
Psychological Test and Assessment Modeling, Volume 59, 2017 (3), 269-295 

Detecting unmotivated individuals with a 
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Abstract 

In low-stakes tests some test takers do not work with high motivation but respond carelessly. This 
has serious consequences for item response models as careless responses impair model calibration 
and trait inference. In this manuscript we describe an approach to data analysis that reduces the 
negative implications of careless responding and allows for the identification of the poorly motivat-
ed test takers. The approach has been inspired by the Rasch model answer tree (also Rasch tree) 
suggested by Strobl, Kopf, and Zeileis (2015). The Rasch model answer tree subdivides the sample 
into several strata in a data driven way by means of significance tests and fits a distinct Rasch 
model to each stratum. In our new approach we build on this idea of partitioning the data into strata 
via a sequence of splits. Contrary to this approach we determine multi-group Rasch models by 
enforcing theoretically motivated configurations of hierarchical data splits and select among the 
configurations via information criteria. By using the response times of the test takers for partition-
ing, a stratum can be isolated that contains the motivated test takers and allows for unbiased model 
calibration. The performance of this new approach with respect to parameter recovery and the 
detection of unmotivated test takers are compared to alternative models for low-stakes tests in a 
simulation study, namely the latent class model of Meyer (2010) and a finite mixture model for the 
response times. The simulation study demonstrates that the new approach reduces the bias caused 
by low motivation under certain circumstances. An empirical application underscores the useful-
ness of our suggestion. 
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1 Introduction 

Psychological tests in general and achievement tests in particular are regularly used for 
psychological assessment, the evaluation of educational institutions and psychological 
research. The responses of the test takers to the test items are usually analysed with an 
item response model. Item response models are based on the assumption that the ob-
served responses are governed by a specific trait, which is latent and can not be observed 
directly. Item response models specify the relation between the observable responses and 
the latent trait. This relation can then be used for inferring the trait level of each test taker 
from his/her responses given in the test. The process of trait inference crucially depends 
on how well the item response model is able to represent the relation between the trait 
and its manifestations. Valid inference requires the choice of an adequate item response 
model as well as precise estimates of the model’s parameters. Trait inference can seri-
ously be wrong in case the parameter estimates are biased and deviate sharply from the 
true values. 

With the exception of test applications in psychological or educational assessment, the 
test results usually do not have major personal consequences for the test takers. Such a 
situation is called low-stakes testing. As there is no extrinsic reward for high test scores, 
some test takers have little motivation to perform as well as they could, especially when 
there is little freedom to choose whether to take the test or not. Unmotivated test takers 
make little effort to regularly solve the test items, but rely on approximations and short 
cut strategies to avoid as much mental effort as possible. One extreme form is carelessly 
responding, where answers are given fast, without any serious engagement in active 
problem solving. It is well known that carelessly responding distorts the estimation of the 
item parameters (Bolt, Cohen, & Wollack, 2002; Oshima, 1994; Schnipke, 1999) and 
undermines score validity (Wise & DeMars, 2006; Wise & Kong, 2005). Items for ex-
ample appear more difficult and the item discrimination is reduced. This can have seri-
ous consequences for psychological assessment. Hence, it would be beneficial to identify 
unmotivated individuals and to reduce their distorting effect on model calibration. Sever-
al methods have been suggested for this purpose so far. 

A first approach to handle careless responding relies on discrete mixtures of item re-
sponse models (Rost, 1990). The approach is based on the assumption that the test takers 
can be divided into several classes with respect to their mode of responding. In the sim-
plest case, just two classes are assumed: A first class, which consists of the responders 
that respond always in a regular way and a second class, which consists of the responders 
that respond irregularly by using short cut strategies in at least a subset of the items. The 
mixture item response models account for this structure of the data by allowing for dif-
ferent item response models in the two subgroups of test takers; see Bolt et al. (2002) for 
an application to low-stakes tests. Alternatively, instead of dividing the test takers into 
just two classes, one can assume one class of regular responders and several subclasses 
of irregular responders defined by the position in the test where the subjects start to 
respond carelessly. Although originally these models were supposed for test speededness 
and the effect of running out of time (Yamamoto & Everson, 1997), they can also be 
used for situations where individuals lose their motivation during the test, for example 
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when items become too difficult (Cao & Stokes, 2008). As mixture item response models 
allow for different parameter values in the different latent classes, they are able to recov-
er the item parameters in the class of the regular responders and can be used for segregat-
ing the test takers according to their mode of responding. Mixture item response models 
however are notoriously hard to estimate and require large sample sizes. Besides, being 
based on the responses solely, they ignore useful information about the response mode. 
As low motivated subjects are supposed to respond faster, it might be beneficial to use 
the response times also for separating the different classes. In this spirit, Meyer (2010) 
supplemented the mixture Rasch model with a mixture model for the response times. 

