
Psychological Test and Assessment Modeling, Volume 55, 2013 (2), 148-161 

Increasing unidimensional measurement 

precision using a multidimensional item 

response model approach 

Steffen Brandt
1
 & Brent Duckor

2
 

Abstract 

In recent years the estimation of unidimensional abilities for instruments with subtests has been a 

focus of item response theory. Different hierarchical models, which assume a common unidimen-

sional latent trait and several subtest specific latent traits, have been proposed in order to cope with 

local item dependencies due to subtests. In contrast to these models, the generalized subdimension 

model (GSM) allows for the estimation of a latent mean ability based on multidimensional latent 

traits. Examining a small data set (n=72) this article examines the implicit weighting of the unidi-

mensional model in contrast to the explicit weighting of the GSM to improve measurement preci-

sion. 
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In their introduction to multidimensional measurement Briggs and Wilson (2003) note 

that measuring latent variables in the human sciences is a combination of “art and sci-

ence.” Following Wright and Masters (1982, p. 8) psychometricians in the Rasch IRT 

tradition describe the four basic scientific requirements for measuring as: 

1. The reduction of experience to a one dimensional abstraction, 

2. more or less comparisons among persons and items, 

3. the idea of linear magnitude inherent in positioning objects along a line, and 

4. a unit determined by a process which can be repeated without modification over the 

range of the variable. 

 

The art of measuring, according to Briggs and Wilson, is the non-trivial task of finding 

the smallest “number of latent ability domains such that they are both statistically well-

defined and substantively meaningful” (p. 88). Considering the complexity of this task, 

the authors acknowledge that “the art of measuring often hands us something that 

doesn’t quite conform to these fundamental rules” (p. 88). Presenting the advantages of 

the multidimensional item response theory (IRT) approach Briggs and Wilson focused 

their work on the multidimensional model’s capabilities in constructing statistically well-

defined dimensions using a smaller number of items. 

A fundamental tension with meeting the scientific requirements for measuring, however, 

entails the task of finding domains that are “substantively meaningful” and statistically 

well-defined. Too often, content experts can agree on whether a domain is substantively 

meaningful, though it may not appear to be statistically well-defined by psychometri-

cians. Conversely, measurement experts can agree that a dimension is statistically well-

defined, but can not persuade others as to a substantive definition to support its use. This 

problem is illustrated in large-scale studies such as the Programme for International 

Student Assessment (PISA). For policy stakeholders an interpretation of their country’s 

student ability estimates in the mathematics dimension “Change and Relationship”
3
 

might not be substantively meaningful, since from a policy perspective they are being 

evaluated with the unidimensional results in the overall mathematics dimension on the 

PISA. More often, in these large-scale testings, the focus for stakeholders is on a particu-

lar country’s performance (i.e., ranking) across all tested dimensions. For educational 

researchers and practitioners, on the other hand, the results of a multidimensional analy-

sis of the data set are potentially more meaningful and authentic to how children learn. 

Psychometric findings that inform the multi-dimensional nature of mathematics 

knowledge and skills acquisition are welcome. For these stakeholders, the focus is more 

often on a multi-faceted, complex analysis of the internal structure of the score data and 

making valid inferences about particular dimension or use of sub scores (APA, AERA, 

NCME, 1999).  

                                                                                                                         
3
 The mathematics framework in PISA differentiates the general mathematics ability on five different 

subscales: Quantity, Change and Relationships, Space and Shape, and Uncertainty (OECD, 2013). 
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In order to cope with these alternate and potentially conflicting needs, measurement 

specialists have attempted to satisfy different stakeholders by running analyses from two 

different but related lens. In the first instance, the data set is calibrated using a unidimen-

sional IRT approach to yield global scores on a single scale. In the second instance, the 

data set is calibrated using a multidimensional approach (OECD, 2009). Due to a lack of 

plausible alternatives, this approach is common practice in PISA, and in other large-scale 

assessments such as TIMSS and PIRLS (Martin, Mullis, & Kennedy, 2007; Olsen, Mar-

tin, Mullis, Martin, & Mullis, 2008). 

