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The impact of group pseudo-guessing 
parameter differences on the detection of 
uniform and nonuniform DIF 

W. Holmes Finch1 & Brian F. French 

Abstract 

Differential item functioning (DIF) is an important aspect of item development and validity as-
sessment. Traditionally DIF is divided into two broad types, focusing on conditional group differ-
ences of the item difficulty (uniform DIF) and discrimination (nonuniform DIF) parameters. Rela-
tively little attention has been given to group differences on the probability of answering an item 
correctly due to chance. The goal of this study was to investigate the influence of such group dif-
ferences on the detection of uniform and nonuniform DIF, and on the accuracy of the estimation of 
item difficulty and discrimination parameters. Results demonstrate that when groups differed on the 
pseudo-guessing parameter in a 3 parameter item response theory model, Type I error rates for both 
uniform and nonuniform DIF were elevated, and that these differences appear to be due to parame-
ter estimation bias for both item difficulty and discrimination. Implications of these results are 
discussed. 
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Differential item functioning (DIF) continues to receive attention in the measurement 
literature both in applied and methodological studies. The latter has begun to focus more 
on the accuracy of detection and explanation of why DIF is occurring, rather than the 
creation of new methods for detection. This focus is justified given the number of meth-
ods available. Moreover, the importance of locating differentially functioning items 
revolves around the issue of valid score inferences. The importance of this issue cannot 
be overstated given the dependence on test scores to drive decisions at all levels of the 
nation’s educational system, including school accountability for student growth (Dunn & 
Allen, 2009). Thus, accurate detection and explanation of why DIF might be occurring is 
paramount so that items and then test scores can accurately reflect examinee ability.  

Typically DIF is discussed in two broad classes: (a) uniform DIF where, conditioning on 
the measured trait, the probability of a correct item response, given dichotomous items, is 
uniformly higher for members of one group (e.g. reference) compared to members of 
another (e.g. focal), and (b) nonuniform DIF where the probability of a correct item 
response differs between groups across all levels of ability, but the magnitude of this 
difference is not consistent; i.e. there is an interaction between ability level and group 
membership (Camilli & Shepard, 1994). An alternative way to view DIF for dichoto-
mous items, as presented by Lord (1980) can be through the 3-parameter logistic model 
(3-PL), which takes the form: 
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In this context, uniform DIF represents a difference in item difficulty (b) between the two 
groups, while nonuniform DIF is a group difference in item discrimination (a). Other re-
searchers have defined DIF in terms of differences in the Item Response Functions (IRF’s) 
(see Camilli & Shepard, 1994). Specifically, uniform DIF has been described as the case 
when group specific IRF’s for an item differ across values of the latent trait, and this differ-
ence is consistent. In contrast, non-uniform DIF can be thought of as occurring when the 
IRF’s for the groups differ from one another, but this difference is not consistent across all 
values of the latent trait. A special case of non-uniform DIF, commonly referred to as cross-
ing DIF, occurs when the IRF’s for the groups actually cross one another.  

DIF in the pseudo-guessing parameter 

A form of DIF that has not received much attention, and which is the focus of this study, 
is that which occurs when the probability of a correct item response due to chance differs 
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between the two groups. That is, there is a group difference on the pseudo-guessing or c 
parameter in the 3PL item response theory model seen in Equation 1. Consider, for ex-
ample, a multiple choice mathematics item with 5 possible responses (4 distracters and 
the correct response). Next, consider that this item is worded so that members of the 
reference group (but not the focal group) could rule out one of the distracters due to 
information not based on the measured trait, mathematics. Members of the focal group 
who did not know the correct answer would therefore have a 20% chance of obtaining a 
correct answer through random guessing, whereas members of the reference group would 
have a 25% chance of a correct random guess because they were able to rule out one of 
the distracters. We do acknowledge that the probabilities may not be exact as some ex-
aminees may be able to rule out a different number of choices, hence pseudo-guessing.  

Such a differential guessing situation might be seen as exemplary of the influence of a 
secondary nuisance dimension. In this case the secondary dimension would not have a 
direct impact on item difficulty or discrimination; e.g. the item would remain equally 
difficult in terms of mathematics for both groups. However, the nuisance dimension 
would impact the probability of a correct response due to guessing by providing exami-
nees with clues regarding which distracter(s) could be ignored. This c-DIF then denotes 
group differences on the 3-PL c parameter. While here we refer to the difference in 
group c values as a unique type of DIF, it is also possible to view it as a variation of 
nonuniform DIF, in that the IRFs for the groups are different from one another, but this 
difference is not consistent across levels of the latent trait being measured. However, we 
will refer to c-DIF in this manuscript in order to differentiate between this condition, and 
other more traditional types of nonuniform DIF described in the literature. 

Methods for detecting DIF 

A variety of methods are available to test for DIF, including the Mantel-Haenszel (MH) 
statistic, logistic regression (LR), SIBTEST, crossing SIBTEST, and the Item Response 
Theory Likelihood Ratio (IRTLR) among others (Camilli & Shepard, 1994); Camilli, 
2006; Osterlind & Everson, 2009; Penfield & Camilli, 2007). The literature is bountiful 
with studies applying these techniques for DIF detection as well as studies examining the 
accuracy of uniform and nonuniform DIF detection across methods and data conditions. 
The two methods used for DIF detection in this study, IRTLR and LR, were selected 
because they can assess an item for both uniform and non-uniform DIF. In addition, 
IRTLR can be used to test for the presence of c-DIF. Following is a brief description of 
each method. 

