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Evaluation of the ²-statistic and different 
fit-indices under misspecified number of 
factors in confirmatory factor analysis 

Michael Themessl-Huber1 

Abstract 

Model evaluation is one of the most important parts in confirmatory factor analysis. There are 
different criteria to evaluate the fit of a model. 

Using data simulation the type-I-risk and the type-II-risk of the ²-statistic were investigated. 
Therefore, a correct specified model and two models with misspecified number of factors were 
tested under different simulation conditions. The behavior of the standardized root-mean-square 
residual (SRMR), the root-mean-square error of approximation (RMSEA) and the comparative fit 
index (CFI) were also investigated. Cut-off values provided by Hu and Bentler (1999) were used 
for these fit-indices. To compare different models the ²-difference-test or the F-statistic (Kubinger, 
Litzenberger, & Mrakotsky, 2006) can be used. The behavior of these methods was investigated 
too. 

It was shown, that the ²-test did not hold the type-I-risk of 5 %. For the SRMR and the RMSEA 
different cut-off values should be used under present misspecification. The cut-off values for the 
CFI seem to be adequate. The F-test is an alternative to the ²-difference-test. It has the advantage, 
that it can be also used even if models are non-nested.  
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Introduction 

Confirmatory factor analysis (cfa) can be used for a variety of purposes, such as psy-
chometric evaluation, construct validation or for scale development to examine the latent 
structure of a test instrument (Brown, 2006). 

One of the most important aspects in cfa is regarding model fit. There exist different 
criteria to evaluate the acceptability of the fitted cfa solution. Often global criteria are 
used for model assessment. Because of some disadvantages of the classical ²-statistic, 
many fit-indices have been developed. With increasing sample size, the value of the ²-
statistic gets larger. This means, that models might be rejected although the differences 
between the input matrix and the model implied matrix are negligible. On the other side, 
a sufficient large sample is needed, so that distributional assumptions are fulfilled 
(Brown, 2006; Schermelleh-Engel, Moosbrugger, & Müller, 2003). Thus, the ²-statistic 
is strongly affected by sample size. 

In contrast to the ²-statistic, which is judging exact model fit, fit-indices evaluate a 
model according to certain indicators. They can be categorized in absolute-fit-indices, 
incremental-fit-indices and fit-indices adjusting for model parsimony. Each type pro-
vides different information about model fit (Brown, 2006). For an overview of fit-indices 
see Hooper, Coughlan and Mullen (2008) or Schermelleh-Engel et al. (2003). Now, one 
index out of each category is presented:  
 

1. Absolute fit-indices 

This class of indices evaluates a model without taking other models (more restrict-
ed) into account. Model fit is evaluated on an absolute level. The ²-statistic is an 
example for such an index. Another one is the standardized root mean square resid-
ual (SRMR). The SRMR is defined as the average discrepancy between the covari-
ances in the input matrix and the model-implied matrix. Thus, it is derived from a 
residual covariance matrix. 

 



( )
1 1

2 [ ]²

1

p i ij ij

i j
ii jj ii jj

s

s s s s
SRMR

p p

σ
= =

−
=

+

 
  

p stands for the number of indicators, ijs  for the empirical covariances, ijσ  for the 
reproduced covariances. The observed standard deviations are given by iis  and jjs . 

The SRMR takes values between 0 and 1. The lower the SRMR, the better the mod-
el fit (Brown, 2006; Schermelleh-Engel et al., 2003).  
 

2. Incremental fit-indices 

A given model is evaluated in relation to a more restricted base model. For the base 
model often a “null model” or “independency model” is chosen, where all covari-
ances among the observed variables are set to 0. 
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The comparative fit-index is an often used index out of this class: 
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Where 2
Tχ  is the ²-value of the target-model and 2

0χ  the value of the “null model”. 
The degrees of freedom are given by Tdf  for the target-model and by 0df  for the 
null model. The CFI ranges from 0 to 1. Higher values indicate better model fit 
(Bentler, 1990; Schermelleh-Engel et al., 2003).   
 

3. Parsimony correction 

These indices take the number of parameters of the model into account. There is a 
penalty term for too large models. Given two different models with the same fit on 
an absolute level, the one needing less parameter is preferred in this category. One 
index of this class is the root mean square error of approximation (RMSEA): 
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The RMSEA is insensitive to sample size n. The upper range of the RMSEA is un-
bounded, but values greater than 1 are rarely observed. The lower the RMSEA, the 
better the model fit. A value of 0 indicates perfect fit (Brown, 2006; Steiger & Lind, 
1980). 

