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Re-evaluating the psychometric properties 
of MicroFIN: A multidimensional 
measurement of complex problem solving 
or a unidimensional reasoning test? 

André Kretzschmar1, Liena Hacatrjana2 & Malgozata Rascevska2 

Abstract 

The present study investigated the psychometric properties of an extended version of the MicroFIN 
test as the latest development in complex problem solving (CPS) assessments within the multiple 
complex systems (MCS) approach. Specifically, we examined factorial validity, reliability, and the 
relation to reasoning using data from 362 Latvian high school students (mean age 16.82 years). 
Results indicated that the commonly applied 2-dimensional measurement model for MCS-based 
CPS tests did not fit the data better than a 1-dimensional measurement model. Furthermore, the 
extended version of MicroFIN showed satisfactory reliability. With regard to the relation to reason-
ing, we found latent correlations ranging from .38 to .78 depending on the operationalization of 
reasoning. Explanations for the findings (e.g., the impact of the Brunswik symmetry principle) and 
implications for MicroFIN, the assessment of CPS in general, and future CPS research are dis-
cussed.  
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Complex problem solving (CPS) skills are considered to be highly important in today’s 
rapidly changing and increasingly complex world, (e.g., Funke, 1999; Kretzschmar & 
Süß, 2015; Neubert, Mainert, Kretzschmar, & Greiff, 2015; OECD, 2014) and hence, 
research about the assessment of CPS skills has been increasing in recent years (e.g., 
Greiff, Wüstenberg, & Funke, 2012; Kröner, Plass, & Leutner, 2005; Sonnleitner et al., 
2012). MicroFIN (Neubert, Kretzschmar, Wüstenberg, & Greiff, 2015) is the latest de-
velopment within the framework of multiple complex systems (MCS; Greiff et al., 
2012), which was developed to overcome the psychometrical limitations of previous 
CPS tests and assessment frameworks (for an overview, see e.g., Greiff, Fischer, Stadler, 
& Wüstenberg, 2014).  

Although the development of the MCS approach can be considered an important mile-
stone in the CPS research field, the most prominent MCS-based tests MicroDYN (Greiff 
et al., 2012) and Genetics Lab (Sonnleitner et al., 2012) have been criticized as they only 
cover very selected characteristics of complex problems (e.g., Funke, 2010, 2014; Funke, 
Fischer, & Holt, 2017; Kretzschmar, 2017; Scherer, 2015; Schoppek & Fischer, 2015), 
particularly compared to more comprehensive CPS tests (a.k.a. microworlds) such as 
Tailorshop (Putz-Osterloh, 1981), FSYS (Wagener, 2001), or LEARN! (Grossler, Maier, 
& Milling, 2000). For example, MicroDYN and Genetics Lab tasks as applied in previ-
ous studies rely on only one specific strategy (vary-one-thing-at-a-time, VOTAT; see 
e.g., Chen & Klahr, 1999) or a very close adaptation of it (see Beckmann and Goode, 
2014, who summarized the slightly different strategies as a vary-one-or-none-at-a-time-
strategy, VONAT). Although the VOTAT (or VONAT) strategy is important in many 
contexts (see e.g., Wüstenberg, Stadler, Hautamäki, & Greiff, 2014), it is obvious that 
one strategy is not sufficient to solve the variety of problems that can arise in complex 
problem solving research or even in daily life (e.g., Funke, 2014; Funke et al., 2017). 
Therefore, the psychometrically advantageous homogeneity of current versions of Mi-
croDYN and Genetics Lab can be considered a threat to a content-valid operationaliza-
tion of CPS (see, e.g., Neubert, Kretzschmar, et al., 2015; Scherer, 2015; Schoppek & 
Fischer, 2015).  

MicroFIN was developed to address the limitations of established MCS-based tests. 
Specifically, the development of MicroFIN was partially guided by the rationale to create 
tasks which are not solvable by solely applying the VOTAT strategy; instead, different 
problem solving strategies are required in each task (Kretzschmar, 2015; Neubert, 
Kretzschmar, et al., 2015). MicroFIN, therefore, has the potential to narrow the gap 
between highly reliable but homogeneous MCS-based assessment tools and the psycho-
metrically less convincing but ecologically valid microworlds that have been applied in 
CPS research in recent decades (Kretzschmar, 2017). However, whether and to what 
extent MicroFIN fulfills this expectation still needs further investigation, although first 
evidence supports the view of MicroFIN as a heterogeneous CPS test (see Müller, 
Kretzschmar, & Greiff, 2013).  

The present study aims to answer a more fundamental research question about Micro-
FIN: its psychometric quality. Apart from in the initial study by Neubert et al. (2015), the 
psychometric properties of MicroFIN have not yet been addressed comprehensively. Due 
to the heterogeneity of the included tasks, the test is expected to face challenges in terms 
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of reliability but more convincing findings in terms of construct validity (see attenuation 
paradox; Loevinger, 1954). As will be outlined below, empirical findings reveal an un-
clear pattern and the need for further research. Therefore, the purpose of the present 
study is to examine the psychometric properties of a further developed version of Micro-
FIN with regard to three important issues in CPS research: (1) factorial validity, (2) 
reliability, and (3) relation to reasoning (fluid intelligence; see McGrew, 2009). 