Likelihood Ratio statistic 

The IRTLR test statistic (Thissen, 2001; Thissen, Steinberg &, Wainer, 1988; Thissen, 
Steinberg &, Wainer, 1993) is calculated by fitting a series of nested models to the data 
using an appropriate form (e.g. 2PL, 3PL). The initial model constrains all item parame-
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ters to be equal between the reference and focal groups, yielding a log-likelihood 
(LLequal) statistic: 
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The second IRT model fit to the data again constrains item parameters equal between the 
two groups, except for those associated with the target item for which DIF is being as-
sessed. Again, a log-likelihood value (LLunequal) is calculated for this second model. The 
difference between these two log-likelihoods then serves as the test statistic, 

( ) ( )2 2 2equal unequalG LL LL= − − −  for DIF. It is distributed as a chi-square with 3 degrees 

of freedom, and tests for overall DIF across all of the item parameters (e.g., a, b and c in 
the 3PL context). If this test is statistically significant, then individual tests are conducted 
for each item parameter by unconstraining individual parameters and comparing the 
resulting log-likelihood values in a manner analogous to that described above, in order to 
identify the nature of the DIF.  

Logistic regression 

LR takes the form of a model linking a categorical outcome with one or more predictor 
variables, which can be either continuous or categorical. As outlined by Swaminathan 
and Rogers (1990) the logistic regression model for DIF detection is: 
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A significant interaction between the ability estimate and group membership would indi-
cate the presence of non-uniform, whereas a significant group term would indicate uni-
form DIF. As noted above, one advantage of LR is that the method can assess both uni-
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form and nonuniform DIF (Swaminathan & Rogers, 1990), and has been found reasona-
bly effective in several previous studies, as will be discussed in detail below. 

Prior research on c-DIF 

Little work has examined the influence of c-DIF on 3-PL item parameter estimation or 
uniform and specifically non-uniform DIF detection. However, results that are available 
do show that the presence of c-DIF may cause problems for DIF detection methods and 
influence the probability of a correct response (Bao, Dayton &, Hendrickson, 2009; 
Walstand & Robson, 1997). Additionally, c-DIF also may be more difficult to detect 
compared to uniform and non-uniform DIF (Schumacker, 2005). That said, Thissen, 
Steinberg and Wainer (1988) demonstrated how IRTLR could be used successfully to 
test for items containing c-DIF. In particular, to test for c-DIF, two models are fit to the 
item response data. In the first model, the pseudo-guessing parameter for the target item 
is held equal between the groups, while in the second model the pseudo-guessing param-
eter values for the target item are allowed to vary by group. The test statistic for the null 
hypothesis of c-DIF is then calculated as the difference between the -2 log-likelihood 
values of the constrained and unconstrained models, as described above in general. 

DeMars and Wise (2007) argue that differential rapid-guessing among groups on a timed 
test could lead to uniform DIF. That is, what might be characterized as uniform DIF 
could actually appear because groups have differential guessing rates. Examinees tend to 
exhibit this type of behavior in high-stakes testing environments (Schnipke & Scrams, 
1997) when time to respond is ending and in low-stakes untimed testing environments 
(Wise & Kong, 2005). Such guessing behavior appears to be unrelated to ability levels 
(Wise & Kong). However, and possibly of serious consequence to the examinee, this 
type of differential guessing behavior, including rapid responding, can lead to lower 
scores for rapid responders as compared to examinees not exhibiting such behavior (Os-
borne & Blanchard, 2011).  

More recently, Demars & Wise (2010), through a series of studies, demonstrated that 
there are situations where DIF may be detected due to guessing behavior and not due to 
content of the items. That is, DIF may manifest itself as a direct result of an examinee 
behavior (i.e., rapid response) and not an examinee characteristic (e.g, sex, race). These 
authors also demonstrated that the presence of groups displaying more rapid guessing 
and lower ability resulted in an overall lower proportion of items being flagged for DIF. 
However, the data conditions only focused on uniform DIF.  

In addition to guessing behavior influencing DIF detection Type I error rates, Finch and 
French (2007) found that the presence of one type of DIF (e.g. uniform) elevated the 
probability of incorrectly identifying the other type of DIF (e.g. non-uniform). Given this 
result, one could assume that similar inaccuracy in uniform/non-uniform DIF detection 
may be occurring as a result of guessing and rapid response behavior in general, although 
very little direct research has been conducted in this area. The current study addresses 
this problem from a different angle compared to previous research by examining not only 
the Type I error rates for both uniform and nonuniform DIF in the presence of differen-
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tial guessing rates between groups (c-DIF) but also investigating the bias in item parame-
ter estimates in order to better understand the impact of group differences in guessing on 
model estimation.  

