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Some common features and some differences between the parametric ANOVA  
for repeated measures and the Friedman ANOVA for ranked data 

WILLI HAGER1 

Abstract 
Some relationships between the parametric ANOVA of repeated measures and its nonparametric 

counterpart, the ANOVA for ranks after Friedman, are discussed. The main reason for some marked 
differences between both procedures arises from the fact that the mean correlation between the experi-
mental conditions, i.e. rB, can vary between the limits –1 ≤ rB ≤ +1 for the parametric ANOVA and 
usually is greater than zero - only if this is the case, precision is enhanced. In contrast, this correlation 
always is negative for the Friedman ANOVA and only depends on the number K of experimental condi-
tions: rR,B = –1/(K – 1). - In addition, it is stressed that the nonparametric rank tests can be replaced by 
their parametric counterparts without risking divergent decisions about the statistical hypotheses being 
tested. The necessary formulae and the respective effect sizes are presented. 
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The present article deals with the univariate analysis of variance (ANOVA) for repeated 
measures and interval scaled data and compares it to the Friedman ANOVA for ranks. The 
similarities and differences discussed can be expected to be known by statisticians, but may 
be new to empirical psychological researchers, so they will be examined here in some detail 
as the main focus of this article. I shall mostly refer to some textbooks well-known to psy-
chological researchers and to some articles cited therein. - In the second part, the analysis of 
ranked data by parametric tests is addressed.  

Designs with repeated measures are characterized by the fact that the same subjects (Ss) 
usually, although not necessarily, are observed under the K treatment conditions of a factor 
called B here, resulting in K measures per subject, yik. In view of this fact, the formal pre-
condition for a multivariate analysis is given - partly in order to circumvent the circularity 
assumption associated with the univariate F test, which refers to a certain structure of the 
variance-covariance matrices (see below). So, some authors categorically urge researchers to 
perform multivariate analyses (e.g., Erdfelder, Buchner, Faul & Brandt, 2004, p. 161), but 
others maintain, “that the general use of … [multivariate; WH] statistics cannot be recom-
mended …“ (Rouanet & Lépine, 1970, p. 149; see also O’Brien & Kaiser, 1985, p. 329).  
The relative power of uni- and multivariate tests, however, depends on various factors, 
which are discussed comprehensively by Kirk (1995, p. 281-282). Tanguma (1999, p. 250) 
comes to the conclusion that multivariate tests should be preferred, if the number of Ss is 
only slightly larger than the number K of treatment conditions. In all other cases the univari-
ate analysis is at least as powerful as the multivariate analysis. But this argument is of re-
stricted value since power analysis for univariate and for multivariate analyses can be per-
formed. It may happen, however, that more Ss are needed for the multivariate than for the 
univariate analysis. In addition, Girden (1992, pp. 25-26, p. 39) addresses the multivariate 
procedures and concludes, that there is no clear-cut rule, which enables to prefer one type of 
analysis over the other. - Moreover, in modern textbooks on experimental design, the uni-
variate analysis seems to be preferred (cf. Bortz, 2005; Keppel & Wickens, 2004; Kirk, 
1995; Winer, Brown & Michels, 1991, to name but a few). As far as I am concerned, I, too, 
prefer the univariate analysis of repeated measures data, although not because of the reasons 
given above, but it would lead too far to deal with these reasons here. - Keselman, Algina, 
Boik and Wilcox (1999) present robust alternative procedures. 

 
 

The parametric one-way ANOVA for repeated measures 
 
Let us begin with a psychological hypothesis referring to abstract variables such as im-

agery or frustration, which after choosing empirical variables for the theoretical ones (“op-
erationalizations”) leads to predicting the statistical hypothesis to hold, that with K = 4 ex-
perimental conditions not all means µk are equal; this is the alternative hypothesis (H1) of a 
one-way ANOVA. - After execution of the study the interval scaled raw scores yik in Table 1 
have resulted. The restriction to five Ss only serves to cut short the computations.  
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The following strictly additive model without interaction parameter is chosen as underly-
ing the data (Winer et al., 1991, p. 261, p. 264): 