Psychometric Properties of State-of-the-Art CPS Assessment Tools 

Factorial validity: Structure of MCS-based tests 

From a theoretical point of view, several sub-processes of CPS such as knowledge acqui-
sition and knowledge application have been identified (e.g., Dörner, 1986; Fischer, 
Greiff, & Funke, 2012). Consequently, one of the main goals when developing CPS 
assessment tools is to represent these CPS sub-processes. Recent developments in CPS 
tools within the MCS framework have made remarkable progress with regard to the 
dimensionality of CPS tests. For example, Genetics Lab (Sonnleitner et al., 2012) pro-
vides performance scores on three different CPS dimensions: exploration behavior, 
knowledge acquisition, and knowledge application. Although these scores are highly 
correlated, as theoretically expected, a multi-dimensional measurement model with three 
distinguishable dimensions has been consistently validated empirically (e.g., Sonnleitner, 
Brunner, Keller, & Martin, 2014; Sonnleitner, Keller, Martin, & Brunner, 2013). Micro-
DYN (Greiff et al., 2012), the second MCS-based test, also started with a 3-dimensional 
measurement model (Greiff et al., 2012), but further research demonstrated that an em-
pirical distinction between exploration behavior and knowledge acquisition was untena-
ble (e.g., Wüstenberg, Greiff, & Funke, 2012). Consequently, a 2-dimensional measure-
ment model based only on knowledge acquisition and knowledge application, omitting 
the performance score on exploration behavior, has been applied in most relevant studies 
(e.g., Greiff et al., 2013; Greiff, Kretzschmar, Müller, Spinath, & Martin, 2014; 
Kretzschmar, Neubert, Wüstenberg, & Greiff, 2016; Lotz, Sparfeldt, & Greiff, 2016). 
MicroFIN (Neubert, Kretzschmar, et al., 2015), the most recently developed CPS test, 
was also created to represent the sub-processes of CPS. Hence, a 2-dimensional meas-
urement model similar to MicroDYN was empirically confirmed in the initial study 
(Neubert, Kretzschmar, et al., 2015). However, the only other study investigating the 
dimensionality of MicroFIN as of yet (Kretzschmar et al., 2016) did not provide evi-
dence for a multidimensional measurement model. Instead, the authors argued for an 
empirically supported 1-dimensional model in which an aggregated score combining 
knowledge acquisition and knowledge application was used for each task. The resulting 
task scores were then used as indicators for a latent MicroFIN factor. 

It should be noted that Kretzschmar et al.’s (2016) measurement model for MicroFIN 
also avoids a pitfall of the commonly applied measurement models for CPS tests within 
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the MCS framework.3 In these models, separate performance scores for knowledge ac-
quisition and knowledge application (and for exploration behavior in the case of Genet-
ics Lab) are calculated for each task (see e.g., Greiff et al., 2012; Neubert, Kretzschmar, 
et al., 2015). These performance scores are then used as independent indicators of the 
latent factors, even though they are in fact not independent. Acquired knowledge about a 
CPS task depends on exploration behavior, and performance regarding the application of 
knowledge depends on the acquired knowledge within a given task. Therefore, the three 
indicators for each task might share a correlated uniqueness (Brown, 2015; cf. local 
stochastic dependence in item response theory). As correlated uniqueness can have a 
substantial impact on the factor structure (see e.g., Brown, 2003; Marsh, 1996), it should 
be considered in the measurement model. Interestingly, previous studies investigating the 
measurement models of MCS-based CPS tests have ignored this issue.4 One might argue 
that presenting the correct causal structure immediately before each knowledge applica-
tion item (partially) solves this problem (Greiff, Fischer, et al., 2014), meaning that there 
is no need to consider correlated uniqueness in the measurement models. However, to 
our knowledge, this assumption has not yet been empirically investigated. In fact, it is 
possible that (some) participants might nevertheless try to achieve the goals in the 
knowledge application phase on the basis of incorrect knowledge acquired during explo-
ration. Kretzschmar et al.’s (2016) measurement model avoids the issue of correlated 
uniqueness as the interdependent performance indicators for each CPS task are aggregat-
ed into a task score, which then is used as an indicator for a latent factor. Therefore, this 
measurement model can be considered a parsimonious alternative (in the case of unidi-
mensionality), avoiding the problem of correlated uniqueness completely.  

In summary, it seems that the dimensionality of MCS-based CPS tests is not as clear as 
expected. Whereas most studies featuring Genetics Lab or MicroDYN have provided 
cumulative evidence for at least a 2-dimensional measurement model, the state of re-
search about the factorial validity of MicroFIN is uncertain. Furthermore, previous stud-
ies did not consider the dependency of the indicators in a multidimensional measurement 
model and its impact on the dimensionality of CPS tests. The first research issue for the 
present study was thus to examine the dimensionality of an extended version of Micro-
FIN. We investigated five different measurement models: a 2-dimensional model with-
out/with correlated errors, a 1-dimensional model without/with correlated errors, and a 1-
dimensional model using aggregated task scores (see Figure 2). Based on the develop-
ment rationale of MicroFIN (Neubert, Kretzschmar, et al., 2015), we hypothesized that a 
2-dimensional model representing the CPS sub-processes knowledge acquisition and 
knowledge application would fit the data better than a 1-dimensional model (Hypothesis 
1). Furthermore, we expected significant correlations between indicators for the same 
task (i.e., correlated uniqueness). 

 

 

                                                                                                                         
3 We thank an anonymous reviewer, who suggested elaborating on this issue in the present article. 
4 However, see Sonnleitner et al. (2013) for a correlated uniqueness model based on a different rationale. 
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Reliability 

High reliability is another key feature of MCS-based assessment tools (Greiff et al., 
2012). More precisely, an internal consistency of up to α = .95 has been reported for 
MicroDYN and Genetics Lab (e.g., Greiff et al., 2012; Sonnleitner et al., 2012). With 
regard to MicroFIN, a somewhat lower internal consistency has been found in previous 
studies (ωh ≈ .78; Neubert, Kretzschmar, et al., 2015).  The relatively small number of 
tasks in combination with their heterogeneity were considered to be the main reasons for 
this finding. Therefore, this study’s second research aim was to inspect the internal con-
sistency of an extended MicroFIN version with partially different tasks and more items 
per task compared to the initial study (see Neubert, Kretzschmar, et al., 2015). As relia-
bility increases with test length, we expected the extended version of MicroFIN to show 
at least a similar internal consistency to the initial study (Hypothesis 2). 

Furthermore, little is known about the reliability of MCS-based tests apart from internal 
consistency. In fact, to our knowledge no study has yet investigated the test-retest relia-
bility of a MCS-based CPS assessment tool. We therefore exploratively examined the 
correlation between MicroFIN performances measured at two measurement times in a 
pilot study. 

