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Abstract 

This simulation study investigated the recovery of item and person parameters of the one-parameter 

logistic model for short tests administered to small samples. A potential problem with such small 

scale testing is the mismatch between item and person location parameter distributions. In our 

study, we manipulated the match of these distributions as well as test length, sample size, and item 

discrimination. Results showed the degree of mismatch likely to occur in practice has a relatively 

modest effect on parameter recovery. As expected, accuracy in parameter estimation decreased as 

sample size and test length decreased. Nevertheless, researchers investigating small scale tests are 

likely to view parameter recovery as acceptable if a study has at least 100 subjects and 8 items. 
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Psychometric methods based on item response theory (IRT) have been extensively inves-

tigated for large-scale assessments characterized by administering long tests to large 

samples. These applications frequently concern high-stakes testing, which necessitates a 

high level of quality of the parameter estimates. Often, in such situations, the person 

parameter and item location distributions are assumed to be comparable or matched in 

the sense that the distribution of locations of the test items matches the distribution of 

person parameters in the population of examinees; typically both distributions are as-

sumed to be standard normal. Considerably less research has been conducted investigat-

ing IRT methods where a mismatch between item and person parameter distributions 

exists. Such situations are more likely to be found and be of concern in small-scale sce-

narios characterized by a limited number of items (e.g., 8 to 20 items) and small samples 

(e.g., between 100 and 200 subjects). Examples of low-stakes contexts in which shorter 

scales are commonly administered to small samples include the development of tests for 

research purposes (e.g., piloting of tests, general information of item quality), psycho-

metric investigations of non-cognitive scales, and tests used as screening tools. Standard 

principles of estimation would suggest that the quality of the parameter estimation in 

such situations would suffer relative to the large-scale applications. However, in small-

scale applications, researchers may be willing to accept estimates that are less accurate 

compared to those in large-scale testing applications (Hambleton, 1989; Linacre, 1994).  

Intuitively, with a one-parameter logistic model, we would expect the quality of parame-

ter estimates to degrade to the extent that item and person location parameter distribu-

tions failed to match because an individual item is maximally informative for person 

parameter estimation and an individual person is maximally informative for item pa-

rameter estimation when the person and item are located at the same place on the latent 

continuum (i.e., when θ  i = jb , in the notation introduced below). The current study 

focuses on examining the impact of item-person mismatch on parameter estimation for 

small-scale assessments utilizing information functions in conjunction with simulation 

techniques.  

In the introduction, we discuss the choice of item response models for small-scale tests 

and why item-person mismatches are likely to be most problematic with this type of test. 

We then review the relevant literature on IRT estimation, particularly as it applies to 

short-scale tests. Finally we describe the objective of the study.   

Choice of IRT model for small-scale tests 

The majority of dichotomous IRT applications apply one of three models, which vary in 

complexity in terms of restrictions on parameters. The three-parameter logistic (3-PL) 

model specifies the probability of person i endorsing an item j (Xij = 1) as: 
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where θ  i is the person parameter for person i, jb  is the location parameter for item j,  

ja is the discrimination parameter for item j, and jc  is a lower-asymptote parameter for 

item j. When cj is fixed to 0 for all items, the 3-PL simplifies to a two-parameter logistic 

(2-PL) model. When all of the discrimination parameters are further constrained to be 

equal across items, the model simplifies to a one-parameter (1-PL) model, with its spe-

cial case being that of the Rasch model (Fischer, 1974; Wright & Stone, 1979). In the 1-

PL model, the discriminations are frequently assumed to equal 1 and the metric (vari-

ance) of the person parameters is estimated. An alternative is to estimate a single value 

for the discrimination value assuming the metric of the person parameters is known. 

Model selection and parameter estimation decisions are often affected by the intended 

context and purpose of testing. For example, in low-stakes testing situations, simple 

summed scores are likely to be preferred in that they require no specialized software or 

training on the part of the examiner. Further, simpler models that generally carry less 

stringent sample size requirements are also likely to be favored. Given these considera-

tions, we focus our investigation on the 1-PL model. 

Type of test and item-person mismatch 

Researchers who develop small-scale tests for low-stakes applications are likely to en-

counter mismatches between the locations of item and person parameters on the latent 

continuum. This item-person mismatch is more likely to occur when a researcher with 

limited resources uses a convenience sample. For example, a researcher creates a scale 

with true-false items that are intended to measure moderate to severe depression. The 

researcher has access to a convenience sample, which includes depressed individuals, but 

few, if any, severely depressed persons. As a result, the sample distribution is likely to be 

lower on the depression continuum relative to the items that were designed to make 

distinctions among levels of depression for a truly depressed population.  

The effect of item-person mismatch on parameter estimation is of less interest with high-

stakes tests, which typically are administered in the scale development stage to samples 

that are similar to their intended population. On the surface, an exception appears to be 

for adaptive testing situations in which the item pool characteristics may not provide 

optimal information for special populations of examinees (Chen, Hou, Fitzpatrick, & 

Dodd, 1997; Dodd, Koch, & De Ayala, 1993; Gorin, Dodd, Fitzpatrick, & Sheih, 2005). 