 
yik = µ + βk + πi + εik,  (1) 
 
with: µ: grand mean, βk: effect of factor B, usually conceived of as a fixed effect; πi: effect 
of subject i, usually interpreted as random effect, εik: individual error term, here containing 
the interaction term, which is interpreted as error and not as a systematic source of variation. 
This model generally is enhanced by several side conditions necessary for reparametrization 
and distribution assumptions, hold necessary for the validity of the statistical test addressed 
below (the details are of no relevance for the aim of this paper and can be found in Winer et 
al., 1991, pp. 261-262, and in Rasch & Kubinger, 2006, pp. 332-333, amongst others). 

The sums of squares (SS) can be found in the following ANOVA table (for their computa-
tion see, e.g., Winer et al., 1991, pp. 222-227). 

 
 

Table 1:  
Raw scores yik for a one-way ANOVA with repeated measures. 

 

 Independent variable/Factor B  
Ss B1 B2 B3 B4 Pi = ∑kyik 
1 
2 
3 
4 
5 

16 
10 
21 
20 
14 

28 
18 
20 
34 
28 

30 
14 
24 
38 
26 

34 
22 
30 
36 
30 

108.00 
  64.00 
  95.00 
128.00 
  98.00 

 ∑yi1 = 81; 
∑y2

i1 = 1393; 
M1 =16.20; 

MSe1 = 20.20 

∑yi2 = 128; 
∑y2

i2 = 3448; 
M2 = 25.60; 

MSe2 = 42.80 

∑yi3 = 132; 
∑y2

i3 = 3792 
M3 = 26.40: 

MSe3 = 76.80 

∑yi4 = 152; 
∑y2

i4 = 4736 
M4 = 30.40;  

MSe4 = 28.80 

∑Pi = ∑yik = 493 
∑∑y2

ik = 13369 
M = 24.65 

MSe = 42.15 
Annotations. yik: raw score of subject in condition k; Pi: sum of the raw scores per row; MSek: variance within 
condition Bk: Mk: means in Bk. 

 
 Table 2:  

Table of the ANOVA with repeated measures on factor B 
 

Sources of variation SS df MS F f2
B 

between Ss 
within Ss 
- factor B 
-- BxSs/residual 
-- wthin cells  
Total 

  540.80 
  675.75 
  542.15 
  133.60 
  674.40 
1216.55 

  4 
15 
  3 
12 
16 
19 

135.20 
  45.01 

180.7167 
11.1333 
  42.15 

---- 

---- 
---- 

24.7585 
---- 
---- 
---- 

---- 
---- 
---- 

4.0580 
.8039 
---- 

Annotations. The critical value of F is Fcrit(.05;3;12) = 3.890; thus the alternative hypothesis (H1) is accepted, 
saying that not all means are equal. If one chooses the conservative F test according to Greenhouse and 
Geisser (1959) with dfnum = 1 and dfden = N – 1, the critical value is Fcrit(.05;1;4) = 7.7086; this value also leads to 
accepting the H1.  
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The following relationships hold: SST = SSbetwSs + SSwithinSs = 540.80 + 675.75 = 
1216.55 [dfT = K*N – 1 = (N – 1) + K*(N – 1)]; SSBxSs = SSRes = SSwithinSs – SSB = 
675.75 – 542.15 = 133.60 [dfden = (K – 1)*(N – 1) = N*(K – 1) – (K – 1); SSwithin,B = SST – 
SSB = SSBxSs + SSbetwSs = 1216.55 – 542.15 = 674.40 = 133.60 + 540.80 [dfden = K*N – 1 
– (K – 1) = (K – 1)*(N – 1) + (N – 1)]. - The ANOVA F test then is performed by using:  

 

f,rep-B = /( 1)
/[( 1)*( 1)]

SSB K
SSBxSs K N

−
− −

 = 
/( 1)

SSB
SSBxSs N −

 (2) 