 

The sampling distribution of fit-indices is unknown, so cut-off values are needed to 
decide whether a model fits the data or not (Schermelleh-Engel et al., 2003). Given that 
many researchers evaluate their models using global fit indices, it is important to investi-
gate the usefulness of such rules of thumbs. 

In a simulation study, Hu and Bentler (1999) provided cut-off-values for some fit-indices 
under different simulation conditions. Factor correlations and/or factor loadings were 
misspecified. They suppose model fit, if: 

SRMR < 0.11 

CFI > 0.95 

RMSEA < 0.08 for n < 250  

RMSEA < 0.06 for n ≥ 250 

 

Fit-indices are affected by various aspects such as sample size (Fan, Thompson, & 
Wang, 1999), model complexity or type of misspecification. Thus, the derived cut-off 
values depend on the simulation scenarios. Hu and Bentler (1999) were aware about the 
limitations of their study: "it is difficult to designate a specific cut-off value for each fit-
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index because it does not work equally well with various conditions" (p. 27). In spite of 
the authors warnings, the proposed cut-offs were misinterpreted as "golden rules" by 
practitioners. Nevertheless, Beauducel and Wittmann (2005) recommended the same cut-
off values for these indices. 

In another simulation study was shown, that the values of the ²-statistics and the fit-
indices are affected by factor loadings (Heene, Hilbert, Draxler, Ziegler, & Bühner, 
2011). Hu and Bentler (1999) did not vary the factor loadings in their simulation, they 
used comparatively high loadings between 0.7 and 0.8. 

Heene, Hilbert, Freudenthaler and Bühner (2012) investigated the usefulness of the 
introduced cut-off values in case of misspecified models evoked by unspecified 
correlated errors. They variied the sample size, the factor loadings and the strength of 
misspecification in their simulation. The SRMR and RMSEA accepted many false 
models. The CFI accepted slightly misspecified models. 

In this work, the behavior of the ²-statistic and the presented fit-indices under misspeci-
fied number of factors are investigated. In a simulation, models with too few factors and 
models with too many factors are tested. The proportion of accepted models is an estima-
tor for the type-II-risk. Also, correct specified models (number of factors is adequate) are 
tested to calculate the type-I-risk. The cut-off values recommended by Hu and Bentler 
(1999) are used for the fit-indices. 

For model comparison, the two misspecified models are compared with the correct mod-
el. Therefore the ²-difference-test and the F-Test are used. The latter is an approach by 
Kubinger, Litzenberger and Mrakotsky (2006). The ratio of two independent random 
variables with a ²-distribution results in a F-distribution: 
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Tχ  and 2

Bχ  are the ²-statistics of the compared cfa models, Tdf  and Bdf  are the num-
ber of degrees of freedom. The target model is the model under validation. If the F-
statistic is significant, then the target model fits worse than the base model. Otherwise it 
does not fit significantly worse. By using the ²-difference-test (if possible), the target 
model would be the nested model and the base model would be the parent model. This F-
statistic might not be exactly F-distributed, because it is possible, that the ²-statistics are 
not based on independent parameter estimations. 

The application of the ²-difference-test is only possible, when models are nested. Using 
the F-test, also non-nested models can be compared. 

These two methods were also investigated. 
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Method 

The simulation was performed with the statistic software R (R Development Core Team, 
2012). The package “latent variable analysis” (lavaan; Rosseel, 2012) was used. In the 
Appendix can be found an exemplary extract to the R source-code of data generation and 
model fitting used in the present study. 

Three types of cfa population models (“true models”) were constructed. Each population 
model consists of 24 manifest variables, equally distributed over 3 factors. Such models 
are frequently used in psychological applications. For example, the 24 manifest variables 
could be the items of a questionnaire in which the items are assumed to load on 3 
different factors (personality traits). 

Population model with uncorrelated factors / without cross-loadings 

The factor loadings for the 24 manifest variables were randomly drawn from a uniform 
distribution. Factor loadings have an impact on fit-indices and the power of the ²-
statistic. Therefore, population models with low, medium, high and mixed factor load-
ings were investigated (cf. Heene et al., 2011). The corresponding loadings were drawn 
out of the intervals [0.3; 0.5], [0.5; 0.7], [0.7; 0.9] and [0.3; 0.9]. The population model 
with low loadings (completely standardized solution) is schematically depicted in Table 
1. Adding 0.2 and 0.4 to the low loadings, one gets the values for the medium and high 
loadings, respectively. 

