, making it hard to see the thresh-
old that distinguishes full-credited and no-credited groups. Note that nonresponses consti-
tute one category of the unique responses, with the rightmost bar indicating the nonre-
sponses as listed in Table 1. There are a substantial number of nonresponses, which is 252 
for this country, and is visible with the large jump in cumulative frequencies shown by the 
rightmost bar. Note that when the sorted unique responses are accumulated, the bar at the 
rightmost reaches the total number of raw responses, which is 1,838 in this case. The cu-
mulative distributions follow similar patterns across countries, meaning there is not a large 
language effect in this item. The efficiency benefits from the MSCS are consistent across 
countries for this item. 
 

 
Figure 2:  

Large-gain machine-coding example item with high level of regularities. *Frequency of 
unique responses on horizontal axis sorted left to right by full credit, no credit, and nonre-

sponse. Australia (English), B-S-J-G (China) (Chinese), Germany (German), France (French), 
Japan (Japanese), Korea (Korean), and the Netherlands (Dutch) were represented by Country 

A to G in a random order. 
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Medium level of regularities 

Following a similar structure, we presented an example item with a medium level of reg-
ularities response in Table 2. In Country A, there were 1,815 raw responses in total, with 
648 unique responses harvested, suggesting only 36 % responses needed to be coded by 
human coders.  
The correct answer for this particular item should be “Earth Road WF” regardless of the 
capitalization of the letters. Among all responses, 529 students responded correctly with 
the same exact response as “Earth Road WF,” and the second-most frequently observed 
unique response was “earth road WF” from 76. Moreover, we detected one miscode (ital-
icized in Table 3) from a human coder who gave no credit when the correct answer of 
“Earth Road WF” was given. Unlike the item above that showed small regularities among 
no-credited unique responses, many students provided exactly the same incorrect re-
sponses.  
 

Table 2: 
Moderate-Gain Machine-Coding Item with Medium Level of Regularities (Country A)  

(Item 2) 

Response Frequencies 
(full credit) 

Frequencies 
(no credit) 

Frequencies 
(missing) 

Earth Road WF 529 11 0 
earth road WF 76 0 0 
earth road wf 45 0 0 

… 
ABC Space Free 0 123 0 

ABC's Space Free 0 39 0 
ABC's space free 0 16 0 

… 
(No response) 0 0 145 

Total 809 861 145 
Note. 1Italics here indicates a miscode. “Altered” responses were shown in the table to illus-
trate the high level of regularities of responses. 
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Figure 3: 

Moderate-gain machine-coding item with medium level of regularities.  *Frequency of unique 
responses on horizontal axis sorted left to right by full credit, no credit, and nonresponse. 

Australia (English), B-S-J-G (China) (Chinese), Germany (German), France (French), Japan 
(Japanese), Korea (Korean), the Netherlands (Dutch) were represented by Country A to G in a 

random order. 

 
Consistent with Figure 2, similar patterns of unique response distributions were found in 
the item with medium level of regularity responses as illustrated in Figure 3. The most 
frequently observed response came from 529 (29 %) full-credited responses, which is the 
starting point in the cumulative proportion axis. The bar heights are slightly increasing for 
the rest of the full-credited unique responses but followed by a clear jump when the no-
credit unique responses joined. The final jump reflected in the right-hand bar indicates a 
substantial number of nonresponses. The proportion of items not needing human coding is 
within a range of 39-80 % across countries if the MSCS were to be applied. It was also 
interesting to find that compared with the high-level-regularity-response item in Figure 2, 
the number of unique responses included in the CUR was increased in this medium-level-
regularity-response item. However, the proportion of potential duplicate responses that 
matched with the CUR pool was lower across all the country/language groups, meaning 
the CUR unique responses are a bit weaker compared with the previous example item on 
account of a relatively lower frequency of each CUR unique response.  
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Low level of regularities 