Relation between CPS and reasoning 

The empirical relation between a potential CPS construct and established intelligence 
constructs (e.g., reasoning) is one of the most examined research questions in CPS re-
search (see Stadler, Becker, Gödker, Leutner, & Greiff, 2015). Due to the close relation 
between CPS and intelligence, a relatively low correlation, indicating two distinct con-
structs, can be seen as the raison d’être of CPS research (Kretzschmar et al., 2016). 
Previous studies have found substantial but nevertheless significantly different from 1.0 
correlations between CPS and intelligence. Specifically, a correlation of M(g) = .59 
(corrected for reliability: .72) between CPS measured via the MCS approach and intelli-
gence was reported in Stadler et al.’s (2015) meta-analysis. Unfortunately, previous 
studies featuring MicroFIN (Kretzschmar et al., 2016; Neubert, Kretzschmar, et al., 
2015) did not directly examine the relation between CPS as measured by MicroFIN and 
intelligence. Instead, only a combined performance score on MicroFIN and MicroDYN 
was used. As MicroFIN aims to cater to more heterogeneous demands than other CPS 
tools in the MCS-based approach (e.g., Neubert, Kretzschmar, et al., 2015), it seems 
worthwhile to examine the relation between CPS measured by MicroFIN and intelli-
gence separately. 

In this sense, previous research has provided evidence that reasoning shows the highest 
relation to CPS compared to other intelligence constructs (e.g., mental speed or memory; 
Kretzschmar et al., 2016). However, not every operationalization of reasoning performs 
equally well when examining the correlation between the constructs. Specifically, the 
importance of a construct valid operationalization has been recently re-emphasized for 
CPS research in particular (Kretzschmar et al., 2016; Lotz et al., 2016). This means that a 
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reasoning operationalization based on only one task format and content type (e.g., figural 
matrices tasks such as Raven’s Matrices test) usually underestimates the correlation 
between CPS and intelligence compared to a broad operationalization (i.e., based on 
different task formats and types of content; see Kretzschmar et al., 2016). However, the 
Brunswik symmetry principle (Wittmann, 1988) teaches us that a too broad operationali-
zation of reasoning might also reduce the correlation between reasoning and CPS (e.g., 
Wittmann & Hattrup, 2004). For example, a very broad operationalization of reasoning 
based on figural, verbal, and numerical task content might be not the best operationaliza-
tion of reasoning when its relation to a narrow operationalization of CPS based only on 
numerical stimuli is to be tested.  

As the Brunswik symmetry principle has been barely acknowledged in previous studies 
investigating the empirical relation between CPS and reasoning (or intelligence in gen-
eral), we examined the impact of different operationalizations of reasoning (in terms of 
task content) on the relation between reasoning and CPS. In doing so, we aimed to get a 
less biased view of this controversial, often-discussed relation. As the MicroFIN tasks 
primarily contain figural and verbal stimuli, with numerical stimuli present only to a 
marginal extent, we expected to find the highest correlation between CPS measured by 
MicroFIN and reasoning based on figural and verbal tasks, in comparison to other opera-
tionalizations of reasoning (e.g., numerical and figural tasks; Hypothesis 3a). However, 
in accordance with Stadler et al.’s (2015) findings, we hypothesized a strong but signifi-
cantly lower than 1.0 latent correlation between CPS and reasoning independent of the 
specific operationalization (Hypothesis 3b). 

Method 

Participants 

The study was part of a larger assessment in Latvian high schools (n = 363). Not every 
participant worked on every single test and, thus, a different proportion of missing data 
occurred for each test (see Table 1, and section below about data analysis). We excluded 
one participant due to invalid responses in every test. Of the remaining n = 362 high 
school students (Mage = 16.82, SDage = 1.03), 54% were female, 33% were male, and 13% 
did not provide information about gender. All students were invited to participate in the 
study voluntarily and to take the test as part of computer class. The pilot study for test-
retest reliability was conducted on n = 39 high school students. 

Instruments 

Complex problem solving. 

MicroFIN is comprehensively described in Kretzschmar (2015) and Neubert, Kretzsch-
mar, et al. (2015). Therefore, we only summarize the main concept and focus on the 
differences to previously applied versions. MicroFIN consists of several small complex 
tasks following the multiple complex systems (MCS) approach (Greiff et al., 2012). In 
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order to assess the two core processes of CPS (i.e., knowledge acquisition and 
knowledge application), the following procedure was applied in each of the seven tasks. 
First, participants had to interactively explore an unknown task to acquire as much 
knowledge as possible about the complex problem (exploration phase; 300 seconds). 
Second, participants had to answer several questions regarding their acquired knowledge 
(knowledge acquisition phase; no time limit). Third, participants were asked to reach 
certain goals (knowledge application phase; 60 seconds per item). 

We used a Latvian version of MicroFIN with one warm-up task and six tasks. Specifical-
ly, we used the tasks Fish-o-maton (see Figure 1), Plan-o-maton, Concert-o-maton, 
Plant-o-maton (for details, see Neubert, Kretzschmar, et al., 2015), Green-o-maton (for 
details, see Kretzschmar et al., 2016), and Wash-o-maton (see Kretzschmar, 2015).  