The mixed factor loadings were given by: 

Factor 1 (x1 to x8): 0.89; 0.54; 0.37; 0.34; 0.45; 0.78; 0.50; 0.88 

Factor 2 (x9 to x16): 0.40; 0.58; 0.40; 0.44; 0.76; 0.36; 0.57; 0.35 

Factor 3 (x17 to x24): 0.64; 0.31; 0.89; 0.49; 0.68; 0.48; 0.90; 0.84 

Population model with correlated factors / without cross-loadings 

This model is equivalent to the previous model, with the difference that factors are corre-
lated: 

1, 2ρ 0.5F F =  | 1, 3ρ 0.4F F =  | 2, 3ρ 0.3F F =  

The same correlation coefficients were used in other simulation studies (Heene et al., 
2011; Hu & Bentler, 1999). 

Population model with uncorrelated factors / with cross-loadings 

For this type of population model, primary and secondary loadings were specified (see 
Table 1). The loadings were randomly drawn from a uniform distribution. The boundary 
parameters for the primary loadings were given by 0.3 and 0.9. Cross-loadings were 
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drawn out of the interval [0; 0.2]. All manifest variables have loadings on every factor. 
The indicators x1 to x8 have primary loadings on Factor 1, x9 to x16 on Factor 2 and x17 
to x24 on Factor 3. The rest are secondary loadings. 

All models were tested for sample sizes of n = 150 and n = 600. The simulation design 
results in a total of 2 (correlation no/yes) x 4 (intervals of factor loadings) x 2 (sample 
sizes) = 16 conditions. Adding the population models with cross-loadings for both sam-
ple sizes, we get 18 simulation scenarios (population models). In each of these 18 condi-
tions, three different models were tested: a 2-Factor model (misspecified, one factor too  
 

Table 1:  
Loading structure of population models 

 Population model without cross-
loadings, low loading condition 

Population model with cross-
loadings, with uncorrelated 

factors 

Indicator Factor 1 Factor 2 Factor 3 Factor 1 Factor 2 Factor 3 

x1 0.50 0.00 0.00 0.89 0.20 0.08 

x2 0.38 0.00 0.00 0.52 0.02 0.14 

x3 0.32 0.00 0.00 0.76 0.09 0.00 

x4 0.31 0.00 0.00 0.79 0.11 0.17 

x5 0.35 0.00 0.00 0.64 0.18 0.00 

x6 0.46 0.00 0.00 0.71 0.03 0.04 

x7 0.37 0.00 0.00 0.53 0.20 0.18 

x8 0.49 0.00 0.00 0.58 0.19 0.12 

x9 0.00 0.33 0.00 0.18 0.63 0.08 

x10 0.00 0.39 0.00 0.19 0.85 0.09 

x11 0.00 0.33 0.00 0.06 0.38 0.01 

x12 0.00 0.35 0.00 0.17 0.72 0.19 

x13 0.00 0.45 0.00 0.13 0.40 0.09 

x14 0.00 0.32 0.00 0.10 0.66 0.19 

x15 0.00 0.39 0.00 0.15 0.60 0.18 

x16 0.00 0.32 0.00 0.03 0.84 0.13 

x17 0.00 0.00 0.41 0.13 0.02 0.54 

x18 0.00 0.00 0.30 0.14 0.10 0.32 

x19 0.00 0.00 0.50 0.09 0.08 0.34 

x20 0.00 0.00 0.36 0.14 0.18 0.58 

x21 0.00 0.00 0.43 0.19 0.09 0.41 

x22 0.00 0.00 0.36 0.05 0.17 0.63 

x23 0.00 0.00 0.50 0.09 0.15 0.61 

x24 0.00 0.00 0.48 0.19 0.16 0.38 
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little), a 3-Factor model (correct specified) and a 4-Factor model (misspecified, one 
factor too many). For every simulation 10,000 replications were chosen, so all in all 
540,000 (18 x 3 x 10,000) models were fitted. 

Data on the manifest variables were generated from the population models using the 
simulateData procedure (lavaan; Rosseel, 2012). The simulated observations were 
multivariate, normally distributed. These raw data served as input for the cfa and was 
used to evaluate correct and misspecified models with the ²-statistic and the fit-indices. 

The correct specified 3-Factor model is always in accordance with the corresponding 
population model. Even cross-loadings are correctly specified. 

Depending on whether factor correlations are omitted or permitted in the population 
models, they are also omitted or permitted in the constructed models. One exception 
affects the 4-Factor model. Here, the correlation between the additional fourth factor and 
the other factors is always set to 0. Otherwise many improper solutions would occur, 
because the parameter estimation of the correlation coefficient between the third and 
fourth factor would often exceed the value of 1. 