The small number of items that typically are administered in adaptive tests makes appli-

cations with these tests more akin to those for small-scale tests. However, because the 

initial calibration of item parameters for high-stakes adaptive tests generally involves 

large samples of examinees, problems with item-person mismatch are probably mini-

mized. The current study focuses on examining the impact of item-person mismatch on 

parameter estimation in small-scale IRT contexts, utilizing information functions in 

conjunction with simulation techniques. 
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Item estimation for small-scale assessment 

A number of factors may affect the precision of the item and person parameter estimates, 

including the researcher’s choice among IRT models, estimation methods, software 

programs, and shapes of item and person parameter distributions (Hambleton, 1989). The 

literature contains limited recommendations about minima for sample size and test 

length, and these recommendations are spread among a variety of IRT models and esti-

mation algorithms under a range of conditions. Accuracy of estimation is tied generally 

to the number of estimated parameters, and consequently sample-size and test-length 

recommendations generally increase as one moves from less complex to more complex 

IRT models. 

Previous research has shown that based on analytical results utilizing the Rasch model, 

stable estimates may be obtained with 30 well-targeted examinees and 30 well-fitting 

items (Linacre, 1994; Wright & Douglas, 1975, 1976; Wright & Stone, 1979). Linacre 

(1994) defined boundaries of stable item calibrations as either .5 or 1 logit away from the 

point estimate, as the author’s purpose was to stay within a grade level for any one set of 

items. Linacre (1994) and others remind us that these requirements could be lowered 

even further in situations where researchers are willing to accept a relaxed level of error 

given the purpose for the test. 

Early literature suggested that sample sizes as small as 100 might be sufficient to achieve 

satisfactory calibrations when the items on the test are positioned within a logit or two of 

the mean ability of the group (Wright, 1977). Similarly, Lord (1983) suggested that the 

Rasch model can be justifiably used in estimating person parameters in shorter tests (10 

and 15 items) when the available sample size is less than 100 or 200.  

The quality of estimation and associated recommendations are also necessarily tied to the 

estimation method (Hambleton, 1989). More recently, Wang and Chen (2005) investi-

gated item parameter estimation using joint maximum likelihood (JML) estimation as 

implemented in the WINSTEPS program (Linacre, 2010). The test length ranged from 

10 to 60 items and the sample size varied from 100 to 2000. Wang and Chang (2005) 

found that WINSTEPS underestimated the location of items in the lower tail of distribu-

tion and overestimated the locations of items in the upper tail of distribution. The maxi-

mum bias found was in tests with 10 items; bias in longer tests was found to be negligi-

ble (bias for item parameters ranged from .272 to .074 for tests 10 and 60 items, respec-

tively). Additionally, Xiong, Lewis, and Mingmei (2009) found that marginal maximum 

likelihood (MML) provided better accuracy than conditional maximum likelihood 

(CML) for estimating 1-PL model with as few as 5 items and 50 examinees. Hulin, Lis-

sak, and Drasgow (1982) conducted simulations using 2-PL and 3-PL models with 15, 

30, and 60 items and 200, 500, 1,000, and 2,000 simulated examinees using JML. They 

concluded that accurate recovery of item characteristic curves, in which the average root 

mean squared error (RMSE) was less than .05, can be achieved with 30 items and a 

sample size of 500 for a 2-PL model, and 60 items and a sample size of 1,000 for a 3-PL 

model.  
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Drasgow (1989) found that for a given sample size and number of items in the 2-PL 

model, MML estimation was superior to JML. Harwell and Janosky (1991) investigated 

tests with 15 or 25 items administered to 75, 100, 150, 250, 500, or 1,000 simulees using 

MML. They found with the 2-PL model that accurate item parameter estimates (RMSEs 

< .20) were obtained with at least 15 items and 250 examinees. Interestingly, they report-

ed RMSE values of .21 for item location parameter recovery when there were 15 items 

and 100 examinees, but did not recommend using samples that small. 

A similar degree of error was described by Stone (1992) as “generally precise and sta-

ble” (p. 1). Stone used MML to fit the 2-PL model with 10, 20, or 40 items and 250, 500, 

and 1,000 simulated examinees. He found acceptably accurate estimates of item location 

parameters (RMSE < .22) with as few as 10 items and 250 examinees. Drasgow (1989) 

found that as few as 5 items and 200 persons were required for parameter estimates with 

reasonably small standard errors (SEs < .30) for some attitude scale applications using 

the 2-PL. The estimation of discrimination parameters tends to be more problematic than 

estimation of item location parameters (Drasgow, 1989; Harwell & Janosky, 1991; Hu-

lin, et al., 1982; Stone 1992). Accordingly, item and sample requirements for 1-PL mod-

els may be even lower than those reported in the previously discussed studies based on 2-

PL models. 

As compared to suggested guidelines for accuracy of item parameter estimates, research-

ers seem less stringent about the acceptable level of error for person parameter estimates. 

Hulin et al. (1982) described an RMSE of .38 for person parameter recovery as “very 

precise,” and Stone (1992) described person parameter RMSEs around .40 as “small.” 