A main problem with this “re-run” approach is in the negligence of local item depend-

ence (LID). If the data is multidimensional but interpreted unidimensionally, the neglect-

ed LID leads to an overestimation of reliability and biased parameter estimates (see, e.g., 

Wang & Wilson, 2005; Yen, 1980). In the search for alternatives, a growing variety of 

item response theory (IRT) models now focus on the estimation of unidimensional abili-

ties for tests including subtests. Depending on whether the suspected LID due to the 

subtests is based on the type of test construction (e.g., due to the use of item bundles) or 

on the psychological construct that is to be measured (e.g., the assumption of sub-

competencies), these models are typically denoted as testlet models (Bradlow, Wainer, & 

Wang, 1999; Wang & Wilson, 2005) or as hierarchical or higher-order models (de la 

Torre & Song, 2009; Gibbons & Hedeker, 1992; Sheng & Wikle, 2008), respectively. 

However, it has been shown that the testlet model and the higher-order model are for-

mally equivalent and both are restrictions of the hierarchical model (Li, Bolt, & Fu, 

2006; Rijmen, 2010; Yung, Thissen, & McLeod, 1999).  

Additionally, all the mentioned models assume the existence of a unidimensional latent 

trait, and in doing so, assumptions regarding the LID or the sub-competencies are intro-

duced in order to yield its identification. That is to say, it is assumed that any common 

variance between sub-competencies, or groups of items with LID, originates in the uni-

dimensional latent trait to be measured. A further aspect of this approach, however, is 

that the weighting of the subdimensions (e.g., the testlet dimensions) for the general 

(overarching) dimension is undefined. In the hierarchical model it is not clear how the 

subdimensions are weighted for the calibration of the general person ability estimates. 

The weighting of the subdimensions will depend on the subdimensions discrimination 

according to the general latent trait. Comparable to higher discriminating items in the 2-

PL model (Birnbaum, 1968), here higher discriminating subdimensions will inadvertent-

ly receive higher weights.  

The approach presented in this article does not assume the existence of a unidimensional 

latent trait but rather rests on the assumption of a truly multidimensional construct. 

Based on the generalized subdimension model (GSM) proposed by Brandt (2012), latent 

mean abilities are calculated from multidimensional scales in order to yield unidimen-

sional ability estimates (without assuming the existence of a unidimensional trait). In 

contrast to the above-mentioned testlet and higher order models, the multidimensional 

latent variables can freely correlate in this modeling approach. Following the framework 

of Holzinger and Swineford’s work (1937) one might conceptualize the GSM as a modi-

fied hierarchical model (cf. Brandt, 2012). 
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Of course one might propose an alternative approach: Why not simply obtain the unidi-

mensional ability estimates, using the ability estimates of the multidimensional model, 

and then summarize these by a mean score? In order to do so, however, the ability esti-

mates have to be standardized such that the dimensions yield equal variances (assuming 

an equal weighting of the dimensions), and further, the standardized estimates have to be 

summarized in a single score. To conduct the necessary calculations for the standardiza-

tion, the usage of point estimates, for example, leads to additional measurement error: 

the estimated values of the dimensions' variances given by the multidimensional model 

include a measurement error. The standardization, that is, the multiplication of each 

ability estimate with the estimated variance therefore results in an additional inclusion of 

the measurement error of the variance estimate in each (standardized) ability estimate, 

and thereby in an increased overall measurement error for each ability estimate. Since in 

the GSM the necessary parameters are directly estimated without making a detour via 

point estimates, it avoids such an increase in measurement error. 

The aim of this article is two-fold. First, we demonstrate the advantages of a latent mean 

ability approach for unidimensional estimates by showing its statistical advantages in yield-

ing more precise and more appropriate (i.e., less biased) estimates. Second, we show the 

differences in interpretation due to an explicit weighting of the subdimensions, and contrast 

this approach with the implicit weighting of the subdimensions in a traditional unidimen-

sional approach. We demonstrate the advantages of the GSM approach by applying it to a 

classroom assessment literacy (CAL) scale currently used to measure pre-service teachers’ 

assessment knowledge at a large public university in Northern California. 

Background and context of the CAL scale 

In the United States, accountability in the teaching profession is maintained, in part, 

through licensure process that includes the use of standardized testing batteries and 

performance assessments to warrant readiness to teach. The intended purpose of these 

large-scale instruments is to warrant a summative judgment about readiness to teach 

across a multitude of proficiencies such as planning, instructing, assessing and so forth. 