 
Since this test does not rest on the usual assumption of homogeneity of the MSek, but on 

the weaker assumption of circularity (see Collier, Baker, Mandeville & Hayes, 1967, p. 342; 
Greenhouse & Geisser, 1959, and Winer et al., 1991, pp. 241-245), it seems advisable to 
determine the variance-covariance matrix; with repeated measures, the data are linearly 
correlated for each pair of treatment conditions, leading to K*(K – 1)/2 correlations between 
the levels of B, rbetw,rep-B. For each of these correlation a covariance COVk,k’ can be computed 
by multiplying each correlation by the standard deviations Sek*Sek’ - these standard devia-
tions are computed using N as the denominator -, whereas the covariances COVk,k’ rest on N – 
1 (Winer et al, 1991, p. 237). 

 

Covkk’ = ' '( )*( )
1

ik ikk ky y y y
N

− −
−

∑  = rbetw,rep-B,k,k’*Sek*Sek'*N/(N – 1) (3) 

 
The computations lead to the results given in the subsequent matrix:  
 

SB = 

20.20 11.60 27.40 17.90
11.60 42.80 53.20 30.20
24.60 53.20 76.80 45.80
17.90 30.20 45.80 28.80

 
 
 
 
  
 

  (4) 

 
From this matrix the mean covariance COV  can be computed: 
 

COV = ∑COVkk’/[K*(K – 1)/2]  (5)  
 
That is: COV  = 186.10/6 = 31.0167.  
For the computation of the mean correlation between the pairwise treatment conditions, 

i.e. rbetw,rep-B, the following equation is used (Kirk, 1995, p. 274; Winer et al., 1991, p. 226, 
pp. 237-238, p. 264) (index rep-B: the Factor B is a repeated factor) 

 
rbetw,rep-B = /COV MSe  = 31.0167/42.15 = .7359 (6) 

 
MSBxSs =MSe*(1 – rbetw,rep-B) = 42.15*(1 – .7359) = 11.1333 (7)  
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This relationship also holds on the theoretical level: 
 

σ2
BxSs = σ2

e*(1 – ρbetw,dep-B)  (8) 
 
Accordingly, an alternative computation of MSBxSs is possible: 
 

MSBxSs =MSe – COV  = 42.15 – 31.0167 = 11.1333 (9) 
 
The variation between the Ss is related to the mean covariance between (Winer et al., 

1991, p. 238): 
 

MSbetwSs = MSw + (K – 1)* COV  = 42.15 + (3)*31.0167 = 135.20 (10) 
 
Using the data given in Table 2, it becomes possible to compute the value of the measure 

ε̂ , which shows to which extent the assumption of circularity is violated and which ranges 
from 1/(K – 1) (maximum violation) through 1 (see Kirk, 1995, S. 280-281, or Winer et al., 
1991, pp. 246-255). For the data chosen ε̂  ≈ 0,35. Since the lower bound of ε̂  is .3333 
here, the circularity assumption does not hold. This fact, however, will not be regarded here, 
since under the favored interpretation of the assumptions connected with parametric tests as 
auxiliary hypotheses without empirical content the observed deviation from circularity is no 
matter of concern (see Westermann, 2000, pp. 337-338, for the details).  

The effect size f2
B was determined in two ways as shown in the subsequent formulas 

(Cohen, 1988, p. 281): 
 

f2
B = SSB

SSe
  (11) 

 
With this effect size, the fact that repeated measures are underlying, is disregarded of. 

This leads to better comparability with respect to the effect size based on a one-way ANOVA 
without repeated measures. - Alternatively the effect size can be determined by acknowledg-
ing the fact of repeated measures (rep-B): 

 

f2
rep-B = SSB

SSBxSs
  (12)  

 
Overall, there are very precise functional relationships with the univariate ANOVA for 

repeated measures, concerning the mean covariance or the mean correlation, respectively, 
and the sums of squares for error. The question then arises, whether relationships of the same 
kind also hold for the Friedman test for repeated measures.  
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The Friedman ANOVA for ranked data 
 