Following the same structure, Table 3 lists the frequencies of unique responses for the last 
example item that can be classified as a small-gain machine-coding item with low level of 
regularities. For this item, there were 1,782 raw responses in total from Country A, and 
1,274 unique responses were harvested out of all raw responses. Although the number of 
unique responses seems quite large compared to the two items above, we could still avoid 
the need to manually score 508 raw responses. Note that among the reduced 508 raw re-
sponses, 504 responses (99.2 %) were nonresponses, as listed in Table 3.  
For this constructed-response item, students needed to provide a reasonable answer in a 
sentence; an insufficient or vague response should have been coded as incorrect. Among 
all responses, the first three full-credited unique responses came from only two students, 
respectively. Regularities in raw responses were rarely observed among no-credited re-
sponses. The largest frequencies of unique responses, either in the full-credited or no-cred-
ited response group, were just two. However, over a quarter of students, or 504 (28.3 % of 
the total), did not produce a response. Although this item contained only a low level of 
regularities, a considerable number of nonresponses could have been automatically coded.  
Analogous to illustrations in figures 2 and 3, we found similar patterns of cumulative dis-
tribution in the example item with low level of regularity responses in Figure 4. In Country 
A, the most frequently observed response came from three full-credited responses. A 
straight diagonal line is observed until it reaches the rightmost bar, suggesting almost all 
responses were unique. A high jump in the rightmost bar is spotted for a high nonresponse 
rate in this item. The proportion of saved workload would be relatively low – a range of 
5-29 % if the MSCS were applied.  
 

Table 3: 
Small-Gain Machine-Coding Item with Low Level of Regularities (Country A) (Item 11) 

Response Frequencies 
(full credit) 

Frequencies 
(no credit) 

Frequencies 
(missing) 

It states what the paper is going to be about. 2 11 0 
it tells you what the paper is about 2 0 0 
its telling you what the paper is about 2 0 0 
… 
don give up 0 2 0 
Idk 0 2 0 
? 0 1 0 
… 
(No response) 0 0 504 
Total 1080 198 504 
Note. 1Italics here indicates a miscode. “Altered” responses were shown in the table to illustrate the 
high level of regularities of responses. 
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For items with a low level of regularities, the small gains are mainly contributed by non-
responses rather than identical raw responses, implying that the potential decrease in work-
load from a small-gain machine-coding item largely depends on the ratio of nonresponses. 
For instance, there was a high proportion of nonresponse (over 20 %) in Country A, as 
shown in the highest bar to the right end in the Country A plot, while there was a relatively 
low missing rate (around 5 %) for Country G, suggesting Country A would benefit more 
from the MSCS than the Country G merely by nonresponse rate. We also noticed that the 
unique responses that could be included into the CUR pool became rare in the low-level-
regularity-response item. Due to the extremely low frequency of each unique response, the 
removal of duplicate responses could not be benefited much from the CUR pool.  
To sum up, in this pilot study, the sample item with the most instances of repeated raw 
responses resulted in a maximum expectation of 94-98 % workload reduction across coun-
try/language groups, whereas the sample item with the fewest repeated responses reduced 
coding workload by as little as 5-29 %. More importantly, when items were categorized 
into three groups in terms of regularities – high, medium, and low – there was a fairly 
consistent pattern in item categorization across many country/language groups. These re-
sults indicate that it is feasible to increase the usage of MSCS for PISA, which has more 
than 80 countries and 100 language versions. The results from the pilot study also suggest 
that it is possible to use the MSCS for the completely new constructed-response items 
(without any historical data) by having empty responses as one unique response. More 
specifically, an algorithm can evaluate whether a new response was observed in the CUR, 
even if the CUR is initially a nonresponse. Any new, unique response not in the CUR will 
be a new one and be presented to a human coder. If multiple coders all agree in terms of 
the assigned response (typically more than two) for any such response, it is possible to add 
the verified unique response and its associated code to the CUR for the future cycle as a 
standard step. 
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Figure 4: 
Small-gain machine-coding item with low level of regularities.  *Frequency of unique re-

sponses on horizontal axis sorted left to right by full credit, no credit, and nonresponse. Aus-
tralia (English), B-S-J-G (China) (Chinese), Germany (German), France (French), Japan (Jap-

anese), Korea (Korean), the Netherlands (Dutch) were represented by Country A to G in a 
random order. 