In California, as in most states, only a few items or tasks are used to assess pre-service 

teachers’ competency in the domain of classroom assessment itself. State licensing bod-

ies for teacher certification have set minimum standards for “safe beginners” in the area 

of classroom assessment (National Research Council, 2000) but many of these 

items/tasks focus narrowly on data interpretation. Information about an individual teach-

er’s ability, skill, and/or knowledge of the principles and practices that can be employed 

to guide and improve their own classroom assessments is not measured by these large-

scale instruments. This poses a problem for measuring classroom assessment literacy at 

the individual and program level across the teacher population in any meaningful way. 

Building on previous research into the development of measurement expertise (B. Duck-

or, Draney, & Wilson, 2009; B. M. Duckor, 2006), a team of educational researchers and 

teacher educators have recently begun to develop a substantively meaningful instrument 

intended to measure teachers’ proficiency with the major domains of assessment exper-
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tise as defined by national experts (Pellegrino, Chudowsky, & Glaser, 2001). Utilizing a 

modified version of the Assessment Triangle (Pellegrino et al., 2001) framework, the 

CAL scale advances a multi-dimensional theory of assessment literacy that draws upon 

three topics of knowledge to demonstrate proficiency with understanding classroom 

assessments – their design, use, and interpretation. While the researchers suspected that 

some of the proficiencies across the topics are strongly related, they nonetheless sought 

to carefully distinguish between each of the topics in the construct definition phase. A 

total of three construct maps (Wilson, 2005) were initially developed to represent each of 

the three major domains shown in Figure 1. 

In the first topic domain, there is the Understanding Cognition and Learning Targets 

(CLT) map, which focuses on the types and quality of the construct map representations 

the classroom assessor uses to define an assessment target. The second topic domain is 

the Understanding the Assessment Strategies and Tools (AST) map. This variable focus-

es on the classroom assessor’s knowledge of traditional item formats and uses, in addi-

tion to the general rules for constructing “good” items. The third topic domain is the 

Understanding Evidence and Data Interpretation (EDI) map; it includes the classroom 

assessor’s knowledge and use of the properties of scoring and evaluation strategies, 

which depend on purpose and use (e.g., grading, feedback, reporting). At the highest 

levels on each map, the classroom assessor is expected to employ ideas related to validi-

ty, reliability, and standardization to evaluate the issues and problems related to, e.g., 

identification of cognitive learning targets, choice of item types to elicit a range of stu-

dent skills and abilities, use of different scoring strategies to evaluate patterns of student 

progress, and so forth.  

 

 

 

Figure 1: 

The three major domains of the modified assessment triangle framework: Cognition and 

Learning Targets (CLT), the Assessment Strategies and Tools (AST), and Evidence and 

Data Interpretation (EDI). 
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Initially, Duckor et al. (B. Duckor et al., 2013) employed the unidimensional construct 

modeling approach to evaluate the psychometric properties of the classroom assessment 

literacy (CAL) variable. The researchers’ primary goal was to construct a measure of pre-

service student teachers (in terms of latent “proficiency”) and calibrate items (in terms of 

task “difficulty”) on a technically sound scale. Towards this end, they examined evidence 

for validity and reliability scores derived from the classroom assessment literacy instru-

ment. Guided by nationally recognized standards (AERA, APA, & NCME, 1999) for 

instrument validation, the internal structure of the scale demonstrates acceptable fit ac-

cording to a partial credit item response model. Evidence for relations to other, external 

variables (e.g., PACT, 2007) was strong. The CAL instrument’s reliability was high 

(.94). The researchers also reported that model fit differences between constructed re-

sponses and fixed choice item formats provide insight into new directions for modeling 

the CAL variable. 

The CAL scale was developed and piloted in order to evaluate the pre-service teachers’ 

proficiency with understanding classroom assessment principles and practices. In ac-

cordance with the initial research design, it is assumed that responses to items can be 

differentiated into three different dimensions. That is, respondents (student teachers) 

should employ different levels of proficiency with CLT, AST, and EDI constructs. In this 

case, a calibration and interpretation of the item response data using a multidimensional 

IRT model would appear to be a straightforward solution in order to match the internal 

structure of the instrument. However, for the purposes of formative evaluation of re-

spondents in the classroom context, the analyses generated by traditional multidimen-

sional models are typically not at the right grain size to aid the end-user (in this case, 

teacher educators). In order to decide whether the student teacher has obtained a suffi-

cient degree of knowledge to pass a course, for example, it would be necessary to have a 

single ability estimate across all three dimensions. Further, if the instrument were includ-

ed in a state licensure context it is necessary for decision makers to obtain results that are 

readily interpretable, for example, in order to decide whether the general level of these 

proficiencies is sufficient to warrant provisional licensure or if additional resources and 

support (e.g., professional development) are required to improve these proficiencies 

across a larger population of teachers.  