Goals of the current study 

Given the prior results discussed above, it is hypothesized that the presence of c-DIF will 
impact the probability of identifying either uniform or non-uniform DIF for an item, even 
when neither type is actually present in the population. In practice, such a result could 
lead to unnecessary item reviews and/or incorrect item revisions. Beyond the few studies 
reviewed above, there has been little published research systematically examining the 
influence of c-DIF on parameter estimates and DIF detection or even how accurate c-DIF 
can be detected. Therefore, the goals of this study were to examine the influence of c-
DIF on the estimation of 3-PL item parameters, and on the accuracy of the detection of 
uniform and non-uniform DIF by the two common DIF methods which allow for simul-
taneous testing of uniform and non-uniform DIF, logistic regression (LR) and the Item 
Response Theory Likelihood ratio test (IRTLR). These two methods were selected for 
inclusion in the study because they have repeatedly been shown to be effective tools for 
uniform and non-uniform DIF detection (Finch & French, 2007; Thissen, Steinberg, &, 
Wainer, 1993; Rogers & Swaminathan, 1993). In addition, the performance of IRTLR in 
identifying c-DIF, the only major DIF detection method designed to test for group differ-
ences in c, was assessed, which has not been done extensively in prior work.  

Method 

A simulation study was conducted to investigate the influence of c-DIF on uniform and 
non-uniform DIF detection, and on the accuracy of the estimation of item parameter 
values. A total of 1000 replications were generated and analyzed for each combination of 
simulation conditions, which are described below. This number of replications has been 
shown to be more than sufficient to ensure accurate estimation of model parameters, as 
well as Type I error and power rates (e.g., Bandalos & Leite, 2013; Cohen, Kane, & 
Kim, 2001; Harwell, Stone, Hsu, & Kirisci, 1996). Dichotomous data (20 items) were 
simulated with IRT-LAB (Penfield, 2003) using the 3-PL with item parameter values 
(Table 1) drawn from a national licensing exam calibration sample. The first item was 
selected as the target for which c-DIF was simulated, as is described below. Outcome 
variables of interest in the simulation study included bias (calculated as the mean abso-
lute deviation between the population and model estimated values) in the estimates of a, 
b and c for the target item for the reference and focal groups, as well as the mean stand-
ard errors for these estimates. Item parameter estimation and accompanying standard 
errors were obtained using BIOLOG-MG, v. 3 (Zimowski, Muraki, Mislevy &, Bock, 
2003). Estimation was conducted separately for each group so that we could isolate the 
impact of various c parameter values on estimation of the other item parameters. This  
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Table 1: 
Item Parameter Values For Generating Simulated Data 

Item Discrimination Difficulty Pseudo-guessing 

1 0.8 -0.25 0.20 

2 1.51 1.10 0.19 

3 0.81 0.17 0.27 

4 0.46 1.52 0.26 

5 0.67 1.49 0.26 

6 0.35 -0.04 0.38 

7 0.52 -1.77 0.27 

8 0.58 0.83 0.28 

9 1.17 1.09 0.28 

10 0.62 0.15 0.22 

11 0.49 1.06 0.23 

12 1.04 0.36 0.14 

13 0.41 -0.34 0.12 

14 0.76 0.13 0.14 

15 0.99 -0.40 0.12 

16 0.62 -1.52 0.32 

17 0.39 -0.35 0.15 

18 0.41 0.71 0.29 

19 0.47 0.36 0.26 

20 0.61 0.52 0.33 
 

 

was particularly important in attempting to explain the cause of DIF results that were 
obtained. In addition, the rejection of the null hypothesis of no group difference for a 
(non-uniform DIF) and b (uniform DIF) detection using both LR and IRTLR and the 
IRTLR rejection rate for the c parameter of the target item also served as outcomes of 
interest. A finding of significant group differences for a and b represents a Type I error 
in this study, because these parameters were simulated to be equal between the groups. 

The following factors were manipulated to evaluate their influence on DIF detection. 

Sample size/sample size ratio 

Focal and reference group sample sizes were simulated as 250/250, 250/500, 500/500, 
500/1000, and 1000/1000. These were selected to study the impact of c-DIF with a rela-
tively small (500) to a fairly large overall sample (2000). These values are also in keep-
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ing with prior published research in both the applied and simulation literature (e.g., 
Naryanan & Swaminathan, 1994, 1996; Rogers & Swaminathan, 1993). The smallest 
sample size conditions (250/250 and 250/500) are very small for use with a 3PL model. 
These were included to provide information regarding the impact of c-DIF at a lower 
bound sample size value. However, in practice using this model with such small sample 
sizes is probably not appropriate with IRT methods. Although, this size is commonly 
used with other methods (e.g., LR, MH, SIBTEST).  

Group ability differences (impact) 

Prior research has demonstrated that group mean differences in the latent trait are associ-
ated with Type I error inflation for uniform DIF (Clauser et al., 1993; Cohen & Kim, 
1993; Roussos & Stout, 1996). Thus, in order to ascertain the impact of such differences 
in the case of c-DIF, the mean abilities of the focal and reference groups were set either 
as 0/0 (equal) or -0.5/0 (unequal).  

c-DIF 

c-DIF was simulated at 4 levels for the target item. For the reference group, c was held 
constant at 0.2, while for the focal group the value of c was set to 0.2 (no c-DIF), 0.15, 
0.1 or 0.05. The latter three conditions represent increasing levels of differences between 
the c- parameter between groups. While we recognize that many patterns in c-DIF are 
possible, those included in this study were selected in order to clearly demonstrate what 
impact, if any, group differences in the pseudo-guessing parameter have on the testing of 
uniform and non-uniform DIF. That is, the magnitude of the difference was the critical 
manipulation and not the direction. Clearly, future research may focus on other patterns 
of c-DIF. 