Researchers oriented toward person evaluation would potentially set different standards 

of error acceptability. As suggested earlier, studies examining the precision of item and 

person parameter recovery are often tied to the choice of the IRT models under consider-

ation as well as the context within which they are situated (e.g., with the purpose of 

comparing software performance in parameter recovery, equating, etc.). Related psy-

chometric work has been conducted with the purpose of parameter recovery in poly-

tomous IRT models (e.g., Ankenmann & Stone, 1992; Childs & Chen, 1999; Reise & 

Yu, 1990; Wollack, Bolt, Cohen, & Lee, 2002), mixed item format examinations (e.g., 

Jurich & Goodman, 2009), software comparisons (e.g., Childs & Chen, 1997; Jurich & 

Goodman, 2009; Mislevy & Stocking, 1989; Yen, 1987) and equating (e.g., Baldwin, 

Baldwin, & Nering, 2007; Kim & Cohen, 2002). However, most of these studies used 

larger sample sizes and most have not focused on the issues related to the mismatch 

between the distributions of item difficulty and person parameters in a systematic way.  

Objective of the study 

A popular perception among psychometricians is that sample size and test length re-

quirements for IRT estimation have been intensively researched; nevertheless, we found 

only a small number of studies that focused on the lower limits of sample size and test 

length. In addition, reaching conclusions based on these studies is problematic in that 

they tend to use different models, estimators, and/or different combinations of items and 

sample sizes. Furthermore, none of these studies examined the effects of mismatch be-
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tween person and item parameter distributions. Our work is primarily concerned with the 

estimation accuracy of both person and item location parameters when the underlying 

distributions of the two are not aligned, a situation that in practice might be found in low-

stakes scales. Additional research is needed to offer guidelines for practitioners who are 

developing low-stakes scales with limited resources. The current study expands on pre-

vious literature by focusing on recovery of model parameters with short scales and small 

samples in which person parameters fail to match the item parameters. 

Method 

In this section, we describe the conditions initially investigated (referred to hereafter as 

original conditions), including the data generation process, the manipulated factors un-

derlying these conditions, and the criteria with which we evaluated the accuracy and 

efficiency of parameter recovery. Based on the findings from this investigation, we ex-

plored additional conditions that are described following the presentation of the initial 

findings in the Results section. 

Data generation  

Dichotomous item responses were generated based on the 1-PL model using code written 

by the authors in R (R Core Development, 2006). For each condition, appropriate item 

and person parameters were used (see section on Manipulation of Factors for detail on 

item and person values) to simulate the item responses using the sim function in the 

irtoys package in R (Partchev, 2010). Once the datasets of 0s and 1s were simulated, 

they were analyzed to obtain item parameter estimates using MML as implemented in 

BILOG (Mislevy & Bock, 1982). We used the irtoys package in R again (Partchev, 

2010) to call the BILOG program to fit the model (using default settings) and to obtain 

item and person parameter estimates (i.e., expected a posteriori (EAP) estimates of per-

son parameters). One thousand data sets were generated and analyzed for each condition. 

The results for the 1000 replications were then summarized within and across conditions. 

Manipulation of factors 

We manipulated four factors using a crossed design which produced a total of 16 original 

conditions. 

Match of person parameter (θ) and item locations (b). The person parameters ( θ ) 

were generated from a population assuming a normal distribution with a mean of 0 and a 

variance of 1 for all original conditions. Item location parameters (b) also were generated 

from normally distributed populations. For matched conditions, the means and variances 

of the normally distributed location parameters were 0 and 1. For the mismatched condi-

tions, the means and variances were .5 and 1. Additional conditions examining more 

extreme levels of mismatch were examined and are discussed in a subsequent section. In 
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the generation of item location parameters, the normal distribution was divided into 8 

equal probability bins for the 8-item conditions and 16 probability bins for the 16-item 

conditions. That is, any one item had equal probability of being placed in any one bin, 

given the bin boundaries. Bin boundaries in the 16-item conditions were -3, -1.53, -1.15, 

-0.89, -0.67, -0.49, -0.32, -0.16, 0, 0.16, 0.32, 0.49, 0.67, 0.89, 1.15, 1.53, and 3. In the 8-

item conditions, every other boundary was used (i.e., -3, -1.15, ... , 3). Item locations 

were generated for any one replication such that one item was included in every bin, 

resulting in a distribution of b values for each replication that approximated a standard 

normal distribution. An identical approach was used to generate scales with shifted loca-

tion parameters, except .5 was added to generated locations. 

Number of scale items (J). The purpose of the study was to investigate sample size 

requirements for scales with relatively small numbers of items. Accordingly, we ex-

plored scales with 8 or 16 items.  

Sample size (N). Past research suggests that a sample size of 100 can be adequate with 

1-PL model. Accordingly, we chose a sample size of 100 to represent a small sample and 

500 for a large sample. 

Discrimination (a). More subjects are required to the extent that items are less discrimi-

nating. Thus, it was important to manipulate discrimination. For any scale, all items on a 

scale had a discrimination of either .7 or 1.3. 

Criteria for evaluation of parameter recovery 

We computed three indices to assess accuracy of item and person parameter estimation 

across replications: bias, root mean squared error (RMSE), and correlations. These indi-

ces were computed both within bins and across all bins. Bias was assessed by computing 

the mean difference between the estimated and true values of the parameters. The bias 

for the b parameters from within a bin, across replications is given as 
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Correlations were computed between the estimated and the true parameters. In our re-

sults, we focus on the bias and RMSEs in that the correlations were not particularly 

sensitive to differences in manipulated factors. 