Following the described multidimensional modeling approach using the GSM, this arti-

cle therefore explores the technical properties of a pilot classroom assessment literacy 

(CAL) scale for unidimensional ability estimates based on multidimensional latent varia-

bles. 

Method 

Data 

The Classroom Assessment Literacy instrument is a pre- and post-test designed to meas-

ure teachers’ understanding and use of the modified version of the National Research 

Council’s “Assessment triangle” framework with particular focus on the three topic 
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domains “Cognition and Learning Targets”, “Assessment Strategies and Tools”, and 

“Evidence and Data Interpretation” (Pellegrino et al., 2001). The test consists of 55 

items: 13 constructed response and 42 fixed choice questions. We analyzed 13 con-

structed response items from the CAL instrument, which were all coded as partial credit 

items with three different score categories each, ranging from 0 to 2. There are three 

items on the CLT sub-scale, four items on the AST sub-scale, and six items on the EDI 

sub-scale. 

A sample of 72 respondents consisting of pre-service teachers who participated in a post 

baccalaureate course, titled “EDSC 182: Classroom Assessment and Evaluation” was 

obtained for this study. The 182 course was taught at a large California State University 

by the second author concurrently with Phase II/III student teaching field placements in 

diverse middle and high school classrooms. Respondents in the 182 course completed 

four course exhibitions, including the pre- and post-test described above. The data used 

in this study is taken from the post-test. 

Model definition 

The applied partial credit extension of the generalized subdimension model (Brandt, 

2012) is given by 

    
( 1)

( ) ( )log
nij

ni j

p

k i n nk i ijp
d b


    , (1) 

where pnij is the probability of person n to give an answer corresponding to answer cate-

gory j of item i; pni0 the corresponding probability of giving an answer matching category 

(j-1); bij is the difficulty of step j of item i; θn is person n’s ability on the constructed 

unidimensional dimension (denoted as main dimension); γnk(i) is the person’s subtest 

specific ability for (sub-) dimension k (with item i referring to dimension k) relative to 

the ability on the main dimension; and dk(i) is the translation parameter that translates the 

different multidimensional (or subdimensional) scales to a common one. Corresponding 

to hierarchical models, it is assumed that each item loads on exactly one subdimension. 

In order to identify the model several restrictions on the parameters have to be applied. 

First, the mean of the ability estimates θ and γk have to be constrained to zero, and the 

correlations between the main dimension and the K subdimensions have to be set to zero. 

Further, for each person the sum of the subtest specific parameters has to be constrained 

to zero ( 0)nkk
  , and the square of the parameters dk are constrained to the sum of K 

with each dk additionally constrained to be positive
2( )kk

d K . 

The latter two constraints result from the characteristics of a mean score, and it can be 

shown that the given definition results in the main ability estimate to be the (equally 

weighted) mean of the specific abilities (Brandt, 2012). 
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Estimation 

The estimation of the unidimensional partial credit model (Masters, 1982) and the gener-

alized subdimension model was conducted following a Bayesian approach (Gelman, 

Carlin, Stern, & Rubin, 2003) using the computer program WinBUGS 1.4 (Lunn, Thom-

as, Best, & Spiegelhalter, 2000). In the Bayesian approach, prior distributions are as-

signed to the model parameters, and these along with the model definition and the ob-

served data are used to produce a joint posterior distribution for the parameters. Win-

BUGS uses Markov Chain Monte Carlo techniques based on the Metropolis-within-

Gibbs algorithm, a modified Metropolis-Hastings algorithm (Chib & Greenber, 1995), in 

order to simulate the joint posterior distribution.  

For the presented analyses each item parameter is estimated based on a normal prior with 

mean 0 and variance 0.0001. The used priors for the variance estimation of the person 

parameters base on uniform and inverse gamma distributions. More precisely, the esti-

mated person parameter variance in the unidimensional model and the variance of the 

main dimension in the generalized subdimension model are estimated using priors with 

uniform distributions from 0 to 100, and the variances and covariances of the subdimen-

sions in the generalized subdimension model are estimated using an inverse-Wishart 

prior. The used hyperparameters for the inverse-Wishart prior are the identity matrix and 

the number of dimensions as degrees of freedom. 