In the knowledge acquisition phase, two different task formats were used. In the first task 
format – called an identification task (Kretzschmar, 2015) and not investigated in previ-
ous studies featuring MicroFIN – four different states of the complex problem were 
presented. Participants had to decide whether each presented picture represents a valid 
state of the problem or not (see Figure 1a). This task format is based on Buchner and 
Funke’s (1993) verification tasks and primarily aims to assess knowledge about the 
range of variables (e.g., number of fish in Fish-o-maton) and possible states (e.g., differ-
ent colors of the water in Fish-o-maton). Each item was scored dichotomously and fur-
ther summarized according to the sequential testing approach (Kubinger, 2009). That 
means full credit was given if all questions were answered correctly, partial credit if half 
of the questions were answered correctly, and no credit otherwise. In the second task 
format – named an initial state construction task (Kretzschmar, 2015; Neubert, 
Kretzschmar, et al., 2015) – a final state and an intervention were presented. Participants 
were asked to create a valid initial state for the complex problem with the help of prede-
fined elements (see Figure 1b). This task format is based on Buchner and Funke’s (1993) 
retrognastic tasks and primarily aims to assess rule knowledge (i.e., how interventions 
work). For each task, two items were presented, with the number of elements which had 
to be used to create the initial state ranging from 1 (as in Figure 1b) to 8. Each item was 
scored dichotomously and the mean average was calculated. Finally, the mean scores of 
both knowledge acquisitions task formats were averaged in order to calculate a total 
performance score for knowledge acquisition for each MicroFIN task. It should be noted 
that only a selection of knowledge about a problem was assessed in the knowledge ac-
quisition phase. For example, the Fish-o-maton as presented in Figure 1 has 64 possible 
states (but only five different states with regard to the fish; see Figure A1 in Neubert, 
Kretzschmar, et al., 2015). Covering all possible states in the knowledge assessment 
would result in a very time-consuming assessment (not even considering the assessment 
of the underlying rules/intervention possibilities). Therefore, the applied knowledge 
items primarily focused on knowledge that was important for the specific control items 
in the knowledge application phase of each MicroFIN task.  

In the knowledge application phase, a specific state of the complex problem was present-
ed and participants were asked to manipulate the complex problem in order to reach a 
given goal state in as few steps as possible (see Figure 1c). Two items per task were  
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Figure 1: 

Screenshots of the knowledge acquisition and knowledge application phases of the MicroFIN 
task Fish-o-maton: (a) Identification task (knowledge acquisition phase); (b) Initial state 

construction task (knowledge acquisition phase); (c) Control task (knowledge application phase) 
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used. The items were scored dichotomously (i.e., goal achieved or not) and averaged to 
create a total performance score for knowledge application for each MicroFIN task. 

In summary, we used a more comprehensive MicroFIN version than in previous studies 
(i.e., Kretzschmar et al., 2016; Neubert, Kretzschmar, et al., 2015). Specifically, we 
extended the assessment of acquired knowledge by way of a further task format which 
focuses more on knowledge about system states rather than knowledge about interven-
tions. However, the knowledge assessed by each of the different task formats was not 
disjunct (i.e., you also need some knowledge about system states in the initial state con-
struction task). Furthermore, we used a partially different compilation of tasks, with one 
additional task (i.e., Wash-o-maton) compared to previous studies. 

Reasoning. 

Reasoning was assessed with three tests, each representing a different type of task con-
tent. The assessment of verbal reasoning (VR; 20 items) consisted of originally created 
verbal analogies tasks in a paper-and-pencil format. The test showed a good reliability of 
ωh = .81. Numerical reasoning (NR; 16 items) was assessed with originally created pa-
per-and-pencil tasks where participants had to complete a number sequence or matrix 
with a missing field. The reliability in this sample was ωh = .80. Figural reasoning (FR; 
20 items) was assessed with a shortened version of Raven’s Standard Progressive Matri-
ces (SPM; Raven, 1938). The computerized version with 20 items was developed on the 
basis of previous psychometric investigations of SPM (Georgiev, 2008). Reliability was 
ωh = .82.  

Procedure 

Data for this study were collected during a period of several months from October 2014 
to April 2015. All assessments were done in group settings. At the first session (about 40 
min), each participant completed MicroFIN individually in the classroom using a per-
sonal computer. At the second session (about 40 min), participants conducted the reason-
ing tests individually in a classroom setting. To assess the test-retest validity of Micro-
FIN, a second assessment after four to five months was conducted in a manner similar to 
the first session.  

Data analysis 

We used the R software (version 3.3.3; R Core Team, 2016) with the packages lavaan 
(version 05-20; Rosseel, 2012) and psych (version 1.6.12; Revelle, 2016).  The data for 
the following analyses is publicly available via the Open Science Framework (OSF) and 
can be accessed at https://osf.io/wp3z4.  

We examined the measurement models for CPS and reasoning by computing confirmato-
ry factor analyses (CFA). As the MicroFIN items were ordinal, we used weighted least 
squares means and variance adjusted (WLSMV) estimation for the measurement models 
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based on single items (i.e., Models M1 to M4 in Figure 2). For all other models (i.e., 
Model M5 in Figure 2, measurement models for reasoning, and the final models for 
Hypotheses 3a and 3b), robust maximum likelihood (MLR) estimation was used.  The 
measurement models for reasoning were based on three parcels calculated according to 
the item-to-construct principle (Little, Cunningham, Shahar, & Widaman, 2002) for each 
reasoning test (not presented in detail). The measurement models were identified by 
fixing the variance of the latent factors to 1.00. In the case of higher-order measurement 
models for reasoning, in which only two indicators of the second-order factor were 
available (for an example, see Figure 3), we constrained two factor loadings of one first-
order factor to be equal to avoid empirically underidentified estimations (Brown, 2015). 
All other model parameters were estimated freely. All reported coefficients for CFA 
were based on completely standardized solutions. 

Model fit was evaluated on the basis of standard fit indices and commonly accepted 
cutoff values (see Schermelleh-Engel, Moosbrugger, & Müller, 2003). In order to com-
pare different measurement models (Hypothesis 1), we used the Satorra-Bentler scaled χ2 
difference test (Satorra & Bentler, 2010) and differences between TLI values (∆TLI > 
.01; Gignac, 2007). Reliability (Hypothesis 2) in terms of internal consistency was inves-
tigated with McDonald’s omega (ωh; Zinbarg, Revelle, Yovel, & Li, 2005). Test-retest 
reliability was examined on the basis of the Pearson correlation between the sum scores 
of the two CPS measurements. The empirical relation between CPS and reasoning was 
investigated on the basis of bootstrapped coefficients (500 draws; Hypotheses 3a and 3b). 

Some participants only took part in the first or in the second session because of organiza-
tional issues. Therefore, missing data occurred for max. 43 % of the participants in our 
sample (see Table 1). Little’s (1988) test indicated support for the assumption of missing 
completely at random (MCAR) (χ2 = 154.433, df = 140, p = .191). To adjust for missing 
data, we used pairwise deletion for WLSMV estimation and the full information maxi-
mum likelihood (FIML) procedure for MLR estimation. The minimum sample size for 
the MicroFIN measurement models (Hypothesis 1) was n = 253, while the remaining 
models (Hypotheses 3a and 3b; see Table 2) had a minimum sample size of n = 330. 
Tests of significance (α = .05) were two-tailed. 