Results 

We first present results for the recovery of person parameters, followed by results for the 

recovery of item location parameters that include match/mismatch conditions. Due to 

space limitations, we present selected results in tabular or graphical form, but include all 

conditions in our syntheses of results. Complete tables of results are available upon re-

quest from the authors. 

Person parameter recovery 

For each condition, the RMSEs and bias were computed within each bin. Broadly speak-

ing, for mismatched conditions in which item locations were uniformly shifted upward, 

the person parameter recovery was slightly worse than in corresponding matched condi-

tions for lower values of θ  and slightly better for higher values of θ  (difference in 

RMSEs was never larger than .01).  

To summarize the recovery of person parameter estimates across bins, two tables are 

provided. In panel (a) of Table 1, person parameter recovery for two selected conditions 

(one mismatched and one matched) for all bins is shown. The reported conditions had 

item discriminations of .7, 8 items, and sample size of 100, and were representative of 

the general pattern of findings. 

Panel (a) in Table 1 reveals that only slight differences in the performance were noted 

between mismatched and matched conditions. Neither of the conditions consistently 

outperformed the other with the largest differences found in the extreme tails of the 

distribution. Mismatched condition performed better in the upper (positive) extreme of 

the distribution than the matched condition with difference in RMSE by .02 and bias of 

.03. The opposite pattern and magnitude of performance were found in the lower (nega-

tive) extreme of the distribution, where the matched condition yielded lower RMSE and 

bias than mismatched condition by .02 and .03, respectively. Generally, for both mis-

matched and matched conditions, the poorest parameter recovery occurred in the extreme 

ends of the distribution as evidenced by both RMSE and bias, whereas the most accurate 

recovery occurred in the center of the person distribution.  

Panel (a) of Table 2 summarizes the comparative patterns of results in the match and 

mismatch across all conditions. In this table, the number of reported bins was reduced to 

allow the inclusion of the other manipulated factors. Inspection of the table reveals slight 

differences between matched and mismatched conditions (holding other design factors 

constant) across the values of the other design factors.  
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The largest differences in RMSEs were found in conditions with a sample size of 100 

and discrimination of 1.3, where matched conditions outperformed the mismatched con-

ditions at the lower end of distribution for 8 and 16 items by .07 and .07, respectively. 

The largest discrepancies for mismatched conditions outperforming matched conditions 

were found in the upper end of distribution in conditions with a sample size of 500 and 

discrimination of 1.3 for 8 and 16 items (difference of .04 and .04, respectively). In addi-

tion, means across all bins are reported. We can see that the marginal effect of mismatch 

was negligible because gains in recovery at one end of the distribution were washed out 

by losses in recovery at the other end of the distribution; on average, matched conditions 

performed equally well or better than mismatched conditions (difference in means for 

RMSEs was never larger than .01).  

Considering the effects of the other manipulated factors, the lowest RMSE values were 

obtained in conditions having 16 items and discrimination parameters of 1.3, followed by 

conditions with the same discrimination but only 8 items. Within each discrimination 

level, increasing the number of items improved the recovery of the person parameter 

estimates. Similarly, when the number of items was held constant, increasing the dis-

crimination parameter improved the recovery of the person parameter estimates. In con-

trast, sample size had a negligible impact on the recovery of θ  estimates.  

In summary, this mismatch between person parameter and item location distributions had 

relatively weak effects on θ  recovery, the number of items and item discrimination had 

fairly strong effects on θ  recovery, and the effects of sample size appeared relatively 

weak. Consistent with principles of expected a posteriori estimators (Bock & Mislevy, 

1982), person parameter estimation was the most accurate in the center of the distribu-

tion. In the lower tail of the θ  distribution, estimates were positively biased. Conversely, 

in the upper tail, estimates were negatively biased. The magnitudes of these biases were 

comparable; due to the symmetrical nature of the distributions, the marginal biases 

across bins were equal to or less than .01 for matched conditions and were less than .14 

for mismatched conditions.  

Item location parameter recovery 

RMSEs. Generally, the mismatch between the item parameter distribution and the per-

son parameter distribution impacted the recovery of item location parameters more than 

person parameter estimates. As illustrated for one condition in panel (b) of Table 1, the 

recovery of item location estimates in the lower tail of the item parameter distribution 

was better in mismatched conditions than in matched conditions. Here, the difference in 

RMSEs ranged from .04 to .09, with the largest difference found in the area of -1.15 to  

-0.67 on the latent scale. However, in the upper tail of the distribution, the recovery of 

item location estimates was better in matched conditions than in mismatched conditions. 

The difference in RMSEs ranged from .08 to .19, with the largest difference found in the 

area of 1.15 to 0.67 on the latent scale. In other words, the estimates of item location 

parameters were better if a greater proportion of simulees had θ  values that were in the 

same region of the distribution as the location parameters. When averaging across all 
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bins, the matched conditions were approximately equivalent to their mismatched coun-

terparts. 

Bias. Overall, negligible bias was observed across all conditions, especially at the center 

of the item distribution where bias was essentially zero. When bias was found at the 

lower levels of the item parameter distribution, location estimates were negatively bi-

ased, whereas at the upper levels of the item parameter distribution they were positively 

biased (see panel (b) of Table 1). This was true for matched and mismatched conditions 

with varying sample sizes. Among the matched conditions, the largest bias was found in 

the condition with .7 discrimination, sample size of 100, and 8 items; bias in this condi-

tion ranged from -.12 to .13. Overall, the largest amount of bias was found in the condi-

tion with .5 mismatch, .7 discrimination, sample size of 100, and 8 items, where bias 

ranged from -.08 to .15. 