The structure and the pattern of the indicator-factor loadings of the misspecified 2-
Factor-model and the misspecified 4-Factor model are shown in Table 2. In the 2-Factor-
model the indicators which originally loaded on Factor 3, are now loading on Factor 1. In 
the 4-Factor-model, one factor was split. 

The ²-statistic and fit-indices were calculated for every fitted model. Thus, in every 
simulation condition there are 10,000 values for every model and every statistic. 

In all conditions and for all fit-statistics, the proportion of accepted 2-Factor, 3-Factor 
and 4-Factor models was determined. 

The proportion of accepted 2-Factor and 4-Factor models is an estimator for the type-II-
risk, because these models are misspecified and should be rejected. The proportion of 
rejected 3-Factor models is an estimator for the type-I-risk. For the ²-test the signifi-
cance level was always 5 %. For the fit-indices, the cut-off values provided by Hu and 
Bentler (1999) were used. Furthermore, mean values and standard deviation of the ²-
statistik and fit-indices were calculated for every simulated scenario. 

Because of the misspecification, it is possible that improper solutions occur. In this case, 
the affected model gets rejected without calculating any fit-statistics, because improper 
solutions indicate gross misspecification (Brown, 2006). 

The ²-difference-test could be applied, if models were nested. Therefore, the degrees of 
freedom in the 3-Factor model (parent model) had to differ from those in the 2-Factor  
and 4-Factor model. This was the case in the population model with cross-loadings. The 
significance level was 5 %. The proportion of significantly better fitting 3-Factor models 
in comparison with 2-Factor or 4-Factor models was calculated. 

In the same manner the proportion of significantly better fitting 3-Factor models (base-
models) compared to the 2-Factor or 4-Factor models was calculated for the F-statistic (α 
= 0.05). For calculation of the F-statistic, the degrees of freedom in the compared models 
do not have to differ. That means that also non-nested models can be compared when 
using the F-statistic. 
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Table 2:  
Misspecified models 

2-Factor model 4-Factor model 

Factor 1 Factor 2 Factor 1 Factor 2 Factor 3 Factor 4 

x1  x1    

x2  x2    

x3  x3    

x4  x4    

x5  x5    

x6  x6    

x7  x7    

x8  x8    

 x9  x9   

 x10  x10   

 x11  x11   

 x12  x12   

 x13  x13   

 x14  x14   

 x15  x15   

 x16  x16   

x17    x17  

x18    x18  

x19    x19  

x20    x20  

x21     x21 

x22     x22 

x23     x23 

x24     x24 

 
Results 

The number of improper solutions turned out to be small. In most conditions, the propor-
tion of improper solutions was 0. The clearly highest percentage of improper solutions 
was 10.5 % and was observed in the condition with the 4-Factor model, n = 150 and 
mixed loadings. 

To estimate the type-I-risk, the proportion of rejected 3-Factor models (correct specified) 
was calculated in each condition (see Table 3). 
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Table 3:  
Type-I-risk under different simulation scenarios. Mean values of the ²-statistic and fit-

indices (standard deviation) and [proportion of type-I-errors] for correct specified 3-Factor 
models for every simulation condition  

 Sample size 

Simulation condition n = 150 n = 600 

Uncorrelated   

Chi-squarea   

Low 270.455 (24.142) [0.208] 256.313 (22.604) [0.075] 

Medium 270.985 (24.207) [0.214] 256.418 (22.644) [0.078] 

High 271.151 (24.232) [0.215] 256.507 (22.623) [0.075] 

Mixed 271.100 (24.290) [0.218] 256.464 (22.534) [0.076] 

SRMR   

Low 0.072 (0.004) [0.001] 0.036 (0.002) [0.000] 

Medium 0.069 (0.006) [0.000] 0.035 (0.003) [0.000] 

High 0.066 (0.011) [0.002] 0.033 (0.006) [0.000] 

Mixed 0.070 (0.006) [0.000] 0.035 (0.003) [0.000] 

CFI   

Low 0.912 (0.078) [0.613] 0.987 (0.017) [0.050] 

Medium 0.975 (0.023) [0.161] 0.997 (0.005) [0.000] 

High 0.991 (0.008) [0.000] 0.999 (0.002) [0.000] 

Mixed 0.981 (0.018) [0.063] 0.997 (0.003) [0.000] 

RMSEA   

Low 0.020 (0.014) [0.001] 0.006 (0.006) [0.000] 