DIF detection methods 

Uniform and non-uniform DIF were tested using both LR and IRTLR as mentioned 
previously. These methods were selected because they have been shown to work well 
under many conditions for detecting both uniform and nonuniform DIF in one analysis 
(e.g., Finch & French, 2007). In addition, IRTLR is the only commonly used method 
available to test for c-DIF. 
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Results 

Rejection rates 

Table 2 contains Type I error rates for uniform and non-uniform DIF for LR and IRTLR 
by the level of c-DIF, sample size, and group latent variable means, along with rejection 
rates for IRTLR comparing c between groups. Perhaps the most obvious pattern in these 
results is the inflation of Type I error rates for uniform and non-uniform DIF for both LR 
and IRTLR as the presence of c-DIF increased. The error rates, for example, were close 
to the nominal level for LR when there was no c-DIF (0.2/0.2 condition). However, these 
error rates rose concomitantly with an increase in the magnitude of c-DIF. This error 
inflation for LR was mild when the groups’ c parameters differed by 0.05 (0.2/0.15 con-
dition), but became quite severe in the 0.2/0.1 and 0.2/0.05 cases. A similar pattern of 
higher Type I error rates for greater c-DIF was also present for IRTLR, although this 
effect was impacted to a greater degree by the combination of sample size and group 
mean differences on the latent trait. When there was no c-DIF, IRTLR demonstrated 
somewhat inflated uniform and non-uniform Type I error rates for the smallest sample 
size conditions, particularly when ability differences were present. As sample size in-
creased, these Type I error rates declined. This pattern was also evident when c-DIF was 
present, although the Type I error rates were generally inflated even when no ability 
differences were present. As with LR, the error rates increased concomitantly with the 
degree of c-DIF, although they tended to be lower compared to those for LR under most 
conditions, except for the two smallest sample size conditions in the presence of ability 
differences. There were not large differences in error inflation for uniform and nonuni-
form DIF for either LR or IRTLR. 

 

Table 2: 
Uniform And Non-uniform Rejection Rates* For Logistic Regression And The IRTLR Test 