Results 

Factorial validity 

Descriptive statistics for the MicroFIN tasks and their intercorrelations are reported in 
Table 1. To examine Hypothesis 1, we first applied the 2-dimensional model with one 
latent factor each for knowledge acquisition and knowledge application (Model M1 in 
Figure 2), in accordance with Neubert et al. (2015). The measurement model showed a 
good fit (Model M1, Table 2). The correlation between the two latent factors was .99 
(95% CI [.93, 1.06]), meaning that the two latent factors were empirically indistinguish-
able. A 1-dimensional model (i.e., all items of knowledge acquisition and knowledge  
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application load on one latent factor; Model M2 in Figure 2) also showed a good fit 
(Model M2, Table 2). The difference test between the 2-dimensional model and the 1-
dimensional model showed no significant difference: ∆χ2 = 0.041, df = 1, p = .839; ∆TLI 
= .001.  

In order to investigate whether and to what extent the indicators shared a correlated 
uniqueness, we applied the 2-dimensional model as above and added paths for each pair 
of indicator errors belonging to the same MicroFIN task (Model M3 in Figure 2). The 
measurement model showed a very good fit (Model M3, Table 2). Two pairs of indicator 
errors showed a small significant correlation (i.e., Task 1 and Task 6), one pair showed a 
small but non-significant correlation (i.e., Task 2), and the other three pairs showed no 
substantial correlation (i.e., Tasks 3 to 5).  The correlation between the two latent factors 
was .95 (95% CI [.88, 1.02]), again indicating unidimensionality. Consequently, a 1-
dimensional model with correlated indicator errors (Model M4 in Figure 2) showed a 
very good fit (Model M4, Table 2). The difference test between these two models 
showed no significant difference: ∆χ2 = 1.737, df = 1, p = .188; ∆TLI = .001. We also 
compared the 1-dimensional model without correlated indicator errors (Model M2) to the 
1-dimensional model with correlated indicator errors (Model M4) and found a signifi-
cantly better fit for the latter: ∆χ2 = 13.918, df = 6, p = .030; ∆TLI = .000). The result 
was clearer when we omitted the non-significant error correlations (i.e., for Tasks 2 to 5): 
∆χ2 = 12.079, df = 2, p = .002; ∆TLI = .014.  

Finally, a 1-dimensional measurement model based on aggregated task scores in line 
with Kretzschmar et al. (2016) was investigated (Model M5 in Figure 2). The model 
showed a very good model fit, better than any of the other models (Model M5, Table 2).  

In summary, a 2-dimensional model did not fit the data better than a 1-dimensional mod-
el, meaning that Hypothesis 1 was rejected. Furthermore, we found substantial correla-
tions between some of the indicator errors. Therefore, correlated uniqueness plays a role 
in the commonly applied measurement models of MCS-based CPS tests. The 1-
dimensional measurement model based on aggregated task scores was superior in terms 
of model fit and parsimony, and additionally avoids the issue of correlated uniqueness. 
Thus, it was used in all further analyses. 

Reliability 

The internal consistency of MicroFIN based on the 1-dimensional model (Model M5 in 
Figure 2) was ωh = .82. Thus, it was similar to the internal consistency of ωh ≈ .78 re-
ported by Neubert et al. (2015). Hypothesis 2 was therefore not rejected. 

In order to examine test-retest reliability, we used a total sum score based on the 1-
dimensional model (ωh_retest = .90). The correlation between the two measurement time 
points of MicroFIN was r = .67, p = .000. 
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Relation to reasoning  

We analyzed seven different models in order to investigate the impact of different opera-
tionalizations of reasoning on the relation between reasoning and CPS. All reported 
correlations were statistically significant (p < .01). In the first three models, only one 
type of task content (i.e., figural, numerical, or verbal) with regard to reasoning was 
included. This means the corresponding g-factor (based on three parcels) only reflected 
figural reasoning, numerical reasoning, or verbal reasoning, respectively. The model fits 
(see Models R1–R3, Table 2) were very good. The correlations with CPS were .62 for 
figural reasoning (95% CI [.48, .76]), .38 for numerical reasoning (95% CI [.19, .54]), 
and .53 for verbal reasoning (95% CI [.35, .67]). In the next three models, combinations 
of two types of task content (i.e., figural-numerical, figural-verbal, numerical-verbal) 
were used. This means the g-factor (based on two latent first-order factors, which were 
each based on three parcels) reflected a combination of two types of task content. The 
model fits were very good (see Models R4–R6, Table 2). The correlations with CPS 
were .67 for figural-numerical reasoning (95% CI [.51, .85]), .78 for figural-verbal rea-
soning (95% CI [.61, .94]; see Figure 3), and .63 for numerical-verbal reasoning (95% CI 
[.47, .81]). In the last model, with very good model fit (see Model R7, Table 2), all three 
types of task content (i.e., figural, numerical, verbal) were included. The correlation 
between figural-numerical-verbal reasoning and CPS was .72 (95% CI [.58, .86]).  

 

 

 
Figure 3: 

Model R5 on the latent correlation between CPS measured by MicroFIN and figural-verbal 
reasoning; g = general reasoning factor; CPS = complex problem solving; pi = parcels; ti = 
MicroFIN taski; dashed lines = unstandardized parameters were constrained to be equal;  

95% confidence interval for the correlation between reasoning and CPS in brackets 
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In conclusion, our findings aligned with our expectations that figural-verbal reasoning 
would show a stronger association with CPS measured by MicroFIN than other reason-
ing operationalizations. Thus, Hypothesis 3a was not rejected. Furthermore, the correla-
tion between reasoning and CPS was significantly different from r = 1.00 based on a 
95% confidence interval. Therefore, Hypothesis 3b was not rejected either. 