Further, both models are estimated using five Markov chains with different initial values. 

A total number of 11,000 iterations is calculated for each estimation with the first 1,000 

iterations used as burn-ins. Every tenth iteration the simulated draws are saved, resulting 

in 1000 saved simulation draws for the calculation of the estimated parameters. The 

convergence of the chains was checked using the potential scale reduction factor (Brooks 

& Gelman, 1998; Gelman & Rubin, 1992). 

Results and discussion 

All calibrations converged well and the potential scale reduction factor for all variables 

is close to one
4
. The calibrations of the generalized subdimension model and of the uni-

dimensional model result in deviances of 1,324 and 1,376, respectively; that is, the uni-

dimensional model yields a lower likelihood, and a multidimensional calibration is sup-

ported. The latent correlations, which range from .74 to .82, and the variances, which 

range from 1.08 to 2.63, (cf. Table 1) as well suggest the measurement of a heterogene-

ous construct including multiple dimensions.
5
 A further argument for the heterogeneity 

of the data yields the comparison of the item parameter estimates from the unidimen-

                                                                                                                         
4
 For all variables the scale reduction factors' differences to one were below 0.002. 

5
 In the above mentioned large scale assessments even such different domains such as reading and sci-

ence typically show a higher correlation (>.9) and more similar variances than the here observed results 

(cf. OECD, 2009). 
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sional model and from the GSM (which are equivalent to those of the multidimensional 

model). Figure 2 shows that the variance of the item parameters for the dimension Cog-

nition and Learning Targets is clearly reduced when estimated within the unidimensional 

model, whereas the estimates of the other two dimensions are more closely related for 

the unidimensional and GSM estimations. 

 

Table 1:  

Multidimensional Estimation Results 

Dimension Variances and Correlations 

CLT AST EDI 

CLT 2.63 .74 .82 

AST  1.28 .79 

EDI   1.08 

Note. Entries on the diagonal represent variances; entries above the diagonal 

represent correlations. 
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Figure 2: 

Comparison of the item estimates for the CLT, AST, and EDI dimension using a 

unidimensional calibration and a GSM calibration. 
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The calibration of the unidimensional model results in a variance of 1.01, and the corre-

sponding (main dimension) variance in the generalized subdimension model is equal to 

1.39. In order to compare the precision for the unidimensional ability estimates, the 

Expected a Posteriori (EAP) Estimates and their posterior standard deviations, which 

serve as standard errors, are depicted in Figure 3. It demonstrates that the GSM yields 

smaller standard errors for the ability estimates than the unidimensional model. The 

GSM yields a mean standard error in standard deviation of 51.8% for the unidimensional 

ability estimates while the unidimensional model yields 53.6%
6
. The resulting difference 

of 1.8% corresponds to an increase in measurement precision by 3.4%. 

A further characteristic of the generalized subdimension model is that it explicitly de-

fines the subdimensions to be of equal weight
7
. In the unidimensional model the 

weighting of the subdimensions is implicit and is based on the total score that can be 
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Figure 3: 

Comparison of the standard errors of the unidimensional person parameter estimates from the 

unidimensional model and from the generalized subdimension model and from the composed 

mean score of the multidimensional person parameter estimates. 

 

                                                                                                                         
6
 In comparison to the standard deviation, the standard errors might seem high. However, in a large scale 

sample that includes a variety of different universities and programs, the achievement of the student 

teachers are assumed to vary to a larger extent, which will result in a larger standard deviation and there-

fore in smaller standard errors in comparison to the standard deviation. 
7
 Brandt (2012) also describes the extension of the model by a weighting parameter, which is not consid-

ered here. 
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achieved within each subdimension. The total score depends on the number of items and 

on the number of scoring categories of each item. For the given data set the unidimen-

sional model, therefore, results in a weighting of 23% (CLT), 31% (AST), and 46% 

(EDI) for the respective subdimensions (cf., Table 2). In the above given definition of 

the GSM, on the other hand, the subdimensions are of equal weight. 

If students show varying strengths and weaknesses in the subdimensions, their individual 

total score clearly depends on the applied weighting. Table 3 demonstrates the resulting 

differences by comparing the achievement of two single students included in the data set. 