By Level Of c-DIF 

c-DIF 
Ref/Foc 

n Impact LR-1 LR2 IRTLR1 IRTLR2 IRTLR c 

0.2/0.2 250/250 0/0 0.07 0.05 0.10 0.10 0.03 

  0/-.5 0.02 0.05 0.15 0.11 0.04 

 250/500 0/0 0.05 0.05 0.10 0.09 0.03 

  0/-.5 0.06 0.06 0.16 0.09 0.01 

 500/500 0/0 0.06 0.06 0.03 0.06 0.02 

  0/-.5 0.06 0.08 0.07 0.08 0.02 

 500/1000 0/0 0.03 0.02 0.04 0.05 0.04 

  0/-.5 0.04 0.07 0.08 0.08 0.04 

 1000/1000 0/0 0.04 0.04 0.05 0.06 0.04 

  0/-.5 0.06 0.09 0.07 0.07 0.05 

        
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c-DIF 
Ref/Foc 

n Impact LR-1 LR2 IRTLR1 IRTLR2 IRTLR c 

0.2/0.15 250/250 0/0 0.06 0.07 0.12 0.11 0.05 

  0/-.5 0.06 0.07 0.18 0.12 0.05 

 250/500 0/0 0.06 0.05 0.07 0.07 0.04 

  0/-.5 0.06 0.05 0.17 0.12 0.05 

 500/500 0/0 0.07 0.05 0.09 0.07 0.05 

  0/-.5 0.15 0.11 0.11 0.08 0.05 

 500/1000 0/0 0.09 0.06 0.09 0.06 0.06 

  0/-.5 0.12 0.10 0.14 0.10 0.05 

 1000/1000 0/0 0.08 0.07 0.08 0.09 0.07 

  0/-.5 0.11 0.15 0.15 0.12 0.07 

0.2/0.10 250/250 0/0 0.08 0.06 0.11 0.10 0.06 

  0/-.5 0.10 0.07 0.17 0.15 0.07 

 250/500 0/0 0.12 0.13 0.09 0.10 0.07 

  0/-.5 0.13 0.13 0.19 0.20 0.07 

 500/500 0/0 0.15 0.15 0.08 0.12 0.08 

  0/-.5 0.23 0.22 0.21 0.20 0.08 

 500/1000 0/0 0.20 0.21 0.13 0.13 0.10 

  0/-.5 0.31 0.28 0.23 0.19 0.09 

 1000/1000 0/0 0.25 0.22 0.20 0.18 0.11 

  0/-.5 0.27 0.27 0.30 0.29 0.12 

0.2/0.05 250/250 0/0 0.18 0.20 0.14 0.13 0.08 

  0/-.5 0.30 0.31 0.18 0.19 0.09 

 250/500 0/0 0.23 0.21 0.15 0.16 0.10 

  0/-.5 0.30 0.29 0.18 0.21 0.10 

 500/500 0/0 0.28 0.24 0.21 0.19 0.12 

  0/-.5 0.33 0.36 0.31 0.33 0.13 

 500/1000 0/0 0.41 0.38 0.32 0.34 0.13 

  0/-.5 0.51 0.52 0.44 0.44 0.15 

 1000/1000 0/0 0.58 0.59 0.43 0.37 0.15 

  0/-.5 0.58 0.56 0.54 0.49 0.16 
1 = Uniform, 2 = Non-uniform 

*For uniform DIF, Non-uniform DIF and Pseudo-guessing DIF in the 0.2/0.2 condition, a significant 
result represents a Type I error. 
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With regard to the IRTLR test for c-DIF, the Type I error rate was always at or below the 
nominal 0.05 level. Furthermore, this test had very low power for detecting c-DIF, even 
presenting the presence of the biggest difference (0.2/0.05). Indeed, the highest level of 
power was 0.16 for a total sample size of 2000 when the groups’ means on the latent trait 
were different. Generally speaking, power for detecting the presence of c-DIF was lower 
than the Type I error rates for both uniform and nonuniform DIF, across the conditions 
simulated. 

Parameter estimation bias 

Table 3 contains the item parameter bias results by the level of c-DIF, sample size and 
ability differences, based on estimates obtained using Bilog-MG (Zimowski, Muraki, 
Mislevy, &, Bock, 1996). In order to obtain these values, the model for the two groups 
was estimated without constraints for the target item. In the population, the item discrim-
ination value was simulated to be 0.8. The estimate of a for the reference group was 
consistently higher than this, by a magnitude of between 0.02 to 0.10, with somewhat  
 

 

Table 3: 
Parameter Estimation Bias (Mean Standard Error) By Level Of c-DIF, Sample Size And 

Impact 

c-DIF 
Ref/Foc 

n Impact Ref a Focal a Ref b Focal b Ref c Focal c 

0.2/0.2 250/250 0/0 0.06 
(0.20) 

0.03 
(0.19) 

0.10 
(0.24) 

0.10 
(0.24) 

0.01 
(0.08) 

0.01 
(0.08) 

  0/-.5 0.08 
(0.24) 

0.07 
(0.20) 

0.10 
(0.23) 

0.58 
(0.23) 

0.01 
(0.07) 

0.01 
(0.08) 

 250/500 0/0 0.07 
(0.16) 

0.05 
(0.20) 

0.08 
(0.21) 

0.09 
(0.24) 

0.01 
(0.08) 

0.01 
(0.08) 

  0/-.5 0.09 
(0.16) 

0.05 
(0.21) 

0.08 
(0.21) 

0.59 
(0.24) 

0.01 
(0.08) 

0.01 
(0.08) 

 500/500 0/0 0.04 
(0.16) 

0.03 
(0.16) 

0.06 
(0.20) 

0.08 
(0.21) 

0.0 
(0.08) 

0.01 
(0.07) 

  0/-.5 0.07 
(0.19) 

0.05 
(0.16) 

0.07 
(0.19) 

0.59 
(0.21) 

0.01 
(0.07) 

0.01 
(0.08) 

 500/1000 0/0 0.06 
(0.13) 

0.04 
(0.17) 

0.08 
(0.18) 

0.09 
(0.20) 

0.01 
(0.08) 

0.01 
(0.07) 

  0/-.5 0.07 
(0.13) 

0.04 
(0.19) 

0.08 
(0.18) 

0.59 
(0.19) 

0.01 
(0.07) 

0.01 
(0.07) 

         
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c-DIF 
Ref/Foc 

n Impact Ref a Focal a Ref b Focal b Ref c Focal c 

 1000/1000 0/0 0.02 
(0.13) 

0.04 
(0.13) 

0.10 
(0.18) 

0.07 
(0.19) 

0.01 
(0.07) 

0.01 
(0.07) 

  0/-.5 0.05 
(0.14) 

0.04 
(0.16) 

0.09 
(0.18) 

0.58 
(0.18) 

0.01 
(0.06) 