Discussion 

The aim of the present study was to examine the psychometric properties of the Micro-
FIN test as the latest development in MCS-based CPS assessment tools. Specifically, we 
investigated the factorial validity and reliability as well as the correlation between Mi-
croFIN and different operationalizations of reasoning. 

Factorial Validity: Structure of MCS-Based Tests 

Contrary to our expectations and the initial publication of MicroFIN (Neubert, 
Kretzschmar, et al., 2015), the commonly applied multidimensional model for MCS-
based assessment tools did not fit the data better than a 1-dimensional model. This find-
ing is in line with Kretzschmar et al.’s (2016) study, in which a 2-dimensional model for 
a somewhat different version of MicroFIN could not be confirmed either. As we used an 
extended version of MicroFIN (i.e., additional knowledge acquisition items for each task, 
a few different tasks compared to previous studies), we additionally checked whether a 
MicroFIN version more comparable to the version in Neubert et al. (2015; i.e., only the 
initial state construction task for knowledge acquisition) would alter the results, but it did 
not (i.e., the latent correlation between knowledge acquisition and knowledge application 
was .95 (95% CI [.88, 1.03])). Furthermore, additional analyses revealed that the as-
sumption of independent indicators in the commonly applied measurement model for 
MCS-based tests was violated for MicroFIN. Taken together, as two of three studies 
could not confirm a 2-dimensional measurement model for MicroFIN, the alternative 
unidimensional model based on aggregated task scores seems to be the most appropriate 
measurement model for the current version of MicroFIN. Consequently, it has to be 
concluded that MicroFIN does not provide as fine-grained a measurement as MicroDYN 
(2 dimensions; Greiff et al., 2012) or Genetics Lab (3 dimensions; Sonnleitner et al., 
2012), for which a variety of studies have consistently found evidence for multidimen-
sional models. In the next section, we will discuss some possible explanations for the 
present finding, particularly in light of the differences between the various MCS-based 
assessment tools. 

The first noticeable difference among the MicroDYN, Genetics Lab, and MicroFIN is 
the assessment of acquired knowledge. In MicroDYN and Genetics Lab, acquired 
knowledge is assessed on the basis of causal diagrams (e.g., Funke, 1985). Causal dia-
grams are a widely used format to assess structural knowledge about a problem, particu-
larly for assessment tools based on the linear structural equation approach (Blech & 
Funke, 2006). However, a causal diagram is only one of many appropriate task formats, 
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each of which has specific features (for a summary of a few task formats, see Greiff, 
Fischer, et al., 2014). One specific characteristic of causal diagrams is that only a subset 
of knowledge (i.e., structural knowledge; “knowing that”) is assessed. This means that 
knowledge about how to control the system (e.g., which interventions should be applied 
in a specific situation; “knowing how”), and general problem-solving heuristics are ne-
glected in assessments via causal diagrams. As these types of knowledge are also rele-
vant for performance in the knowledge application phase (see e.g., Beckmann, 1994), it 
can be concluded that knowledge acquisition assessments via causal diagrams tap only 
part of the acquired knowledge that is necessary to solve a problem. Furthermore, it 
should be noted that even the assessment of structural knowledge is limited in Micro-
DYN and Genetics Lab. As Funke (1985) outlined, there are three different types of 
structural knowledge: knowledge about the existence of relations, knowledge about the 
directions of relations, and knowledge about the strength of relations. In MicroDYN, for 
example, only knowledge about the existence and directions of relations is assessed. 
Applying the Brunswik symmetry principle (Wittmann, 1988) to the measurement model 
of MicroDYN and Genetics Lab, it becomes clear that these two assessments exhibit a 
symmetry mismatch between the knowledge acquisition dimension (i.e., assessing per-
formance rather narrowly with regard to one specific knowledge type) and the 
knowledge application dimension (i.e., assessing performance rather broadly based on 
different knowledge types). This asymmetry would prevent an empirical correlation of 
1.00 between the two dimensions (i.e., unidimensionality), even in the case of a perfect 
true correlation (see Wittmann, 1988). 

In MicroFIN, by contrast, the knowledge acquisition tasks aim to tap a broader range of 
knowledge (i.e., “knowing that”; “knowing how”) using different task formats. For ex-
ample, in the identification tasks (see Figure 1a), the problem solver has to analyze 
whether a certain state of the problem situation is possible or not. In order to do this, the 
problem solver mainly has to know about different states of variables and their relations 
with each other (“knowing that”). In the initial state construction task (see Figure 1b), 
knowledge about interventions and rules (“knowing how”) is primarily assessed. Al- 
though knowledge about the specific problem is not exhaustively assessed in MicroFIN 
either (i.e., only a selection of the most important knowledge with regard to the specific 
control items in each task is assessed; see above), it seems that MicroFIN achieves better 
symmetry matching between the knowledge acquisition dimension and knowledge appli-
cation dimensions. Therefore, a perfect correlation between these two types of perfor-
mance (i.e., a unidimensional measurement model) is more likely to be observable 
(Wittmann, 1988) than in MicroDYN or Genetics Lab. 

Another relevant issue with regard to the different task format is the manner of 
knowledge representation. For example, it is open to debate whether problem solvers 
have a causal diagram of acquired knowledge in their mind or use a different internal 
knowledge representation (see Kluwe & Haider, 1990; Tergan, 1989). In the latter case, a 
mental transformation of some sort between the internal knowledge representation and 
the representation via causal diagrams in the CPS assessment has to be applied. As this 
transformation requires additional cognitive processes and introduces noise in the form 
of transformation errors (Süß, 1996), assessment via causal diagrams might lead to spe-
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cific method variance. It is also worth noting that the systematic variance inherent in the 
knowledge acquisition phase is less (or not at all) relevant for performance in the 
knowledge application phase.  