Implementation of machine-supported coding system in PISA 
2018 field trial 

Preparation of MSCS for PISA 2018 field trial 

In preparation for the PISA 2018 field trial, the MSCS was applied to all constructed-
response items across all domains based on extracted data from the PISA 2015 main sur-
vey. It showed that across all items and country/language groups, the percentages of iden-
tical responses among all responses constituted approximately 40 % in mathematics, 28 % 
in reading, 22 % in science, and 18 % in financial literacy, meaning the human workload 
could potentially be reduced by those amounts. Raw responses from a total of 146 items 
(21 items from math, 58 from science, 51 from reading, and 16 from financial literacy) 
across 59 countries were used to prepare the PISA 2018 field trial CUR pool. In the CUR 
pool, each unique response was associated with a verified code (i.e., 0, 1, 2, 9, etc.), which 
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was consistent with the coding guidelines from PISA 2015. The CUR pool was built to be 
country/language-specific; within the CUR pool, coded unique responses were stored sep-
arately by domains and language groups. 
Two major rules were used when the unique responses were extracted and entered into the 
CUR pool. First, the response to an item in a specific country/language group should occur 
at least five times in one coding category. To ensure that the CUR pool contained accurate 
and verified codes for each unique response, only unique responses with identical and 
exclusive codes were included. The second rule was set for the nonresponse category. An 
empty response was added to each item regardless of the frequency of nonresponses. This 
approach ensured at least one unique raw response (i.e., empty response) could be found 
in each constructed-response item in the CUR pool, meaning the nonresponse could be 
directly filtered and coded by the machine rather than assigned to human coders.  
The PISA 2015 data was used to build and verify all the coded unique responses within 
the current CUR pool. The new raw responses collected in the PISA 2018 field trial were 
added into the MSCS and compared with the verified CUR on an item-by-item basis for 
each country/language group. Once a new response was found with an exact match to an 
identical CUR to a specific item, the stored code in the CUR pool was automatically ap-
plied to this response. During the PISA 2018 field trial, the responses that could not be 
matched with the existing CUR pool as well as the responses collected for the new items 
were assigned to human coders. These items will be examined after the field trial to decide 
whether they can be added into the CUR pool. By repeating this process, the CUR pool 
can be expanded, further verified, and prepared for the PISA 2018 main survey and future 
cycles. 

Performance of MSCS in PISA 2018 field trial 

The PISA 2018 field trial used the newly developed MSCS, based on PISA 2015 data, for 
the first time as part of the coding process for the constructed-response items. The system 
was applied for all country/languages groups that participated in the PISA 2018 field trial, 
except for some country/language groups that are either new to PISA or switching from 
paper- to computer-based assessment. Due to having no historical data in the CUR pool, 
they were not eligible for this system.  
The performance of the MSCS was evaluated with respect to the efficiency of the system 
and its capability to monitor and improve coding accuracy. As to efficiency, various types 
of automatically coded responses were summarized across items and country/language 
groups. Before the system existed, of course, all student responses, including empty re-
sponses, were assigned to human coders without exception. Thus, this evaluation revealed 
the extent to which the burden of human coding in the CBA was decreased in the 2018 
field trial. As for the capability to monitor the accuracy of human coding, consistency of 
human-coded responses was examined relating codes to students’ raw responses. 
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Table 4: 
Efficiency of Machine-Supported Coding System Implemented in Constructed-Response 