0.01 

0.2/0.15 250/250 0/0 0.07 0.11 0.08 0.20 0.0 0.05 

  0/-.5 0.05 0.12 0.06 0.67 0.01 0.05 

 250/500 0/0 0.07 0.09 0.09 0.17 0.01 0.05 

  0/-.5 0.07 0.10 0.09 0.65 0.01 0.04 

 500/500 0/0 0.05 0.09 0.06 0.16 0.01 0.05 

  0/-.5 0.07 0.09 0.06 0.59 0.01 0.05 

 500/1000 0/0 0.05 0.07 0.08 0.15 0.01 0.03 

  0/-.5 0.05 0.09 0.08 0.63 0.01 0.04 

 1000/1000 0/0 0.02 0.08 0.07 0.17 0.01 0.03 

  0/-.5 0.04 0.08 0.08 0.60 0.01 0.04 

0.2/0.10 250/250 0/0 0.07 0.19 0.08 0.20 0.01 0.08 

  0/-.5 0.07 0.11 0.06 0.67 0.01 0.09 

 250/500 0/0 0.07 0.13 0.09 0.17 0.01 0.08 

  0/-.5 0.07 0.16 0.09 0.65 0.01 0.07 

 500/500 0/0 0.05 0.13 0.09 0.16 0.01 0.08 

  0/-.5 0.07 0.13 0.09 0.66 0.01 0.08 

 500/1000 0/0 0.04 0.11 0.08 0.15 0.01 0.07 

  0/-.5 0.05 0.12 0.08 0.63 0.01 0.05 

 1000/1000 0/0 0.03 0.10 0.07 0.17 0.01 0.07 

  0/-.5 0.06 0.12 0.08 0.60 0.02 0.06 

0.2/0.05 250/250 0/0 0.10 0.19 0.05 0.32 0.02 0.12 

  0/-.5 0.07 0.21 0.08 0.77 0.01 0.10 

 250/500 0/0 0.07 0.17 0.08 0.29 0.01 0.11 

  0/-.5 0.07 0.20 0.08 0.75 0.01 0.09 

 500/500 0/0 0.05 0.17 0.09 0.29 0.01 0.12 

  0/-.5 0.10 0.16 0.09 0.61 0.02 0.10 

 500/1000 0/0 0.05 0.14 0.08 0.25 0.01 0.10 

  0/-.5 0.05 0.17 0.07 0.69 0.01 0.07 

 1000/1000 0/0 0.04 0.16 0.08 0.26 0.02 0.10 

  0/-.5 0.02 0.16 0.07 0.74 0.01 0.08 

*Note that c for the reference group was always simulated to be 0.2, while for the focal group it was 
simulated to be 0.2, 0.15, 0.1 or 0.05, as indicated in the table.  
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less bias for larger samples. The presence of group mean differences in theta (i.e., ability) 
was associated with a small increase in bias for item discrimination parameter estimate 
for the reference group. On the other hand, the level of c-DIF present did not appear to 
lead to item discrimination parameter estimation bias. This latter result would be ex-
pected given that the c parameter was always set at 0.2 for this group. For the focal 
group, estimates of a displayed comparable levels of positive bias in the no c-DIF 
(0.2/0.2) condition. However, as the degree of c-DIF increased, the severity of this posi-
tive bias increased as well, with the largest values occurring in the 0.2/0.05 c-DIF condi-
tion. As with the reference group, the extent of a bias for the focal group was ameliorated 
to some extent by larger sample sizes, and was unrelated to the presence of impact. 
Nonetheless, in all c-DIF conditions, item discrimination bias was greater for the focal 
compared to the reference group. 

The population value of item difficulty was simulated to be -0.25. As was true for the a 
parameter, the estimates of b were somewhat positively biased for the reference group. 
However, contrary to what was found for discrimination, sample size was not associated 
with changes in estimation bias for the reference group, nor was the presence of impact 
or c-DIF. Neither of these latter results is surprising, as the mean of the latent trait and 
the value of c remained unchanged for the reference group across these conditions. The 
bias results for the focal group were substantially different compared to those of the 
reference. First, the presence of ability differences resulted in positive bias in the estima-
tion of b regardless of sample size and c-DIF condition. Indeed, when comparing results 
for the focal and reference groups, b for the former was consistently close to 0.5 larger 
than that of the latter, corresponding to the simulated difference in the group means on 
the latent trait. In other words, the -0.5 mean on θ for the focal group was expressed in 
the item being approximately 0.5 more difficult for this group. In addition, the presence 
of c-DIF also was associated with increased levels of estimation bias for b. In other 
words, when the population value of c declined for the focal group, there was an increase 
in the overestimation of item difficulty. As was the case for the reference group, sample 
size did not influence the degree of item difficulty overestimation. 

With regard to the c parameter, estimates for the reference group were consistently very 
close to the population value of 0.2, regardless of the sample size, ability difference 
condition, or c-DIF. For the focal group, parameter estimates were close to the popula-
tion value of 0.2 in the no c-DIF case, as well. However, in the presence of c-DIF, pseu-
do-guessing parameter values were consistently overestimated for the focal group. For 
example, in the 0.2/0.15 condition, where the population focal group c was 0.15, the 
estimates obtained from BILOG were positively biased by between 0.03 and 0.05, mean-
ing that the actual estimates were near 0.20. A similar and more severe pattern of positive 
bias was evident for greater levels of c-DIF, indicating that even when the population c 
was very low (e.g. 0.05) the estimate for the focal group continued to be above 0.10 and 
often above 0.15. These results, taken together with those for item difficulty, suggest that 
in the presence of c-DIF, the probability of an examinee obtaining a correct answer to an 
item by chance is consistently overestimated, which is associated with a concomitant 
overestimation in the difficulty of the item as well. Thus, it appears that when the popu-
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lation probability of a chance right answer to an item was less than 0.20, this value in-
flated item difficulty, and the estimated pseudo-guessing value was too high. 

Item parameter standard errors 

The mean of the item parameter estimate standard errors by the sample size and level of 
c-DIF appear in Table 3. Standard errors of all three item parameters for both groups 
were smaller for larger sample sizes. For the focal group, the mean standard error for 
each parameter estimate declined concomitantly with increases in the level of c-DIF, 
regardless of sample size. In contrast, the mean focal standard error for item discrimina-
tion increased with increasing c-DIF, particularly for the smaller sample size conditions. 
Finally, the focal group standard errors declined somewhat as the c parameter declined, 
particularly for the smaller sample sizes. The mean standard errors for the reference 
group item parameters were largely unaffected by the level of c-DIF. 