In MicroFIN, by contrast, different task formats (i.e., identification task; initial state 
construction task) presented in a similar manner as in the knowledge application phase 
are used. Thus, problem solvers are not required to transform their internal knowledge 
representation into an abstract knowledge representation (e.g., causal diagrams). In fact, 
in both task formats in the knowledge acquisition phase (see Figures 1a and 1b), the 
presentation of the problem applied is almost identical to the presentation in the explora-
tion or knowledge application phase (see Figure 1c). As a consequence, one could argue 
that less specific method variance is unilaterally introduced by the task format in the 
knowledge acquisition phase of MicroFIN, meaning that an observable correlation of 
1.00 is again more likely (see Wittmann, 1988).  

However, both explanations are of a speculative nature and have to be addressed in fu-
ture research. In fact, the differences between task formats outlined above highlight the 
need to scrutinize the influence of different task types on the factorial validity of MCS-
based assessment tools. For example, several different task formats could be integrated 
into the knowledge acquisition phase of different MCS-based CPS tests. Although not 
suitable for all developed tasks, it is possible to use causal diagrams to assess acquired 
knowledge in MicroFIN. Furthermore, the easy-to-implement state identification tasks 
can be integrated into MicroDYN or Genetics Lab. If the explanation of the present 
findings outlined above is applicable, a 2-dimensional model will be empirically con-
firmed for MicroFIN (i.e., only with causal diagrams), but a 1-dimensional model will be 
confirmed for MicroDYN/Genetics Lab (e.g., with state identification tasks).  

The second issue we want to discuss is the impact of correlated uniqueness. Previous 
research (e.g., Brown, 2003; Marsh, 1996) has demonstrated that multidimensionality 
can arise simply from neglecting the relation between indicator errors of latent variables. 
Therefore, examining correlated uniqueness is recommended, particularly when the 
indicators share common features (e.g., two items rely on the same task). For MCS-based 
CPS tests, the commonly applied multidimensional measurement model did not reflect 
the possible mutual dependency of the indicators (see, e.g., Greiff et al., 2012; Neubert, 
Kretzschmar, et al., 2015), although it is reasonable to expect such a correlation (i.e., the 
control performance in the knowledge application phase depends on acquired knowledge 
about the task). For MicroFIN, we showed that correlated uniqueness is an issue for 
some of the indicator pairs. It is unknown whether and to what extent correlated unique-
ness has an impact on the multidimensionality of the other MCS-based CPS tests. There-
fore, we re-analyzed the data from Kretzschmar et al. (2014) with regard to the meas-
urement model of MicroDYN for illustrative purposes. We extended the commonly 
applied 2-dimensional measurement model using correlated error pairs (similar to Model 
M3 in Figure 2). The model showed a good model fit (χ2(125) = 303.737, p = .000, CFI = 
.989, TLI = .986, RMSEA = .031 (CI 95% [.027; .036]), WRMR = 1.212), very similar 
to the original 2-dimensional measurement model for MicroDYN. We found correlations 
between indicator pairs ranging between -.15 and .36 (4 out of 9 correlations were great-
er than .20). Thus, it seems that correlated uniqueness is also important for MicroDYN, 
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although it has heretofore been assumed that the indicators are independent of each other 
(see, e.g., Greiff, Fischer, et al., 2014). Therefore, future research should investigate 
whether the multidimensionality of MicroDYN and Genetics Lab might be influenced by 
the not yet considered correlated uniqueness of their indicators.  

In summary, we can conclude that commonly applied multidimensional measurement 
models for MCS-based CPS tests are not suitable for MicroFIN. In fact, an alternative 
unidimensional model based on aggregated task scores, avoiding the issue of correlated 
uniqueness, seems to be more appropriate. At the first glance, this can be considered a 
shortcoming of the MicroFIN test compared to the other MCS-based tests. If a fine-
grained assessment of different CPS sub-processes is needed, MicroFIN should probably 
not be used in its current version. However, we also discussed issues that have an impact 
on the multidimensionality of MCS-based tests in general, and thus call for closer scruti-
ny of previous findings supporting the assumption of multidimensionality for MicroDYN 
and Genetics Lab. In this regard, Gignac and Kretzschmar (2017) recently demonstrated 
that the approach to investigating factorial validity (i.e., examining whether the latent 
correlation is significantly smaller than 1.00) most commonly applied in CPS research 
(e.g., Neubert, Kretzschmar, et al., 2015; Sonnleitner et al., 2013; Wüstenberg et al., 
2012) might be highly misleading when used as a criterion for multidimensionality. 
Obviously, further research is needed to investigate the factorial validity of MCS-based 
CPS tests.  

Reliability 

With regard to the second research issue about the reliability of MicroFIN, the present 
findings provide evidence that a further developed MicroFIN version based on a differ-
ent measurement model (see above) showed a similar internal consistency to the initial 
MicroFIN version (Neubert, Kretzschmar, et al., 2015). As high reliability is one of the 
main features of the MCS approach (Greiff et al., 2012), it was important to replicate 
previous findings with partly different tasks. It can be concluded that the relatively more 
heterogeneous MicroFIN test is a suitable extension of MCS-based CPS assessment tools 
with regard to reliability. Future research should examine how far task heterogeneity can 
be extended (e.g., considering dynamic changes; Scherer, 2015) before a substantial 
decrease in reliability is observed. 

Furthermore, the study provides the very first insights into the test-retest reliability of 
MicroFIN and MCS-based assessment tools in general. Although the MCS approach has 
drawn praise for its high reliability, surprisingly, no studies investigating reliability esti-
mations apart from internal consistency with regard to the MCS approach have yet been 
published. At first glance, the results of the pilot study indicate that a satisfactory test-
retest reliability is achievable with MicroFIN. However, it should be strongly empha-
sized that the present findings are embedded in an exploratory context. Correlations 
based on a sample size of n = 39 (with selection biases) should be approached with skep-
ticism. Due to the obvious limitations of this pilot study, the present findings regarding 
test-retest reliability should be considered at most a stimulus for further research. 



A. Kretzschmar, L. Hacatrjana & M. Rascevska 176

Relation between CPS and reasoning 

Our findings in terms of the last research issue about the empirical relation between 
MicroFIN and reasoning fit in with a variety of previous findings providing evidence of 
a strong relation between CPS skills and intelligence (see Stadler et al., 2015). We found 
latent correlations between .38 and .78, depending on the operationalization of reasoning. 
The wide range of correlations underscores the importance of the Brunswik symmetry 
principle (Wittmann, 1988) when examining the relation between these two constructs 
(e.g., Kretzschmar et al., 2016).  