Items in PISA 2018 Field Trial 

 Machine-coded Human-coded 
 Total Missing Valid  
Mathematics 34 % 17 % 17 % 66 % 
New Reading 16 % 11 % 5 % 84 % 
Trend Reading 21 % 10 % 11 % 79 % 
Science 25 % 13 % 12 % 75 % 
Financial Literacy 13 % 12 % 1 % 87 % 

 
Table 4 summarizes the average efficiency of the MSCS across all items and country/lan-
guage groups in each domain. On average, the proportion of items not needing human 
coding was reduced for the 2018 field trial from a low of approximately 13 % in financial 
literacy to a high of 34 % in mathematics. To clarify the efficiency given by different 
sources, we calculated the empty (missing) responses and valid responses separately. On 
average, approximately 10-17 % of the total responses in trend reading and mathematics, 
respectively, were empty responses and automatically coded by the system. The MSCS 
was also efficient for new items in reading, where no historic data were available, reducing 
the proportion of items that used to be coded by human coders by 11 % on average just by 
excluding blank responses. For the valid responses, approximately 0.8 % in financial lit-
eracy to 17 % in mathematics efficiency was gained. For new reading items, the proportion 
of items that used to be coded by human coders was reduced by an additional 5 % on 
average by incorporating obviously incorrect responses for some item types (e.g., re-
sponses where a student selected a radio button option but typed no text in the text box 
were coded as “incorrect”). The proportions of the human-coded responses are shown in 
the last column. These values correspond to the proportions of responses where the current 
system could not find an exact match to the raw responses in the current CUR pool that 
was built based on the 2015 main survey. New items (especially in the reading and finan-
cial literacy domains in the 2018 field trial) and new countries that were not included in 
the PISA 2015 do not have a CUR pool due to the absence of historical data, so no effi-
ciency could be gained. It is also the main reason that a gap was observed between the 
theoretical maximum gains in efficiency expected based on PISA 2015 and actual imple-
mentation in the 2018 field trial. On average, approximately 66 % for mathematics to 87 
% for financial literacy of the responses had to be scored by human coders in the 2018 
field trial after the MSCS was implemented.  
As the cycle of assessments proceeds, the CUR pool is expected to grow and the proportion 
needing human coding is expected to decrease as responses from the 2018 field trial data 
are added to the existing CUR pool from 2015 main survey data. Furthermore, considering 
the major domain in PISA 2015 was science while in PISA 2018 it will be a different 
domain (reading), more constructed-response items are expected to be used in PISA 2018, 
which would enhance the harvest of the CUR pool even further. 
Accurate and reliable coding of item responses, especially for human-coded constructed-
response items, is a key component of quality control and is a necessary step for ensuring 
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valid and comparable assessment results. Before the introduction of CBA, monitoring the 
accuracy of human-coded responses was resource intensive. CBA enables the capture of 
students’ raw responses and associating these responses to the corresponding codes given 
by human coders as well as the CUR pool for machine coding. Because the MSCS system 
decreased the number of human-coded responses by excluding empty responses and ma-
chine coding others, more responses could be assigned to multiple coding in the 2018 field 
trial. This allowed for better monitoring of coding accuracy, not only by comparing results 
from multiple human coders but by evaluating the assignment of codes to students’ raw 
responses. In addition, increasing the number of verified codes for more complex re-
sponses that were validated through multiple coding to the CUR pool further improved the 
validity of the codes. 