The application of the Friedman ANOVA for ranks (Friedman, 1937) is often recom-

mended for cases, where one or more of the parametric assumptions of the univariate 
ANOVA for repeated measures are violated. Under the interpretation of statistical tests as 
auxiliary hypotheses without empirical content (see above), this, however, should be no 
reason to renounce parametric tests such as the F test. Another justification for the use of 
parametric tests lies in the fact that nearly all of them can be interpreted as approximate 
randomization tests, for which the necessary (discrete) sampling distributions are derived by 
mere combinatorical manipulations (see Edgington, 1995, for the details). For these reasons, 
the application of the Friedman ANOVA should be restricted to cases where the data have 
ordinal scale level. In order to assure, that hypotheses on location are tested with the non-
parametric ANOVA, it should be assumed, that the underlying distributions, resulting when 
the experiment is repeated under the same side conditions, are of (nearly) equal shape. The 
exact functions of these distributions, however, remain unspecified (cf. Westermann, 2000). 
This assumption must also be met, if rank hypotheses are subjected to the conventional pa-
rametric analyses and if an interpretation concerning equality or differences of location is 
intended. This assumption, then, is not restricted to non-parametric analyses, but also is 
necessary for parametric analyses. This weak assumption, by the way, is not empirically 
testable, as is always the case with auxiliary hypotheses without empirical content (see 
Westermann, 2000, pp. 337-338). Because of this weak assumption the Friedman and other 
rank tests continue to be non-parametric, but they are no longer distribution-free. 

As compared to the parametric ANOVA the Friedman test has an asymptotic relative effi-
ciency of AREFR = (3/ )*[ /( 1)]K Kπ +  = .955*[K/(K + 1)].  

If one interprets the data considered hitherto as representing measures on ordinal level, 
the values yik must be rank-transformed into ranks Rik before being able to perform a Fried-
man ANOVA. This is done by assigning ranks from 1 through K for each of the N Ss. Table 3 
shows the results of this transformation.  

 
 

Table 3:  
Rank transformation of the raw scores in Table 1. 

 
 Independent variable/Factor B  

Ss B1 B2 B3 B4 RPi = ∑kyik 
1 
2 
3 
4 
5 

1 
1 
2 
1 
1 

2 
3 
1 
2 
3 

3 
2 
3 
4 
2 

4 
4 
4 
3 
4 

10 
10 
10 
10 
10 

 ∑Ri1 = 6; 
∑R2

i1 = 8; 

R 1 =1.20; 
MSe,R1 = .20 

∑Ri2 = 11; 
∑R2

i2 = 27; 

R 2 = 2.20; 
MSe,R2 = .70 

∑Ri3 = 14; 
∑R2

i3 = 42; 

R 3 = 2.80; 
MSe,R3 = .70 

∑Ri4 = 19; 
∑R2

i4 = 73; 

R 4 = 3.80;  
MSe,R4 = .20 

∑Rik = ∑RPi = 50 
∑R2

ik = 150 
R  = 2.50 

MSe,R = .45 
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In the next step, the variance-covariance matrix, based on rank correlations (Spearman’s 
rR,S as a special case of the Pearson correlation rX.Y) is constructed. The corresponding vari-
ance-covariance matrix SR,B for the data in Table 3 takes on the following form: 

 

SR,B = 

.20 .30 .05 .05

.35 .70 .45 .05

.05 .45 .70 .30

.05 .05 .30 .20

+ − + + 
 − + − + 
 + − + −
  + + − + 

  (13) 

 
The test statistic proposed by Friedman (1937) and mostly used is χ2

R,FR (cf. Conover, 
1999, p. 370; Marascuilo & McSweeney, 1977, p. 360). But a better approximation to the 
exact sampling distributions results, when using the parametric test statistic FR,FR (Conover, 
1999, p. 370), which can be computed either by using the χ2

R,FR statistic or directly in the 
same way as in the parametric case with the exception, that ranked data are used (see also 
Rasch & Kubinger, 2006, pp. 335-336). Generally, it is of no importance whether one uses 
χ2

R,FR or FR,FR as the test statistic, since both usually result in the same decisions on the statis-
tical hypotheses being tested (Zimmerman & Zumbo, 1993, p. 488); these facts are well-
known to statisticians, but not necessarily to psychologists. Differences may arise, though, 
since the analysis using χ2

R,FR incorporates no correction for ties, whereas the ANOVA via 
FR,FR does. (Of course, the χ2

R,FR statistic can be modified according to the presence of tied 
ranks.) 