Specifically, the lowest correlations were found for reasoning operationalizations based 
on a single type of task content. The highest correlation was found for an operationaliza-
tion of reasoning based on two different types of task content that matched the demands 
of the CPS operationalization MicroFIN (i.e., figural-verbal). However, a combination of 
all three task formats (i.e., figural, verbal, numerical), following the recommendations of 
a “good g” operationalization (e.g., Jensen & Wang, 1994), reduced the correlation. This 
is an interesting finding with several implications.  

First, as most previous studies investigating the correlation between CPS and intelligence 
relied on a reasoning operationalization based on only one form of task content (e.g., 
Greiff et al., 2013; Neubert, Kretzschmar, et al., 2015; Wüstenberg et al., 2012), but 
recent CPS tests are based without exception on a combination of at least two types of 
task content (e.g., MicroDYN contains mainly numerical and figural stimuli), it can be 
concluded that these studies systematically underestimated the relation between CPS and 
intelligence. However, recent attempts to examine the relation between CPS and intelli-
gence based on a very broad operationalization of intelligence (see Kretzschmar et al., 
2016; Lotz et al., 2016) might have also underestimated the correlation. The key issue is 
to use a symmetrical operationalization of both constructs, leading to a fair examination 
of their relation (Wittmann, 1988). This might also explain why the correlation found in 
the present study is higher than the meta-analytically averaged correlation of .59 reported 
in Stadler et al. (2015). Although Stadler et al. (2015) controlled for the operationaliza-
tion of intelligence (i.e., general intelligence vs. reasoning), they did not consider the 
symmetry match in terms of task content between intelligence and CPS operationaliza-
tions. This is even more important in the context of faceted models of intelligence (e.g., 
Berlin Intelligence Structure Model; Jäger, 1982; for a description in English, see Süß & 
Beauducel, 2015) in which the stimulus material (i.e., figural, numerical, verbal) defines 
specific (sub-)constructs of intelligence with specific cognitive demands (e.g., figural 
intelligence). According to these models and the findings of the present study, the ques-
tion might not be whether CPS and reasoning are distinct constructs (Stadler et al., 2015) 
but whether CPS and specific sub-constructs of intelligence (e.g., numerical reasoning; 
figural-verbal reasoning) tap into different cognitive demands. Therefore, we highly 
recommend that future studies use a broad operationalization of reasoning (or intelli-
gence in general) but also consider the Brunswik symmetry principle (Wittmann, 1988) 
in terms of the stimulus material for both CPS and reasoning in order to estimate a less 
biased relation.  
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Second, previous studies emphasized the independence of the CPS construct compared 
to established intelligence constructs, and reasoning in particular, based on a correlation 
significantly smaller than 1.00 (e.g., Greiff et al., 2013; Kretzschmar et al., 2016; Lotz et 
al., 2016; Sonnleitner et al., 2013; Wüstenberg et al., 2012). From a psychometric per-
spective, the present findings support this argumentation (but see Gignac & Kretzschmar, 
2017). However, from a conceptual point of view, a correlation of .78 is usually inter-
preted as convergent validity with regard to different assessment tools for the same con-
struct. For example, correlations between three MCS-based CPS tests ranging from .62 
to .73 were interpreted as convergent validity (Greiff, Stadler, Sonnleitner, Wolff, & 
Martin, 2015). In this sense, there has been much speculation as to how CPS and intelli-
gence might differ (see Kretzschmar et al., 2016). It is worth noting that the differentia-
tion between CPS and intelligence constructs has been based mainly on the level of 
operationalization (e.g., interactive CPS tasks vs. static reasoning tasks) rather than the 
construct level (i.e., different cognitive processes). In fact, the theoretical overlap be-
tween these two constructs is substantial (for an overview, see e.g., Kretzschmar et al., 
2016), which makes it difficult to identify an exclusive CPS cognition. Therefore, ac-
cording to the strong correlation found in the present study, the implications of the most-
ly disregarded Brunswik symmetry principle for previous studies, and the rather vague 
theoretical foundation for an independent CPS construct, it might be wise to (re-) 
consider MicroFIN and CPS assessment tools in general as intelligence measurements 
instead of tests covering an independent construct (see e.g., Kröner et al., 2005). This 
conclusion was already drawn by Süß (1996, 1999) based on more comprehensive stud-
ies with more ecologically valid CPS tests (i.e., microworlds) and broad operationaliza-
tions of intelligence and knowledge. Of course, as long as the findings of the present 
study have not been replicated with a heterogeneous sample, different operationalizations 
of intelligence and CPS tests, and ideally using longitudinal study designs (see Süß, 
1996) as well as multitrait-multimethod analyses (see Greiff et al., 2013), the question of 
whether CPS should be considered an independent ability construct cannot be conclu-
sively answered.   

Conclusion 

We can conclude that MicroFIN, the latest development within the MCS framework, has 
comparable psychometric properties to more established MCS-based CPS tests such as 
MicroDYN or Genetics Lab. However, the present findings raise some important ques-
tions about the factorial validity of MicroFIN and CPS tests in general. In this sense, the 
present study extends the recent discussion about how to further improve CPS assess-
ment tools (e.g., Funke, 2010, 2014; Greiff & Martin, 2014; Scherer, 2015; Schoppek & 
Fischer, 2015). Furthermore, there seems to be little evidence that MicroFIN covers a 
specific and independent cognitive construct. Therefore, it should be considered a mod-
ern operationalization of reasoning with several advantages, such as the possibility to 
investigate problem solving behavior via log file analyses (e.g., Greiff, Niepel, Scherer, 
& Martin, 2016; Müller et al., 2013). Ultimately, the present study emphasizes the im-
portance of the Brunswik symmetry principle (Wittmann, 1988), which should be paid 
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much more attention in research about the validity of CPS assessment tools and psycho-
logical assessment in general. 
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