Further investigation of parameter estimation bias 

To gain a deeper understanding of the item parameter bias results, we can refer to item 
characteristic curves (ICC’s) for specific items. These curves, which display in graphical 
format the item response functions (IRF’s), may provide further insights into the impact 
of c-DIF on the estimation of other IRT model parameters. Figure 1 includes the ICC for 
the population parameters used to simulate the data and the mean sample estimates under 
the c-DIF=0.2/0.2 and c-DIF=0.2/0.05 conditions for the focal group. Group 1 refers to 
the population generating IRF, while Group 2 refers to the mean of the sample IRF’s for 
the focal group. In general, the population and mean sample ICC’s for the focal group for 
c-DIF=0.2/0.2 were extremely similar. On the other hand, when c-DIF=0.2/0.05 there 
was a marked difference between the focal group population and mean sample estimate 
ICC’s, particularly at the lower end of the latent trait scale, with these two curves even 
crossing at two points. These ICC’s highlight the distortion of the focal group IRF that is 
caused by the overestimation of c and b in particular, in the presence of c-DIF. 

Figure 2 contains the sample ICC’s for the reference and focal groups in the c-
DIF=0.2/0.05 condition. When interpreting the two ICC’s, it is important to keep in mind 
that the a and b for the two groups were simulated to be the same value, with only c 
simulated to be different. However, upon examination of these curves it is clear that there 
were substantial differences between the two groups, particularly for examinees with 
lower values of ability. Indeed, in this c-DIF condition, LR found uniform DIF to be 
present in 0.18 (18%) to 0.58 (58%) of simulated cases, and non-uniform DIF to be 
present at approximately the same rates, as presented in Table 2. IRTLR had uniform and 
non-uniform detection rates somewhat lower than those of LR in the 0.2/0.05 condition 
of c-DIF, though still elevated well above the nominal 0.05 level. These results were 
present despite the fact that neither uniform nor non-uniform DIF were simulated. 

 



Guessing and DIF 39

Figure 1: 
Item Characteristic Curves for population and estimated models of target item for focal group 

at the c-DIF 0.2/0.05 and the c-DIF 0.2/0.2 conditions 

 

(Group1=ICC based on population parameters; Group2=ICC based on sample estimates for focal group) 

 

 

Figure 2: 
Item Characteristic Curves for mean estimated IRF’s of target item for Reference and Focal 

groups at the c-DIF 0.2/0.05 condition 

 

(Group1=Reference group; Group2=Focal group) 
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Discussion 

DIF analysis is a staple of the test development process, serving to ensure assessment 
fairness and validity. Given this importance, it is crucial that DIF detection be accurate 
and specific not only as to the presence of DIF, but also in regard to the type. Only in this 
way can measurement specialists and psychometricians begin to pinpoint changes to 
items and exams that might be needed to ensure fairness. The purpose of this study was 
to examine the impact of c-DIF on the estimation of 3-PL item parameters, and on the 
testing of uniform and non-uniform DIF for dichotomous items. The results demonstrate 
that when c differs between groups, the consequence is poor estimation of item difficulty 
and discrimination parameters and inflation of Type I error for uniform and non-uniform 
DIF detection. This pattern of parameter estimation bias and Type I error inflation held 
across sample sizes and differences (or not) between group means on the latent trait 
being measured. In addition, the severity of estimation bias increased concomitantly with 
increases in the level of c-DIF. 

The results of this study present psychometricians and measurement practitioners with 
several implications for practice. Perhaps foremost among these is that the presence of c-
DIF will have a direct impact on the estimation of item discrimination and particularly 
item difficulty parameters, which in turn may lead to incorrect findings of uniform and 
non-uniform DIF. In this study, despite the fact that item discrimination and difficulty 
parameters were simulated to be equal for the two groups, both LR and IRTLR had ele-
vated rates of DIF detection for uniform and non-uniform DIF in the presence of c-DIF. 
Further investigation of this result revealed that bias in difficulty and discrimination for 
the focal group became more pronounced as the c parameter for the focal group became 
smaller or showed a larger difference between groups. In addition, the estimate of c was 
biased upward for the focal group when it was below 0.2 in the population. Therefore, it 
appears that inaccuracy in the estimation of lower c values led to an overestimation of 
other item parameters, particularly difficulty, for the focal group. In turn, this distortion 
of the IRF resulted in elevated findings of uniform and non-uniform DIF for both IRTLR 
and LR. Of additional interest in this regard was that IRTLR had difficulty correctly 
detecting the presence of c-DIF, which was likely caused by the upward bias in the focal 
group c parameter estimate. 

These results point to the need for researchers to think carefully about both the estima-
tion of item parameters and the interpretation of DIF results. As an example, when using 
the BILOG software package to estimate item parameters, it is possible for the researcher 
to set prior distributions for discrimination, difficulty and pseudo-guessing that may 
reflect the actual item parameters more accurately than the program default values. In-
deed, for this study a very small number of example datasets were analyzed to assess the 
impact on the estimates of all three IRT parameters for the focal group of changing priors 
on c to more accurately reflect what was true in the population. We found that indeed, 
estimation bias in a, b, and c could be reduced through judicious selection of priors. 
However, in practice researchers may not know or even suspect that the value of c for 
some members of the sample might be radically different from that of others. In addition, 
changing these prior distributions in the process of parameter estimation will not address 
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the problem of inflated Type I error rates for testing uniform and non-uniform DIF using 
LR. On the other hand, if a researcher conducted the IRTLR tests for DIF manually using 
MULTILOG, rather than the IRTLR software, it would be possible to adjust the priors 
for c, if it were known that c-DIF were present.  