Conditions to examine degree of mismatch of item and person parameters 

Based on results for original matched versus the mismatched conditions, we developed a 

local sample size hypothesis. Specifically, we speculated that the quality of item parame-

ter estimation was directly related to the relative number of subjects with θ  values near 

the item’s b parameter. To assess the local sample size hypothesis, we investigated a 

number of additional conditions. The first set of additional conditions increased the 

mismatch between the person and item parameter distributions. This was achieved by 

generating item parameters from a normal distribution with mean of 1.0 rather than .5 as 

it was the case in the previous mismatch conditions or 0 in match conditions.  

The results with no mismatch, a mismatch of .5, and a mismatch of 1.0 are presented in 

the first, second, and third panels of Figure 1, respectively. Relatively small differences 

were observed between matched and mismatched conditions at the center of the person 

distribution. Furthermore, for conditions with a sample size of 500, differences between 

matched and mismatched cases were fairly small, even in the tails of the distribution. 

Mismatch had the greatest effect when sample size was 100 and in the tails of the distri-

bution. In other words, as the distribution of item parameters was shifted increasingly to 

the right on the person parameter distribution, RMSEs for item parameters increased 

most dramatically in the bins with relatively fewer people. These findings were in sup-

port of the local sample size hypothesis. 

Conditions with mixture distributions to assess the local sample size  

hypothesis 

We further investigated the local sample size hypothesis by including conditions in 

which the underlying distribution of person parameters was mixed normal. Data were 

generated for simulees based on mixed normal distributions with two subpopulations – 

one subpopulation with a negative mean and the other with a positive mean. If the local 

sample size hypothesis was correct, the concave shape of the RMSE plots (with item  
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Figure 1: 

 RMSEs for item location parameters for the matched, mismatched by .5, and mismatched by 

1.0 conditions, respectively.  Markers are plotted at bin midpoints. 



D. Svetina et al. 348 

locations on the abscissa) that was previously found would be inverted to form a convex 

shape. In other words, the lowest RMSEs would be in the tails where relatively more 

simulees were located, and the highest RMSEs would be in the middle where very few 

simulees were located. 

We manipulated the degree to which the two subpopulations differed across conditions. 

Manipulated variables included the means for the two subpopulations (-.5 and .5, -1 and 

1, -1.5 and 1.5, or -2 and 2), the common variance for the two subpopulations (.0001 to 

1), and the proportion of simulees generated from each distribution (.5 and .5, or .2 and 

.8). We explored a large number of mixture conditions, but present only three of them to 

illustrate our findings. 

Uneven mixture condition. Figure 2 shows the results from a condition where the un-

derlying θ distribution was a mixed normal distribution in which 20% of the simulees 

came from a N(-.5, .0001) distribution located below most of the items, and 80% came 

from a N(.5, .0001) distribution located above most of the items. Each replication of this 

condition had a sample size of 500, 8 items, and item discriminations of 1.3. Given the 

small variance used here, the simulees from the two subpopulations of the mixture 

distribution were almost exclusively along the latent distribution that corresponded to θ   

 

 

 

Figure 2: 

Item location parameter RMSEs for a mixture distribution condition with sample size of 500, 

8 items, and discrimination of 1.3.  The underlying   distribution was mixed normal such that 

20% of the simulees were drawn from ~N(-.5, .0001) distribution and 80% were drawn from 

~N(.5, .0001) distribution.  Markers are plotted at the mean of the true b parameters within 

each bin. 
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ranges from -0.67 to -0.32 (bin 3) and from 0.32 to 0.67 (bin 6).
3
 The asymmetrical 

shape of Figure 2 provided some support for the local sample size hypothesis, but further 

inspection suggested the hypothesis was not fully supported. The items located between 

0.32 and 0.67 on the latent continuum (in bin 6) where 80% of the simulees were located 

had small RMSEs, but were approximately equivalent to the RMSEs in the adjacent bin 

5 (0 to 0.32) where few if any simulees were located. Overall, and counter to our 

speculation based on the local sample size hypothesis, the concave shape seen in 

previous graphs was preserved in this condition, except for the noted asymmetry. 

Extreme mixture condition. Figure 3 shows results from a more extreme mixture 

distribution, where 50% of the simulees came from a N(-2, .01) distribution and 50% 

came from a N(2, .01) distribution. This condition included 8 items, a sample size of 500, 

and item discriminations of 1.3. Given the small standard deviation, the simulees θ s 

were almost exclusively in bin 1 (range -∞ to -1.15) for one of the subpopulations or in 

bin 8 (range 1.15 to ∞) for the other subpopulation. 

If the local sample size hypothesis was correct, the items located in the middle of the 

latent continuum would be poorly estimated for this condition, whereas those located in 

the tails would be better estimated. Surprisingly, the item parameters in the middle were 

still recovered more accurately than those in the tails based on the RMSEs and as shown 

in Figure 3. Also, as shown in Figure 3, the degree of bias increased substantially as the 

true bs differed from 0. 

Given these surprising results, we futher evaluated this condition by assessing the 

efficiency (i.e., stability) of the item location estimates. The results for the RMSEs, 

which assess accuracy, could have been primarily a result of bias rather than efficiency. 