The FR,FR test takes on the following form (Conover & Iman, 1981, p. 126): 
 

FR,FR = , /( 1)
, /[( 1)*( 1)]
SSB R K

SSBxSs R K N
−

− −
 = ,

, /( 1)
SSB R

SSBxSs R N −
.  (14) 

 
 
 

Table 4:  
ANOVA by ranks according to Friedman. 

 
Sources of variation SSR df MSR FR,FR f2

R,,B,FR 
between Ss 
within Ss 
- factor B 
-- BxSs/Residual 
-- within cells 
Total 

0 
25.00 
17.80 
  7.20 
  7.20 
25.00 

  4 
15 
  3 
12 
16 
19 

---- 
1.6667 
5.9333 

.60 

.45 
---- 

---- 
---- 

9.8889 
---- 
---- 
---- 

---- 
---- 
---- 

2.4722 
---- 
---- 

Annotations. Fcrit(.05;3;12) = 3.890; which means that once again the H1 is accepted.  
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What about the several relationships between the mean correlation and the SSs shown 
above for the parametric case? To answer this question, let us consider the several sums of 
squares for ranks, SSR, whose computation is done as in the parametric case, but for the 
ranks Rik instead of the original values yik. In addition, the dfs are the same and will not be 
resumed here. - SSbetwSs,R = 0, since the row sums of the K individual ranks is equal for all 
Ss. Moreover, the sum of these individual rank sums is: ∑Rik = ∑RPik= N*K*(K + 1)/2. - 
SST,R = SSbetwSs,R + SSwithinSs,R = 0 + 25.00 = 25.00; SSBxSs,R = SSwithinSs,R – SSB,R 
= 25.00 – 17.80 = 7.20; SSe,R = SST,R – SSB,R = SSBxSs,R + SSbetwSs,R =150.00 – 142.80 
= 7.20. The equality SSBxSs,R = SSe,R always holds, since SSbetwSs,R = 0 in any case, and 
the equality SSwithinSs,R = SST,R is always valid for the same reason. - These relationships 
do not seem to be well-known - at least not in the psychological literature - as far as I know.  

From the matrix in formula (13) the mean covariance can be computed as COV R =  
–.90/6 = –.15 and the mean rank correlation as rR,betw,rep--B = –.15/.45 = –.3333. According to 
Marascuilo and McSweeney (1977, p. 359) the mean rank correlation with any Friedman test 
depends only on the number K of treatment conditions: rR,betw,rep-B = –1/(K – 1). In contrast, 
with the parametric one-way ANOVA with repeated measures the mean correlation rbetw,rep-B 
theoretically (also most probably not empirically) can fall within the whole range of –1.00 
through +1.00, so that for most cases, where rbetw,rep-B > 0, follows, that also MSBxSs < MSe. 
In the rare cases, where rbet,rep-B < 0, MSBxSs will be greater than MSe. This relationship also 
holds for the Friedman test, but because of rR,betw,rep-B = –1/(K – 1) in a modified form: 
MSBxSs,R = MSe,R*(1 + |rR,betw,rep-B|) and therefore: MSBxSs,R > MSe,R throughout, that 
means opposite to the usual parametric case with rbetw,rep-B > 0. Thus, for the example results: 
MSBxSs,R = MSe,R*(1.3333) = .45*1.3333 = .60. In spite of MSBxSs,R > MS,e,R the correct 
mean square for testing the hypotheses is MSBxSs,R, both in the parametric and in the rank 
case.  

The effect sizes are computed according to the subsequent formula: 
 

f2
R,B,FR = ,

,
SSB R
SSe R

 = ,
,

SSB R
SSBxSs R

  (15) 

 
For the data in Table 4 the effect size takes on the value f2

R,B,FR = 2.4722. 
In addition, various simulations have been performed with different values of K and of N, 

without leading to results differing in any way from the ones resting on only N = 5 and K = 4 
as an illustrative example. The correlation always turned out to be rR,betw,rep-B = –1/(K – 1) and 
the relationships MSBxSs,R = MSe,R*[1 + 1/(K – 1)] and SSBxSs,R = SSe,R also showed up 
in any simulation. 