Discussion and Conclusion 

This paper describes the development and implementation of a machine-supported coding 
system for constructed-response items in multilingual-based international large-scale as-
sessments such as PISA. There are two major reasons why there is room for improvement 
in the current human coding process: (a) a lack of consistency among human coder scores, 
possibly due to lack of understanding of coding rubrics, or coder training, and (b) variation 
in coding reliability across items and countries. The shift to CBA made it possible to col-
lect all responses using technology and opened avenues to utilize these machine-recorded 
responses in associated coding procedures, thus offering the possibility to introduce anal-
ysis methods to support coding and improve data processing and analyses in future cycles.  
The purpose of our research is to develop a computer-supported coding system to improve 
the efficiency and accuracy of the coding process for constructed-response items. One im-
portant aspect of this approach is generating a pool of unique responses with pre-assigned 
scores (CUR pool), which helps reducing the need for human coding. This is easily 
achieved by post-processing the PISA 2015 data in preparation for the 2018 data collection 
by extracting unique responses and processing new responses to enhance the existing CUR 
pool for each item. Because trend items are typically used over three cycles (i.e., one time 
as part of the major domain and twice as part of the minor domain) and PISA implements 
a field trial before the main survey, the collection of unique responses for the CUR pool is 
expected to be a powerful tool to considerably reduce the amount of human coding while 
increasing coding consistency.  
To illustrate the function and performance of the MSCS, we conducted a pilot study in 
which the MSCS was examined by using 13 example items in the reading domain across 
seven countries with different languages used for testing in PISA 2015. Regarding the 
accuracy of existing coder data, across seven countries, only a few cases were spotted as 
miscodes for easy-to-code items, but more miscodes or inconsistent-coding cases were 
observed for difficult-to-code items.  
In terms of efficiency of the proposed MSCS, we classified items into three categories: (a) 
large-gain machine-supported coding with a high level of regularities, (b) moderate-gain 
machine-supported coding with a medium level of regularities, and (c) small-gain 
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machine-supported coding with a low level of regularities. More specifically, the number 
of unique responses out of all raw responses became smaller at different magnitudes: As 
it became more straightforward to do machine-supported coding, fewer unique responses 
were harvested. It was clearly shown that when high or medium levels of regularities exist 
among raw responses, machine-supported coding significantly reduced human coders’ 
workload (e.g., more than 90 % for the large-gain machine-coding example item). Even 
when the number of unique responses was similar to the number of raw responses for 
small-gain machine-supported coding items, the proportion of automatically coded nonre-
sponses helped reduce human coders’ workload. This suggests that exclusion of nonre-
sponses can provide time and cost savings for any item. Finally, it is promising that a 
consistent pattern for each item was observed across the seven countries we examined.  
In addition, our research also provided information on how to revise the coding rubrics 
and coder training material based on real responses from students. More importantly, by 
calculating the frequencies of unique responses by full- and no-credit codes, we could 
identify cases where miscodes were assigned or human coders did not agree sufficiently. 
Because all the unique responses are from real responses that students provided during the 
test, these inconsistently coded cases can be used as examples in coder training materials 
to improve the coding guides and training.  
As expected, the application of the newly developed MSCS to the PISA 2018 field trial 
significantly reduced the proportion of items that used to be coded by human coders: from 
a low of approximately 13 % in financial literacy to a high of about 34 % in mathematics. 
Thus, both accuracy as well as efficiency of coding was improved. In addition, the system 
has the capacity to monitor coding accuracy by comparing codes from multiple human 
coders and assigning these given codes to new students’ raw responses. 
 While there are apparent benefits from the MSCS, we also note some limitations. First, 
the current CUR pool (for the PISA 2018 field trial) has been established based on a data-
driven consistency notion that coherent codes assigned to frequently observed responses 
would be accurate. However, there is a challenge in validating the accuracy of codes, par-
ticularly when the unique response is confusing and difficult to agree upon. This means 
that unique responses, especially those that were flagged due to low reliability across cod-
ers, are recommended to be coded and validated by master coders by country/language 
groups before being added to the CUR pool. It would be of importance in expanding the 
CUR pool to improve the efficiency of the MSCS for the future. 
Secondly, the current MSCS is built upon specific country/language groups, meaning the 
languages are not clustered across countries (i.e., the Canada/English group is treated sep-
arately from US/English even though the same language is used). It would be more effi-
cient to combine the CUR pool by language groups to further enhance the harvest of unique 
responses in the language cluster. Further, the proposed MSCS is a basic approach that can 
be applied to any language, in which equivalent response classes are based on exact match 
only. It is a topic for future research to allow for some fuzziness of the response classes 
(e.g., Sukkarieh, von Davier, & Yamamoto, 2012) or to include preprocessing and base 
the definition of response classes on strings without white space, punctuation, and capital-
ization (e.g., Manning & Schütze, 1999).  
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Thirdly, from the present study, it appears that items with low-level regularities responses 
would see very limited reductions of workload from the MSCS. However, this response 
group is still of interest, and not just to improve the efficiency of scoring. For example, it 
could be studied whether, after controlling for ability, those regularities are similar across 
countries, as one might expect. Also, it would be interesting to examine whether more 
substantial workload reduction could be obtained if more advanced machine learning and 
natural language processing techniques were applied. 
Finally, the current MSCS assigns human coders only if the new responses were not scored 
by machine. Hence, direct comparisons between the machine and humans were not avail-
able. To monitor the accuracy of the CUR pool, enabling direct comparison between ma-
chine and human coders can be considered, for instance, in the PISA 2018 main survey. 
In conclusion, along with the pilot study and results reported in research report based on 
the PISA 2015 main survey, application of the system to PISA 2018 field trial proves the 
feasibility of the proposed MSCS and provides evidence for improving accuracy and effi-
ciency of the coding process for constructed-response items. Hence, the implementation 
of this system is recommended for the PISA 2018 main survey and beyond. Also, the 
MSCS is designed not only for multilingual tests but can easily be adapted to single-lan-
guage tests as well, reducing redundancy wherever duplicate constructed responses are 
observed. Moreover, the CUR pool does not have to be static, it can be adaptive within a 
duration of coding responses. A CUR pool cumulated from previous response data can be 
dynamically updated when the frequency of new unique responses with consistent coding 
reaches a certain statistical threshold. Therefore, we believe the MSCS holds promise in a 
broad range of applications for automatic coding of constructed responses. 