Medium 0.020 (0.014) [0.000] 0.006 (0.006) [0.000] 

High 0.020 (0.014) [0.000] 0.006 (0.006) [0.000] 

Mixed 0.020 (0.014) [0.000] 0.006 (0.006) [0.000] 

Correlated   

Chi-squareb   

Low 267.305 (24.119) [0.206] 253.248 (22.480) [0.074] 

Medium 267.946 (24.206) [0.214] 253.463 (22.477) [0.074] 

High 267.972 (24.166) [0.212] 253.400 (22.458) [0.076] 

Mixed 267.964 (24.261) [0.216] 253.376 (22.352) [0.077] 

SRMR   

Low 0.068 (0.003) [0.001] 0.034 (0.002) [0.000] 

Medium 0.061 (0.004) [0.000] 0.030 (0.002) [0.000] 

High 0.047 (0.004) [0.000] 0.024 (0.002) [0.000] 

Mixed 0.061 (0.004) [0.000] 0.031 (0.002) [0.000] 
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CFI   

Low 0.920 (0.072) [0.589] 0.988 (0.016) [0.034] 

Medium 0.976 (0.022) [0.139] 0.997 (0.004) [0.000] 

High 0.992 (0.008) [0.000] 0.999 (0.001) [0.000] 

Mixed 0.982 (0.017) [0.051] 0.998 (0.003) [0.000] 

RMSEA   

Low 0.020 (0.014) [0.001] 0.006 (0.006) [0.000] 

Medium 0.020 (0.014) [0.000] 0.006 (0.006) [0.000] 

High 0.020 (0.014) [0.000] 0.006 (0.006) [0.000] 

Mixed 0.020 (0.014) [0.000] 0.006 (0.006) [0.000] 

Cross-loadings   

Chi-squarec 224.296 (22.146) [0.254] 211.049 (20.694) [0.097] 

SRMR 0.041 (0.003) [0.000] 0.020 (0.001) [0.000] 

CFI 0.983 (0.014) [0.025] 0.998 (0.003) [0.000] 

RMSEA 0.023 (0.014) [0.000] 0.007 (0.007) [0.000] 

Note. adf =252. bdf = 249. cdf = 204. 

 
 

In the small sample size condition (n = 150) the ²-test did not hold the nominal type-I-
risk of 5 %. Depending on the condition, between 20.6 % and 25.4 % of correct specified 
models were rejected. In some way, the RMSEA and the SRMR showed better results. 
The proportion of wrong-rejection rate was nearly 0. The mean values of both fit-indices 
were always below their cut-off values (RMSEA < 0.08 und SRMR < 0.11). The CFI 
seems to have difficulties to accept correctly specified models when factor loadings are 
low or medium. In the low-loading condition, the percentage of wrong-rejection rate lay 
between 0.589 and 0.613, in the medium-loading condition between 0.139 and 0.161. 
For low loadings and correlated factors the mean value of the CFI was 0.92 and thus 
below the cut-of-value of 0.95. 

If sample size is larger (n = 600), the ²-test accepted more correct specified models. The 
wrong-rejection rate was between 0.074 and 0.097. So the nominal type-I-risk is lower, but 
still tops 5 %. The SRMR and RMSEA accepted every model. The mean values of the fit-
indices are far smaller than the cut-off values. With larger sample size, the behavior of the 
CFI is improving. Only between 0 % and 5 % of models were not accepted. The mean 
values were between 0.988 and 0.999 and are therefore larger than the cut-off value. 

The proportion of accepted 2-Factor or 4-Factor models is an estimator for the type-II-
risk. On the basis of similar results for both models, only the findings for the 4-Factor 
models are presented. In Table 4 mean values, standard deviations and proportions of 
accepted models are depicted for the 4-Factor model. 

In the low loading condition and with a sample size of n = 150, the ²-test accepted 
between 20.6 % and 23.7 % of false specified models. Hence, the power is at least 0.763. 
In all other conditions, the ²-test rejected the false specified models. 
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Table 4:  
Type-II-risk under different simulation scenarios for the 4-Factor model. Mean values of the 

²-statistic and fit-indices (standard deviation) and [proportion of type-II-errors] for false 
specified 4-Factor models for every simulation condition  

 Sample size 

Simulation condition n = 150 n = 600 

Uncorrelated   

Chi-squarea   

Low 307.843 (26.547) [0.237] 405.687 (32.425) [0.000] 

Medium 381.955 (29.989) [0.000] 700.372 (42.076) [0.000] 