The well-known Wilcoxon test for two experimental conditions can be considered a spe-
cial case of the Friedman test. If one assigns ranks Rik to the original scores yik, the rank 
correlations between these ranks always take on the value –1, as follows from rR,betw,rep-B =  
–1/(2 – 1) = –1, as a couple of simulations with different N’s and different allocations of the 
ranks showed.  

 



Univariate ANOVA for repeated measures and Friedman’s ANOVA for ranks 217 

Parametric testing of further hypotheses about ranked data  
 
As it appears, it is not well-known in psychology that the usual rank tests, such as  

the U, the Wilcoxon- and the H test can be replaced by their parametric counterparts includ-
ing z tests for ranked data in the same way as for interval scaled data. In order to make this 
change easier, the most important parametric counterparts of the rank tests will be presented, 
since the relevant formulas are not mentioned in wide-spread statistics textbooks. As these 
formulas are scattered about statistical literature, no claim is made concerning originality. 

1) U test: The n1 + n2 = N data are ranked from 1 through N and afterwards the ranked 
data are allocated to the two treatment conditions (K = 2). 

zR,U-Test: The rank sum, which is larger according to prediction (index “l”), is used as the 
test statistic, that is Tl; Tl must not be the larger rank sum empirically, in which case the z test 
takes on a negative sign leading to accepting the H0, provided the Type-II error probability β 
is controlled. The expectations under the H0 being tested are given by E(T,l) and E(Ts) 
(smaller rank sum according to prediction) (Conover, 1999, p. 281; Marascuilo & McSwee-
ney, 1977, p. 296): 

 
E(Tl) = E(ΣRi,l) = nl*(nl + ns + 1)/2 = nl*(N + 1)/2, (16) 

 
E(Ts) = E(ΣRi,s) = ns*(nl + ns + 1)/2 = ns*(N + 1)/2. (17) 

 
The standard deviation of Tl and of Ts, i.e. sR,T,,U, is given by (Marascuilo & McSweeney, 

1977, p. 296): 
 

sR,T,U = * *( 1)
12

l s l sn n n n+ +  = * *( 1)
12

l sn n N + . (18) 

 
The hypotheses tested take on the following form, given for the case most often encoun-

tered, that is for directional hypotheses:  
 

H0,U: Tl ≤ E(Tl) vs. H1,U: Tl > E(Tl) or H0,U: E( R 1) ≤ E( R 2) vs. H1,U: E( R 1) > E( R 2). (19) 
 
The test statistic zR,T,U is computed as follows (Marascuilo & McSweeney, 1977, p. 274, 

p. 296), with N = nl + ns = n1 + n2: 
 

zR,T,U = 
, ,

( )l l

R T U

T E T
s
−  = *( 1) / 2

* *( 1) /12
l l

l s

T n N
n n N
− +

+
.  (20) 

 
The approximation to the unit normal distribution can be called satisfactory when n1 > 10 

and ns > 10 (Marascuilo & McSweeney, 1977, p. 274). - The formulas, though, do not take 
into account tied or equal ranks. But their numbers may be relatively large (up to 60%) with-
out exerting a substantive influence on the test statistics - usually, tied ranks only lead to 
differences in the second or third decimal place of the test statistic. The presence of tied 
ranks always leads to lowering the standard error of the test statistic used, so that not apply-
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ing the usually complicated corrections for ties only will lead to a slightly conservative deci-
sion, that is, the H0 is longer retained than with the correction for tied ranks.  