References 

Bennett, R. E. (2011). Automated scoring of constructed-response literacy and mathematics 
items. Advancing Consortium Assessment Reform (ACAR). Washington, DC: Arabella Phil-
anthropic Advisors. 

Burstein, J. (2003). The E-rater scoring engine: Automated essay scoring with natural language 
processing. In M. D. Shermis & J. Burstein (Eds.), Automated essay scoring: A cross-dis-
ciplinary perspective (pp. 113-121). Mahwah, NJ: Lawrence Erlbaum Associates. 

Leacock, C., & Chodorow, M. (2003). C-rater: Automated scoring of short-answer questions. 
Computers and the Humanities, 37, 389-405. doi: 10.1023/A:1025779619903 

Manning, C. D., & Schütze, H. (1999). Foundations of statistical natural language processing. 
Cambridge, MA: MIT Press. 

Organisation for Economic Co-operation and Development (2016). “What is PISA?” In PISA 
2015 assessment and analytical framework: Science, reading, mathematic and financial 
literacy. Paris, France: OECD Publishing. 

Organisation for Economic Co-operation and Development (2017). PISA 2015 technical report. 
Paris, France: OECD Publishing.  



K. Yamamoto, Q. He, H. J. Shin & M. von Davier 164 

Sukkarieh, J. Z., von Davier, M., & Yamamoto, K. (2012). From biology to education: Scoring 
and clustering multilingual text sequences and other sequential tasks (Research Report No. 
RR-12-25). Princeton, NJ: Educational Testing Service. doi: 10.1002/j.2333-
8504.2012.tb02307.x   

von Davier, M., Gonzalez, E., Kirsch, I., & Yamamoto, K. (2012). The role of international 
large-scale assessments: Perspectives from technology, economy, and educational re-
search. New York, NY: Springer. 

Yamamoto, K., He, Q., Shin, H. J., & von Davier, M. (2017). Developing a machine-supported 
coding system for constructed-response items in PISA (Research Report No. RR-17-47). 
Princeton, NJ: Educational Testing Service. doi: 10.1002/ets2.12169 