High 529.918 (32.772) [0.000] 1291.168 (50.489) [0.000] 

Mixed 471.557 (32.155) [0.000] 1057.488 (48.216) [0.000] 

SRMR   

Low 0.084 (0.005) [0.938] 0.055 (0.003) [1.000] 

Medium 0.113 (0.007) [0.315] 0.095 (0.004) [1.000] 

High 0.169 (0.008) [0.000] 0.159 (0.003) [0.000] 

Mixed 0.128 (0.006) [0.002] 0.112 (0.003) [0.224] 

CFI   

Low 0.762 (0.094) [0.031] 0.817 (0.033) [0.000] 

Medium 0.848 (0.031) [0.000] 0.866 (0.011) [0.000] 

High 0.890 (0.012) [0.000] 0.896 (0.005) [0.000] 

Mixed 0.805 (0.024) [0.000] 0.818 (0.009) [0.000] 

RMSEA   

Low 0.037 (0.010) [0.938] 0.032 (0.003) [1.000] 

Medium 0.058 (0.007) [0.999] 0.054 (0.003) [0.979] 

High 0.086 (0.005) [0.115] 0.083 (0.002) [0.000] 

Mixed 0.076 (0.006) [0.654] 0.073 (0.002) [0.000] 

Correlated   

Chi-squareb   

Low 308.305 (26.920) [0.206] 418.223 (33.215) [0.000] 

Medium 382.407 (30.005) [0.000] 711.751 (42.552) [0.000] 

High 528.423 (32.712) [0.000] 1295.357 (50.510) [0.000] 

Mixed 470.666 (32.257) [0.000] 1065.802 (47.895) [0.000] 

SRMR   

Low 0.086 (0.006) [0.960] 0.061 (0.004) [1.000] 

Medium 0.125 (0.011) [0.062] 0.113 (0.006) [0.294] 

High 0.196 (0.014) [0.000] 0.191 (0.007) [0.000] 

Mixed 0.143 (0.010) [0.000] 0.132 (0.005) [0.000] 
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CFI   

Low 0.771 (0.087) [0.026] 0.820 (0.030) [0.000] 

Medium 0.852 (0.029) [0.000] 0.869 (0.011) [0.000] 

High 0.892 (0.012) [0.000] 0.898 (0.004) [0.000] 

Mixed 0.812 (0.023) [0.000] 0.824 (0.009) [0.000] 

RMSEA   

Low 0.039 (0.010) [0.960] 0.033 (0.003) [1.000] 

Medium 0.059 (0.007) [1.000] 0.056 (0.003) [0.942] 

High 0.086 (0.005) [0.090] 0.084 (0.002) [0.000] 

Mixed 0.077 (0.006) [0.638] 0.074 (0.002) [0.000] 

Cross-loadings   

Chi-squarec 421.308 (35.739) [0.000] 857.727 (56.800) [0.000] 

SRMR 0.161 (0.019) [0.001] 0.151 (0.010) [0.000] 

CFI 0.871 (0.023) [0.000] 0.883 (0.009) [0.000] 

RMSEA 0.067 (0.007) [0.943] 0.063 (0.003) [0.107] 
Note. adf =252.  bdf = 249.  cdf = 252. 

 
 

For the SRMR, the proportion of wrongly accepted models in the condition with low and 
medium loadings is surprisingly high. This is the case for both sample sizes. In these 
scenarios the proportion of accepted models is between 0.062 and 1. The mean values 
ranged from 0.055 to 0.125. 

With a sample size of n = 150, the RMSEA had problems to detect the misspecified 4-
Factor models. For example, in the mixed loading condition the percentage of wrongly 
accepted models is between 63.8 % and 94.3 %. The problem held on for the larger sam-
ple size (n = 600) in the low and medium loading conditions. The mean values for n = 
150 were between 0.037 and 0.086, for n = 600 between 0.032 and 0.084. 

The CFI completely rejected the false specified models in most conditions. Only in two 
scenarios the failure-to-reject rate was greater than 0. For n = 150 and low loadings, the 
proportion of accepted models was 0.031 in the uncorrelated and 0.026 in the correlated 
population model. The mean values of the CFI ranged from 0.762 to 0.898. They were 
beyond the cut-off value.  