Accordingly, we chose to assess efficiency independently. Efficiency was computed (for 

each bin) as: 

 
2

1000

1000 1

1
   

1000

.
10 0

ˆ

0

ˆ rep

rep

bin

b b
b

Efficiency





 
 
 
  




 

As shown in Figure 3, the graph for efficiency was much flatter than those for RMSEs 

and bias and demonstrated rapid change only in the extreme bins. These results suggest-

ed the better performance of item location estimates around 0, as assessed by RMSEs, 

was primarily due to bias and not efficiency. 

One additional mixture condition. Based on the RMSE results from the extreme 

mixture condition, the local sample size hypothesis appeared incorrect. However, further 

analyses indicated these findings were not due to efficiency. To pursue these findings,  

 

                                                                                                                         
3
 In order to interpret results in a metric comparable to the previous conditions in which the person 

parameter distribution had a variance of one, the variance of the latent distribution in the mixture 

distributions was rescaled to one and the item parameter estimates were rescaled accordingly. 
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Figure 3: 

RMSE, bias, and efficiency for a mixture distribution condition with sample size of 500,  

8 items, and discrimination of 1.3.  The underlying   distribution was mixed normal such that 

50% of the simulees were drawn from ~N (-2, .01) and 50% were drawn from ~N (2, .01).  

Markers are plotted at the mean of the true b parameters within each bin. 

 

 

Figure 4: 

 Information function of mixed normal distribution with sample size of 500.  The underlying 

  distribution was mixed normal such that 50% of the simulees were drawn ~N(-2, .01) and 

50% were drawn from ~N(2, .01).The items are assumed to have an a = 1.3.  Information 

provided about the items is on the y-axis and the item location along the latent continuum is 

on the x-axis. 
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we investigated the information functions associated with the estimation of b parameters 

(e.g., Hambleton & Swaminathan, 1985) for various mixture distributions. The 

information function reflects the stability of estimated bs as a function of various θ  

values. Figure 4 provides an example of the information function for the extreme mixture 

condition reported in Figure 3. As shown in Figure 4, less information about items was 

provided by θ s of persons in the middle of the distribution in contrast to adjoining θ s. 

These results were similar to those for efficiency except that information increased to 

some extent at 0 rather than demonstrating a lack of change. This finding suggested that 

greater efficiency could be demonstrated in the middle of the distribution with a more 

sensitively designed condition. 

Accordingly, a condition was created in which a ninth item was added with a b value of 

0 to facilitate depiction of efficiency at this point of interest. Additionally, the item 

locations in this condition were fixed across replications at the locations corresponding 

to the means of the true b values for the 8 bins in the previous conditions: -1.64, -0.89,  

-0.49, -0.16, 0.16, 0.49, 0.89, and 1.64. As shown in Figure 5, efficiency was worse for 

the item located at 0 than for either of the immediately adjacent items as expected based 

on the person information functions. 

 

 

 

Figure 5: 

Efficiency (y-axis) as a function of true item locations (x-axis) for mixed normal condition 

with sample size of 500, 9 items, and item discriminations of 1.3.  The underlying   

distribution was mixed normal such that 50% of the simulees were drawn from a N(-2, .01) 

and 50% were drawn from a N(2, .01).  Markers are plotted at the 9 item locations, which 

were held constant across replications of this condition. 
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Discussion 

The current study examines the recovery of 1-PL person and item parameters in condi-

tions that mimic small-scale testing applications. In general, our results are promising for 

practitioners wishing to use IRT in small-scale testing contexts where a mismatch be-

tween the items and persons distributions is anticipated. 

Person parameter recovery 

Estimates of θ  were minimally affected by sample size and the relative alignment of 

person and item parameters. Stronger effects were observed for test length and item 

discrimination. Consistent with previous research simulating large-scale educational 

testing conditions, our study indicates that the precision (as measured by RMSE) of θ  

estimates is improved with longer tests. Even under non-optimal conditions (i.e., low 

discrimination, small sample size, and mismatched item-person distributions), the bias in 

θ  estimates for simulees near the mean of the distribution is close to ± 0.10 logits. Al- 

though the situation worsens for θ  estimates towards the ends of the distribution, the 

bias and precision of these estimates would be reasonable for small-scale testing situa-

tions. 

In addition to test length, the accuracy of θ estimates was influenced by item discrimina-

tion; tests comprised of a set of more discriminating items yielded greater accuracy than 

those comprised of less discriminating items. Given the mathematics underlying the 

model and results from previous simulation studies, the inverse relationship between the 

discrimination parameters and RMSEs observed in our study was expected. Our simula-

tions indicated this relationship was most pronounced at the extremes of the θ  distribu-

tion, where estimates were most discrepant from the true θ  values. In particular, RMSEs 

at the extremes were typically reduced by approximately 0.30 logits when the more 

discriminating set of items was used. On a more general note, item discrimination is 

often ignored when fitting a 1-PL model. However, for any two sets of items that sepa-

rately conform to a 1-PL model, where one set contains more discriminating items than 

the other, the set with more discriminating items will yield more accurate θ  estimates. 

This suggests that if the goal is to maximize the accuracy of θ  estimates, item discrimi-

nation should not be ignored when fitting a 1-PL model; rather, the “most discriminat-

ing” and homogeneous set of items possible should be employed. 