The ES appropriate for this test is: 
 

δR,B,U,z = ( ) ( )
* *( 1)

12

l s

l s

E T E T
n n N

−
+

 = [ *( 1) / 2] [ *( 1) / 2]
* *( 1)

12

l s

l s

n N n N
n n N

+ − +
+

. (21) 

 
As is well-known, the t test can be applied here, too, which almost always leads to the 

same decisions as the z test: 
 

tR,B,U = 

, ,
2*

l s

e B R

R R

s
n

−   (22) 

 
The effect size is: 
 

δR,B,U,t = 
, ,

( ) ( )l s

e B R

E R E R
σ
−   (23) 

 
2) Wilcoxon test for dependent samples: Here, the differences between the raw scores are 

computed for each subject, and these differences then are rank transformed from 1 through 
N. Afterwards, the N differences are enhanced by the sign of the original differences. Then, 
the sum of ranks with a positive sign is computed and the rank sum with a negative sign: 
∑R(+)i und ∑R(–)i. - If the prediction is directed, the following hypotheses are tested: H0,W: 
E(∑Ri) ≤ 0 vs. H1: E(∑Ri) > 0. 

The distribution of the test statistic zR,W is approximately normal, if N > 30 (Bortz, 
Lienert & Boehnke, 2000, p. 262; Conover, 1999, p. 353, gives N > 50 for a satisfactory 
approximation).  

 

zR,W = 
*( 1)*(2* 1) / 6

iR
N N N+ +

∑  = *( 1) / 4
*( 1)*(2* 1) / 24

lT N N
N N N

− +
+ +

. (24) 

 
(The first part of the foregoing formula follows Conover, 1999, p. 353, the second part 

can be found in a slightly modified form in Bortz et al., 2000, p. 262). 
2b) tR,W test: Using the empirical values for the two rank sums, R(+)rep = ∑R(+)i and  

R(–)rep = ∑|R(–)i| and for ∑Ri, a t value can be computed, namely tR,W (after Conover & 
Iman, 1981, p. 126). di,R stands for the individual rank differences, sD,R for the standard error 
of the N signed ranks. 
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tR,W = 
2 21* *( )

1 1

i

i i

R
N R R

N N
−

− −

∑
∑ ∑

 = 
2 2
,

[ ( ) ( )]* *( 1)
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This tR,W value again takes tied ranks into account, the zR,W  expressions in formula (22) 

do not. - The effect size for the tests can be defined as, with E[T(+)] = N*(N + 1)/24: 
 

δR,B,W,z = ( ) { [ ( )]}
*( 1)*(2* 1) / 24

T E T
N N N

+ − +
+ +

.  (26) 

 
Or: 
 

δR,B,W,t = 
, ,

[ ( )] [ ( )]

e B R

E R E R
σ

+ − −  = 
, ,

[ ]i

e B R

E R
σ

.  (27) 

 
3) One-way H test with K > 2, independent samples. The raw scores yik of the N Ss are 

transformed into the ranks from 1 through N over all Ss, and afterwards the ranks are re-
assigned to the K experimental conditions. - The F distributions lead to a slightly closer 
approximation to the exact distributions than the usually applied χ2

R,H distributions (Conover, 
1999, p. 297, p. 418; cf. Conover & Iman, 1981, p. 126). The hypotheses tested concern the 
equality of the mean ranks (H0) vs. at least two mean ranks are not equal (H1). - For testing 
these hypotheses using the FR,H test Conover (1999, p. 257) gives the subsequent formula (cf. 
Conover & Iman, 1981, p. 125; Silverstein, 1974): 

 

FR,H = 
2* ( ) /( 1)

, /[ *( 1)]
kn R R K

SSe R K N
− −

−
∑  = , /( 1)

, /( )
SSB R K
SSe R N K

−
−

 = ,
,

MSB R
MSe R

. (28) 

 
Thus, the FR,H value is computed in complete analogy of the parametric F value in the 

one-way case, but using the ranks: SSB,R = ∑k(∑iRik)2/n – (∑k∑iRik)2/(K*n) with dfnum = (K – 
1); SST,R = ∑k∑iR2

ik – (∑k∑iRik)2/(K*n) with dfT = N – 1 and SSe,R = ∑k∑iR2
ik – ∑k(∑iRik)2/n 

with dfden = K*(n – 1). SSB,R denotes the sums of squares between the experimental condi-
tions, SSe,R stands for the sums of squares of errors and SST,R for the total sums of squares.  