The shown IRT ability estimates were standardized with a mean of 500 and a standard 

deviation of 100 (a commonly used scale, e.g., in the PISA study (OECD, 2009)). While 

according to the unidimensional model the first student outperforms the second student 

by 26 points (i.e., 26% of a standard deviation), according to the generalized subdimen-

sion model the second student outperforms the first by 8 points. The students’ differ-

ences in the sum scores for the single subdimensions explain the origin of these contra-

dictory results. Since the first student has a strength in the subdimension EDI, which has 

a high weight in the unidimensional model, and a weakness in CLT, which has a corre-

sponding low weight, this student benefits from a calibration using the unidimensional 

model; while the contrary is true for the second student with a strength in CLT and a 

weakness in EDI. There are no a priori grounds for accepting one interpretation over the 

other. The stakeholder must decide whether the results according to the unidimensional 

model or the GSM are more appropriate and useful in making a decision about student 

progress and/or achievement. 

 

Table 2:  

Weights of the Subdimensions 

Dimension Items Score Weight Unidimensional  

Model 

Weight GSM 

CLT 3 6 .23 .33 

AST 4 8 .31 .33 

EDI 6 12 .46 .33 

 

 

Table 3:  

Comparison of Two Students 

Studen

t 

Score 

CLT 

Score 

AST 

Score 

EDI 

Total 

Score 

Ability 

Unidimensional 

Model 

Ability 

Generalized 

Subdimension Model 

A 3 7 12 22 598 575 

B 6 6 9 21 572 582 

 



Increasing unidimensional measurement precision... 159 

Conclusion 

The results demonstrate that the multidimensional approach using the GSM allows the 

definition of an overall unidimensional ability estimate with increased measurement 

precision. In this case, the gain in precision (6.7%) was smaller than for the large-scale 

data set reported by Brandt (2012). Additionally, however, the further empirical analyses 

presented underscore the importance of utilizing an explicit weighting when approaching 

the problem of arriving at a “substantively meaningful” and statistically well-defined 

solution. 

As Ackerman (1992) pointed out two decades ago: “because ordering is a unidimension-

al concept, researchers cannot order examinees on two or more abilities at the same time, 

unless they base their ranking on, for example, the weighted sum of each skill being 

measured” (see also Briggs & Wilson, 2003). The implicit weighting of the unidimen-

sional model, however, is not transparent at first sight and may lead to invalid inferences 

about person proficiency or ability estimates. Additionally, the unidimensional model 

does not allow for a change in the implicit weighting, unless the number of items or 

scoring categories in an item is changed, which adds complexity to the test design and 

arguably less parsimony. The GSM, on the other hand, allows for an explicit weighting 

of the subdimensions and, thereby, makes the weighting transparent to stakeholders. 

Further, for policy makers interested in measuring trends with constructs weighted equal-

ly over time, it may also reduce the complexity of the “at scale” test design to invite more 

parsimonious interpretation of results. 

A further characteristic of the generalized subdimension model in comparison to the 

unidimensional model is that it directly provides estimates for individual strengths and 

weaknesses in the different domains (by the gamma parameters). Although not directly 

addressed in this analysis, an additional benefit of the GSM approach is that it can pro-

vide estimates in educational contexts envisioned by the developers of the CAL instru-

ment. The GSM approach allows the university instructor to differentiate teacher candi-

dates (in this case, pre-service students) not only on a linear scale but also according to 

different types of proficiency profiles. These profiles might detect weakness in a topic 

area such as Cognition and Learning Targets (CLT): diagnostically, the instructor may 

want to review instruction related to defining and representing student thinking with 

concept maps or taxonomies; formatively, the instructor might reinforce instruction 

activities with timely, specific, addressable feedback on assignments and activities in the 

CLT unit; summatively, the instructor is likely most interested in the single scale score 

and may simply wish to obtain a precise measure before issuing a grade. An innovation 

of the GSM is that it integrates both the formative and the summative information in a 

coherent, theoretically sound modelling approach. 

From the instructors’ perspective, educational interventions leading to decisions such as 

re-teaching the unit or redesigning a lesson or deploying more feedback should be guid-

ed by reliable score information. The multidimensional approach, using the GSM, pro-

vides a way for making better decisions about individual learners’ needs and perfor-

mance, for different stakeholders and contexts. We offer a modeling strategy with explic-
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it weightings that directly addresses the tension between the non-trivial task of finding 

the smallest “number of latent ability domains such that they are both statistically well-

defined and substantively meaningful.”  
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