In general, small-scale test developers should be encouraged by our findings that tests as 

short as eight items and with samples as small as 100 participants generate reasonable 

estimates of person parameters, at least when operating under standards used in previous 

research (e.g., Hulin et al.,1982; Stone, 1992). We note, however, the acceptable level of 

precision with respect to θ  estimates for any two researchers or for any two testing 

situations is likely to differ and depends on the context, the desired usage of the test, and 

the consequences of making decisions about people. 
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Item parameter recovery 

Unlike the results for θ  parameter recovery, the recovery of b parameters was strongly 

affected by sample size. Notably, however, item locations were estimated with greater 

precision than θ  estimates; speaking generally of their average values across conditions, 

the lowest θ  RMSEs approximated the highest b RMSEs. The deterioration of b pa-

rameter recovery follows a predictable pattern, depicted in Figure 6. As sample size 

increased, the recovery of b parameters improved. This reduction in error, however, was 

not linear with respect to the sample size. For example, adding 25 subjects to a sample 

size of 50 yielded larger decreases in RMSEs than adding 250 subjects to an already 

sizeable sample size of 750. In designing their studies, researchers can use our results for 

scales of 8 and 16 items (Figure 6) to approximate the cost/benefit of additional partici-

pants in terms of the diminishing returns in estimation accuracy.  

 

 

 

 

Figure 6: 

Item location parameter RMSEs for various sample sizes for matched conditions with 8 items 

and discrimination of 1.3.  Markers are plotted at bin midpoints. To approximate these 

RMSEs to their corresponding values when discrimination was .7, use ŷ = 2.303x - .107. 
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Item discrimination and test length also affected the recovery of b parameters. When 

items were generated with greater discrimination, the precision of b estimates was im-

proved particularly for conditions with a sample size of 100. Though smaller than the 

other effects, test length improved b parameter recovery when sample size and discrimi-

nation were low. For small-scale testing situations, often the number of items is easier to 

increase than the number of participants; this may not be the case in large-scale situa-

tions in which item development is expensive. These effects are encouraging because 

item development provides an alternative or supplemental means of improving item 

parameter estimation other than increasing the number of participants. 

The local sample size hypothesis. Based on the results of the original 16 conditions, we 

hypothesized that the precision of item location estimates depended in part on local sam-

ple size. Recall that for these conditions the alignment of item and person parameters 

was manipulated by shifting the item locations in the positive direction on the latent 

continuum. In doing so, the average distance between items and people was increased. 

Consistent with the local sample size hypothesis, the RMSEs of b estimates were lowest 

in the middle of the distribution in the match conditions. In addition, the estimation of b 

parameters at the low end of the scale improved while recovery of the b parameters at the 

high end deteriorated with mismatch conditions. 

Additional conditions were constructed with mixture distributions of simulees to better 

understand the relationship between local sample size and the recovery of b parameters. 

In one of the mixture conditions, 20% of simulees were drawn from a N(-.5, .0001) dis-

tribution and 80% were drawn from a N(.5, .0001) distribution. Items located near the 

80%-cluster of simulees were recovered as well as items closer to the center of the b 

distribution, but items located near the 20%-cluster of simulees were not, which consti-

tuted only mixed support for the local sample size hypothesis. The ambiguity of these 

findings motivated additional investigation. 

The results of a more extreme condition with simulees highly localized at ±2 ran counter 

to the local sample size hypothesis in that items at the center of the item parameter dis-

tribution – where no simulees were located – were estimated best. Although these results 

were unexpected, the plot of information about items provided by θ  parameters (Figure 

4) followed an expected pattern; the most information was available where simulees 

were located, and a local minimum was reached at the center of the latent distribution. 

The information function in Figure 4 suggested that an item located exactly at zero on 

the latent continuum ought to be estimated with less precision than items located to ei-

ther side of zero. A simulation confirmed this hypothesis (see Figure 5). Accordingly, the 

lower accuracy of estimation toward the extremes of the distribution was primarily due 

to bias (Figure 3). We speculate that nontrivial bias was observed in these conditions 

with mixed normal distributions of θ  but not in the other conditions because a mixed 

normal distribution of θ  departs from BILOG’s default assumption of a standard normal 

distribution of θ . Future research on fitting the 1-PL assuming mixed normal distribu-

tions of θ  would speak to this explanation. 

With respect to the estimation of b parameters, our results indicated that it would take an 

extreme situation in practice to achieve sizable degradation of precision in the middle of 
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the latent distribution. Such an extreme situation, for example, would include b ~ N(2, 

.01) and θ  ~ N(-2, .01); estimation of item parameters would be severely compromised 

because there is an absence of information about items from θ s. Put another way, if 

every item is so extreme that almost none of the people from a given population endorse 

the item, very little information is available from the item response data for estimating 

the model parameters.  

Aside from situations such as this, our results should be encouraging for small-scale test 

developers; even for the small-scale conditions simulated in this study, item parameter 

estimates were reasonably accurate, with RMSEs ranging from .09 to .14 (for eight 

items, N = 500, and a = 1.3). Even for less ideal conditions (N = 100, eight items, a = .7, 

and mismatch of .5), bias was minimal (range from -.08 to .15) and RMSEs were consid-

erably small, ranging from .53 to .74 at the extremes of the latent continuum. Estimation 

improved to the extent that sample size, item discrimination, and test length increased 

and mismatch decreased. As discussed above, in addition to the customary information 

functions provided for θ  by items, we advocate the use of plots of item information 

provided by θ  to better understand what persons bring to the estimation of item parame-

ters before fitting the 1-PL, or any item response model, to observed data. 