The effect size is defined as: 
 

f2
R,B,H = ,

,
SSB R
SSe R

   (29) 

 
 

Parametric testing of hypotheses about contrasts involving ranked data  
 
Using ANOVA-like tests always means that only bidirectional statistical hypotheses can 

be tested, and these hypotheses are very exact, if they are null hypotheses, and very inexact, 
if they are alternative hypotheses. Considering the fact that most of the psychological hy-
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potheses are directional it would be advantageous to have the possibility of testing direc-
tional statistical hypotheses as well. The method of choice, which enables testing of direc-
tional (and bidirectional) hypotheses is the method of planned contrasts. Each contrast is 
associated with one df in its numerator. If one considers two contrasts simultaneously it does 
not matter whether these contrasts are orthogonal (linearly independent) to each other or not 
(non-orthogonal contrasts). If one uses this method, no global test such as ANOVA is per-
formed first. The cumulation of error probabilities, occurring when two or more contrasts 
have to be tested, is adjusted by the versatile Boole-Bonferroni-Methode. - For each contrast, 
the assignment of ranks has to be done separately, i.e. from 1 through nk + nk’ or from 1 
through N with K’ = 2.  

Contrasts concerning mean ranks are of the following form, in which the ck,t are the con-
trast coefficients per treatment condition and per contrast DR,t, which have to sum up to 0 
(Marascuilo & McSweeney, 1977, p. 306): 

 
DR,t = c1,t* R 1 + c2,t* R 2 + ... + cK,t* R K.  (30) 

 
In the model of Kruskal and Wallis (H test), mainly the zR,H and the tR,H test are appropri-

ate for testing hypotheses about orthogonal and non-orthogonal contrasts. - Equal samples 
sizes are assumed throughout for simplicity’s sake.  
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Formula (31) can be found in Marascuilo and McSweeney (1977, p. 306), the first part of 

formula (32) in Conover and Iman (1981, p. 125). - It is also possible to test the hypotheses 
of interest by pairwise U tests as given in formula (20). Choosing this way, it must be taken 
into account, that the ranks have to be allocated separately for each test to be performed.  

The effect size is given by: 
 

δR,B,H,z = , * ( )
*( 1)

12

kk tc E R
N N +
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The difference between the two standard deviations is the reason, that usually the z val-
ues are a little smaller than the t values - without consequences regarding the decisions. 

On the basis of the Friedman model (repeated measures) the same tests can be applied, 
but using different standard deviations: 

 

zR,FR,t = , ,
2 2
, ,

*

*( 1) *( 1)* *
12 12

kR t k t

k t k t

D c R

c cK K K K
N N

=
+ +

∑
∑ ∑

 (35) 

 
The tR,FR,t value can be computed using the first part of formula (32), bearing in mind, 

however, that the number of Ss, N, has to be inserted (instead of K*n) (Conover & Iman, 
1981, p. 126). - It is also possible to employ pairwise Wilcoxon tests as in formula (22) or 
(23), remembering that the two rank sums or the one rank sum have to be computed sepa-
rately for each test. 

The effect size is defined as: 
 

δR,B,FR,z = , * ( )
*( 1)
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kk tc E R
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∑   (36) 

 

δR,B,FR,t = ,
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* ( )kk t

e B R

c E R
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∑   (37) 

 
The zR-, tR- and FR tests should be considered approximate tests, that is, their sampling 

distributions are - in the same way as the generally used χ2
R distributions - only approxima-

tions for the exact sampling distributions (Conover & Iman, 1982, p. 126), but the goodness 
of approximation can be considered as satisfactory or better in general, if the total sample 
size is not too small, that is, if N ≥ 30. This sample size will easily be approached or even 
exceeded, if the study is preceded by a power analysis, as it should be (Cohen, 1988; Rasch, 
2003).  

Whenever one of the tests proposed preceedingly, it must be remembered, that the alloca-
tion of ranks is different for non-repeated and repeated measurements. 
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