Knowing if c-DIF is present will require developing data screening methods to detect if 
groups are exhibiting differently guessing behavior or a certain response bias related to 
rapid guessing. Future work focused on such screening measures will be important, as 
there is evidence that groups exhibiting such behavior can differ in their means on meas-
ured traits compared to groups not exhibiting such behavior (Osborne & Blanchard, 
2011). These misleading differences may be a result of this differential guessing behavior 
leading to DIF and incorrect score comparisons across groups, which in turn has implica-
tions for assessing group differences in many environments from educational achieve-
ment tests to examination of the influence of intervention programs. We want to be sure 
we are comparing the best estimate of ability and not one clouded with many sources of 
error, which we may be able to control, such as differential guessing behavior.  

Another implication of these results is with regard to the interpretation of significant 
uniform and non-uniform DIF results. It seems possible that in some cases, findings of 
DIF for a and b could actually be caused, at least in part, by the presence of c-DIF. 
Therefore, researchers should follow up such significant DIF results with a careful exam-
ination of the groups’ item parameter estimates, including c. While such recommenda-
tions for carefully examining IRF’s as standard follow up in DIF studies have been made 
previously (Finch & French, 2007), these typically revolve around difficulty and discrim-
ination, and not the pseudo-guessing parameter. However, clearly when groups have 
different pseudo-guessing population values, all DIF testing may be called into question. 
Indeed, it is possible that in some cases where uniform or non-uniform DIF are found but 
the substantive cause of this DIF are unclear, c-DIF might be the culprit. The importance 
of this issue extends beyond the widely used 3-PL model to the constrained 3-PL model 
described by Kubinger and Draxler (2007). For this difficulty plus guessing (DGPL) 
model, item discrimination is constrained to be equal across items, but item difficulty and 
pseudo-guessing are each estimated. Given that one of the primary impacts of differential 
pseudo-guessing is on the distortion of the item difficulty parameter estimate, it would 
seem reasonable to assume that this distortion would also be present for the DGPL mod-
el, as it was for the 3-PL. However, future research should investigate this issue to ensure 
that it is indeed the case. 

Test developers and analysts also may consider the possibility of c-DIF when writing and 
reviewing individual items. For example, attention may be needed to ensure that inad-
vertent clues are not embedded in incorrect options in multiple-choice tests that might 
allow members of some examinee groups but not others to eliminate these options from 
consideration and thus improve their likelihood of correctly guessing an item. Referring 
to item writing guidelines does assist this process and the number of guidelines to con-
sider is numerous. Haladyna and Downing (1989a, 1989b), for instance suggest 43 item-
writing guidelines. However, much like the lack of attention to guessing behavior, there 
is little, if any, empirical support for over half of these guidelines (Haladyna, 2004). 
Future work should focus on systematic empirical examinations of writing guidelines 
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that deal with distracters and guessing behavior in multi-choice items, for example, with 
the goal of reducing this probability of this behavior due to the item characteristics.  

A final implication to be drawn from this study is that the detection of c-DIF using statis-
tical tools may be problematic. The only one of the major DIF detection procedures that 
allows for such testing, IRTLR, had very low c-DIF detection rates across all of the 
conditions simulated in this study, despite the fact that in some cases the focal group’s c 
value was one-fourth that of the focal group. Indeed, the highest rate of such detection 
was 0.16, which occurred for the largest sample size and greatest level of c-DIF. In addi-
tion, estimates of the focal group c using BILOG tended to be upwardly biased toward 
the population value of the Reference group (0.2), which likely led to the low detection 
rates for IRTLR, and which would make even a visual comparison of the groups’ c val-
ues for DIF somewhat difficult. As discussed above, this problem could be ameliorated 
to some extent by the judicious selection of a prior distribution for c. Such a selection 
would require that the researcher be cognizant of the possibility that the c parameter for 
one or more groups in the sample may vary to some extent, and some notion as to what 
the appropriate prior distribution should be. While neither of these expectations is unrea-
sonable, they also are not typically central to an IRT analysis, which tends to be focused 
more on item difficulty and discrimination. Future DIF work may need to focus on more 
accurate estimation of the c-parameter and methods to increase accurate detection of c-
DIF.  

In summary, measurement professionals must be sensitive to the possibility of c-DIF and 
its potential impact on both IRT parameter estimation and testing for both uniform and 
nonuniform DIF. Ignoring the potential for c-DIF could lead to poor estimation of item 
difficulty and discrimination parameters and false findings of uniform/non-uniform DIF. 
In turn, such results could lead to the needless changing of existing items and develop-
ment of new items to replace those falsely identified as containing uniform or non-
uniform DIF. In addition, the root cause of the problem, c-DIF, would be ignored and not 
corrected. More importantly, such differences in guessing behavior, as captured in c-DIF, 
may lead to uniform and non-uniform DIF items which could, in turn, accumulate to 
influence mean score levels for groups. This artificial change in scores calls into question 
the validity of score inferences and hence decisions we make about groups and individu-
als. The extent to which this can occur is critical to understand in future work.  
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