To compare different models, the F-test and the ²-difference-test were used. The de-
grees of freedom differed in the population model with cross-loadings for the three mod-
els. Hence, the ²-difference-test could be applied. The 3-Factor model served as parent 
model. The F-test could be computed in every scenario, because models do not have to 
be nested. For calculation of the F-test, the 3-Factor model served as the base model. It 
was tested whether the misspecified 2-Factor and 4-Factor models fit significantly worse 
than the 3-Factor model. The proportions of rejections are presented in Table 5. 
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Table 5: 
F-test and ²-difference-test. Proportions of rejected 2-Factor and 4-Factor models in 

comparison with 3-Factor models 

Simulation-
condition 

F-test ²-difference-test 

2-Factor 
model 

4-Factor 
model 

2-Factor 
model 

4-Factor 
model 

Uncorrelated     

n = 150     

Low 0.536 0.091   

Medium 1.000 0.996   

High 1.000 1.000   

Mixed 1.000 1.000   

n = 600     

Low 1.000 1.000   

Medium 1.000 1.000   

High 1.000 1.000   

Mixed 1.000 1.000   

Correlated     

n = 150     

Low 0.123 0.113   

Medium 1.000 0.997   

High 1.000 1.000   

Mixed 1.000 1.000   

n = 600     

Low 1.000 1.000   

Medium 1.000 1.000   

High 1.000 1.000   

Mixed 1.000 1.000   

Cross-loadings     

n = 150 1.000 1.000 1.000 1.000 

n = 600 1.000 1.000 1.000 1.000 
 
 

In nearly all conditions the F-test completely rejected the misspecified 2-Factor and 4-
Factor models. Only in the sample size condition n = 150, the 4-Factor model was often 
accepted when loadings were low. The F-test as well as the ²-difference-test rejected all 
misspecified models in comparison with the correct specified model in the population 
model with cross-loadings. 
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Only those 3-Factor models were considered for model comparison, which were accept-
ed by the ²-test. The results are nearly the same, if all models (inclusive rejected 3-
Factor models by the ²-test) were considered. 

If the 2-Factor or the 4-Factor model is serving as base model for the F-test, the propor-
tion of rejected 3-Factor models is 0 in all conditions. Hence, no correct specified model 
was rejected by comparison with the other two models.  

Discussion 

The ²-test did not hold the nominal type-I-risk of 5 %, especially not for n = 150. The 
²-statistic is based on a Maximum-Likelihood estimation. These estimators have excel-

lent asymptotical properties, but the behavior by small sample sizes may be problematic. 
For a correct specified model, the expected value for the ²-statistic equals the number of 
degrees of freedom. But only with a sufficiently large sample size, the test statistic fol-
lows a ²-distribution (Bollen, 1990). In the present paper this problem has been 
quantified. 

For n = 600, the ²-test still exceeded the nominal type-I-risk, but not that much. That 
means, the value of the statistic is moving closer to the expectation value (the number of 
degrees of freedom), when sample size gets larger. In the low loading and small sample 
size condition, the ²-test accepted some false specified models.  

It is a difficult task to find the optimal sample size for the ²-statistic. Is the sample size 
too small, the statistic is not ²-distributed, is the sample size too large, lowest model 
deviations will lead to rejection of the model. Muthén & Muthén (2002) recommend a 
sample size of n = 150 for multivariate, normally distributed data and correct specified 
models. This sample size did not lead to best results in this study. The optimal sample 
size depends on model complexity (Kenny & McCoach, 2003). 

The fit-indices SRMR and RMSEA almost accepted all correct specified models, the 
wrong-rejection rate is nearly 0. On the other hand, both indices did not reject many false 
specified models. The failure-to-reject rate is very high. All in all, they rejected few 
models. The used cut-off values seem not to be the best choice under present misspecifi-
cation. Maybe the threshold values for the cut-offs should be lowered for both indices. 
Then less (false specified) models would be accepted.  

The CFI rejected many correct specified models in the condition with small sample size 
and low loadings (> 58 %). In the higher loading conditions, the results are better. For 
false specified models, the CFI showed the best behavior of all statistics. In most scenar-
ios all misspecified models were rejected. The cut-off values for the CFI are appropriate. 

All statistics have problems to detect misspecified models, when factor loadings are low. 
At first glance, one will think that these low loadings are not representative. But Peterson 
(2000) showed in a meta analysis that the mean value of factor loadings in psychology 
questionnaire is 0.32, with 50 % of loadings between 0.23 and 0.37. That means, the low 
loadings in this study are common in psychology research.  
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Hu and Bentler (1999) proposed a 2-index strategy. The combination of two fit-indices 
should be used for model evaluation. This approach is based on the assumption that some 
indices are more sensitive against certain misspecification than others. But Fan and Sivo 
(2005) showed that this assumption is not always met. 