Widening our window 

Our findings contribute to the literature in several ways. To our knowledge, no research 

has systematically investigated the relationship between alignment of θ  and b distribu-

tions and the precision of item and person parameter estimation. Although our research 

indicates matching θ  and b distributions is ideal, we also found a reasonable amount of 

mismatch has little effect on θ  estimates and a fairly small effect on b estimates. That is, 

error in θ  and b estimates may be sufficiently low despite some mismatch. We observed 

that when b parameters were located such that the θ s fell on both sides of the bs, item 

recovery was better in the middle of the distribution, even though strong deviations from 

normality were present. 

Through our supplemental conditions, we demonstrated additionally that the utility of 

item parameter information functions as a useful tool for researchers to indicate the an-

ticipated utility of a set of items. In general, we believe these functions to be underuti-

lized. Although such functions do not take into account the sampling error that will be 

present in applied studies, researchers can explore how different populations of subjects 

would potentially impact the information gained about a set of items. In this way, the 

effects of using various types of convenience samples may be evaluated relative to more 

comprehensive and expensive data-collection scenarios before any data are collected. 

Although not included in the results section due to space considerations, the use of alter-

native prior distributions for the theta parameter was investigated for select conditions in 

order to make sure that our results were not idiosyncratic to our choice of the prior dis-

tribution. We ran a limited investigation to ensure that the results were reasonably gener-

alizable to other priors. We limited the number of replications per condition to 10 in that 
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the analyses could be only partially automated; however, we believe that this number of 

replications was sufficient to assess generalization across alternative priors, particularly 

given that we evaluated these priors across a number of conditions. Specifically, the 

extreme conditions reported in Figures 2 and 3 were re-estimated using uniform, bimod-

al, and floating priors. Given that the default prior for the latent distribution in BILOG is 

standard normal, the generated data in these conditions did not match well with the prior 

(i.e., underlying theta distribution was bimodal). As such, the reported results for these 

conditions could potentially be improved upon by specifying a prior more consistent 

with the underlying data; in applied settings this would only be possible via domain 

expertise. For situations in practice where ability distributions are unknown, but suspect-

ed of departing dramatically from normality, researchers might wish to implement a 

uniform (ignorant) prior as part of a more conservative modeling approach.  

We found that researchers using uniform priors could still expect to achieve parameter 

estimates of similar quality to those reported in the results section. In fact, the patterns of 

results using all three alternative prior specifications resulted in more accurate recovery 

of item location parameters marginally, with error reduction occurring most noticeably in 

the tails of the distributions. The item difficulty parameter RMSE plots were similar in 

shape to the reported results using default priors (see Figures 2 and 3), and were con-

sistent with the item parameter information functions. However, for the conditions com-

prising the original design of this study (and for conditions most typical in practice), a 

normal prior remains an appropriate choice. 

In addition, within the Rasch modeling literature, several alternatives have been pro-

posed for dealing with small sample sizes. In particular, the characteristics of the Rasch 

family of models and the availability of sufficient statistics allow for CML as an alterna-

tive method for estimation. Further, a variety of proposed tests for data-model fit, such as 

those available in eRm package in R (Mair, Hatzinger, & Maier, 2012), are now available 

to researchers who work with the Rasch family of models (for further detail, see 

Hatzinger & Rusch, 2009; Koller & Hatzinger, 2012; Mair & Hatzinger, 2007a, 2007b; 

Ponocny, 2001). Further, non-parametric solutions to model-fit check have been pro-

posed, and these solutions may be useful in conditions with small sample sizes. A series 

of estimation alternatives for Rasch models have been recently proposed (for a detailed 

discussion, see Ponocny, 2010). Also, with respect to the estimation procedures, it should 

be noted that CML is available only for estimation of Rasch models. This is similar to, 

although not identical to, our study of the 1-PL, given that we constrained discrimination 

parameters to be constant across items but not fixed to 1.00 (as is the case in the Rasch 

model). The results from the 1-PL studied here may be translated to a Rasch model (and 

vice versa) via a rescaling of the latent continuum. 

Our purpose was to inform those wishing to use IRT methods in situations where the 

person and item location distributions do not match (e.g., potentially in small-scale test-

ing environments), so there was an expectation of poor θ  recovery relative to large-scale 

environments. We evidenced the level of error that researchers can expect when pushing 

the limits of sample size and test length requirements for IRT applications. Estimates that 

are relatively poor from a more traditional viewpoint may still be useful for broad classi-

fications, such as for the first stage in multistage testing (Lord, 1980). From a substantive 
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standpoint, the level of error a researcher is willing to accept will directly impact the 

number of subjects and/or the number of items one should have for the analysis. The 

level of acceptable error is driven by the purpose of the research, such that for lower 

stakes testing or piloting, researchers might be more willing to recover estimates with 

more error in order to pursue IRT-based methods. We recommend using the results of 

information functions and simulations to make informed design choices within the con-

text of a given research purpose. 
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