For model comparison the F-test is an alternative to the ²-difference-test, because it can 
be also used, if the number of degrees of freedom is the same in the compared models. 
Models do not have to be nested. The researcher can decide which model serves as base 
model or target model, respectively. Given that the ²-difference-test could just be com-
puted in the population model with cross-loadings, it is difficult to compare both meth-
ods. In this simulation condition no differences between the methods were found. Both 
tests rejected all false specified models. 

Although three different population models were used and the sample size and factor 
loadings were varied, the results are bound to the specific simulation conditions. Future 
research could investigate the influence of the number of manifest and latent variables. 
Those parameters were not varied in this study. Nonetheless, some recommendations for 
practitioners are given. 

From the three fit-indices, the CFI showed the most reliable results. Therefore the use of 
the CFI is recommended. For model comparison, the F-test is a helpful tool, especially 
when models are non-nested. In this case, the ²-difference-test can not be applied at all. 

To check if the number of replications (10,000) per simulation condition was large 
enough to get reliable results, one condition was also executed with 100,000 replications. 
For both numbers of replications, the results were nearly the same. At times, there were 
small differences in the third position after decimal point, but this is negligible. 
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Appendix 

#Population model with low factor loadings and uncorrelated  
#factors 
 
pop.model.low <- ' 
f1 =~ 0.50*x1 + 0.38*x2 + 0.32*x3 + 0.31*x4 + 0.35*x5 + 0.46*x6 + 

0.37*x7 + 0.49*x8 
f2 =~ 0.33*x9 + 0.39*x10 + 0.33*x11 + 0.35*x12 + 0.45*x13 + 0.32*x14 + 

0.39*x15 + 0.32*x16 
f3 =~ 0.41*x17 + 0.30*x18 + 0.50*x19 + 0.36*x20 + 0.43*x21 + 0.36*x22 

+ 0.50*x23 + 0.48*x24 
f1 ~~ 0*f2 
f1 ~~ 0*f3 
f2 ~~ 0*f3' 

 

 
#Models to be tested 
 
#2-Factor-model (misspecified, one factor too less) 

Model_2factor <- ' 
f1 =~ x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x17 + x18 + x19 + x20 + 

x21 + x22 + x23 + x24 
f2 =~ x9 + x10 + x11 + x12 + x13 + x14 + x15 + x16 
f1 ~~ 0*f2' 
 
#3-Factor-model (correct specified) 

Model_3factor <- ' 
f1 =~ x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 
f2 =~ x9 + x10 + x11 + x12 + x13 + x14 + x15 + x16 
f3 =~ x17 + x18 + x19 + x20 + x21 + x22 + x23 + x24 
f1 ~~ 0*f2 
f1 ~~ 0*f3 
f2 ~~ 0*f3' 
 
#4-Factor-model (misspecified, one factor too many) 

Model_4factor <- ' 
f1 =~ x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 
f2 =~ x9 + x10 + x11 + x12 + x13 + x14 + x15 + x16 
f3 =~ x17 + x18 + x19 + x20  
f4 =~ x21 + x22 + x23 + x24 
f1 ~~ 0*f2 
f1 ~~ 0*f3 
f1 ~~ 0*f4 
f2 ~~ 0*f3 
f2 ~~ 0*f4 
f3 ~~ 0*f4' 
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#Data generation and fitting of the models for sample size  
#n = 150 
 
library("lavaan")  #loading library lavaan 
n <- 150           #sample size 
 
#Data generation 
#Variances of the latent variables is set to 1, therefore "std.lv = T" 
#Factor loadings (population model) are completely standardized, 
#therefore "standardized = T" 
myData <- simulateData(model = pop.model.low, model.type = "cfa", 

std.lv = T, standardized = T, sample.nobs = n) 
 
#Fitting of the models 
fit_2factor <- cfa(Model_2factor, data = myData, std.lv = TRUE) 
fit_3factor <- cfa(Model_3factor, data = myData, std.lv = TRUE) 
fit_4factor <- cfa(Model_4factor, data = myData, std.lv = TRUE) 
 
#Chi-square statistic and Fit-Indices are saved 
index_2factor <- fitMeasures(fit_2factor, c("chisq", "pvalue", "cfi", 

"rmsea", "srmr")) 
index_3factor <- fitMeasures(fit_3factor, c("chisq", "pvalue", "cfi", 

"rmsea", "srmr")) 
index_4factor <- fitMeasures(fit_4factor, c("chisq", "pvalue", "cfi", 

"rmsea", "srmr")) 

 

 