Mixture models based on a limited number of classes differing in a stable response mode 
are not the only way to deal with careless responding. Instead of assuming that test takers 
behave consistently over the whole test, one can also assume that individuals switch 
from responding regularly to responding carelessly and vice versa several times during 
the test. As individuals can not be characterized by a stable mode of responding, there is 
no latent class membership to identify. Nevertheless, it would be helpful to know the 
item specific response mode of each test taker in each item. This knowledge, when in-
corporated into model calibration, could be used to reduce the effects of responding 
carelessly; see Wise and DeMars (2006) for further details. Several methods for the 
identification of the item specific response mode have been suggested so far. Most of 
these approaches infer the mode from the response times without using any information 
provided by the responses. The simplest approach consists in considering all responses 
faster than a lower threshold as a careless response. Ways to identify this lower threshold 
have been described by Kong, Wise, and Bhola (2007) and Wise and Kong (2005). Al-
ternatively, one can infer the response mode from the response times with a mixture 
model. Schnipke and Scrams (1997) used such a mixture model to estimate the frequen-
cy of careless responding in each item. Both approaches, the approach of Wise and De-
Mars (2006) to the removal of estimation bias and the approach of Schnipke and Scrams 
(1997) to the identification of the response mode were combined by Yang (2007) into a 
single model. 

Motivation is a complex phenomenon and most models for low-stakes tests are strong 
simplifications of the response behavior. Motivation is not a fixed binary phenomenon as 
motivation develops dynamically during the test. Test taking behavior is also more stable 
than the unsystematic switching between a regular and an irregular response mode some 
models imply. Recently, several alternative models have been proposed that claim to 
account for the complexity of motivational processes and circumvent some of the limita-
tions of the earlier models. Rapid guessing can be modeled with the dynamic item re-
sponse models proposed for change processes. Cao and Stokes (2008) for example sug-
gested an item response model with partially decreasing ability levels that can be used 
when test takers reduce their effort during the test; see also Goegebeur, De Boeck, Wol-
lack, and Cohen (2008) for a model where the tendency to respond by guessing increases 
during the test. Alternatively, one can try to disentangle motivation and ability with the 
help of a process model from cognitive psychometrics as these models distinguish be-
tween information processing and motivational aspects of the solution process; see 
Tuerlinckx and De Boeck (2005), van der Maas, Molenaar, Maris, Kievit, and 
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Boorsboom (2011) and Rouder, Province, Morey, Gomez, and Heathcote (2014). Last 
but not least, it is always possible to remove unmotivated test takers after they have been 
identified with a test of person-fit (Artner, 2016). 

The manuscript makes several contributions to the existing literature. First and foremost 
we suggest a new approach to the problem of careless responding. The approach was 
inspired by the Rasch model answer tree, also known as Rasch tree (Strobl et al., 2015). 
Similar to the Rasch model answer tree, the new approach divides the sample into sever-
al subgroups via a hierarchical structure of splits and fits a separate Rasch model to each 
subgroup. Contrary to the Rasch model answer tree, where a subdivision is recursively 
built from the data, we enforce several configurations of splits and select among the 
alternative configurations via information criteria. By defining the splits with respect to 
the response times of the test takers, the approach provides response time thresholds that 
allow for a separation of careless from deliberate responses. This improves the common 
practice to set such thresholds a priori or after a visual inspection of the response time 
distribution. The new approach serves two purposes. It allows for a recovery of the item 
parameters one would have obtained if careless responses had been absent. It can also be 
used to classify the subjects according to their way of responding. Contrary to earlier 
approaches, the new approach avoids strong assumptions about the response process, 
does not require a fully specified response time model and is easy to apply. The perfor-
mance of the new approach is investigated in a simulation study. In this study we com-
pare the new approach to several alternative analysis methods suggested for low stakes 
tests. Surprisingly, little can be found about the relative performance of different ways to 
handle low motivation in the literature. And finally, we compare the results of the differ-
ent methods in a real data set. 

2 The Rasch model answer tree of Strobl et al. (2015) 

Strobl et al. (2015) suggested a method to detect differential item functioning that com-
bines two approaches, the Rasch model and classification trees. Although the authors 
denoted their approach as Rasch tree, this denomination is suboptimal as it is prone to 
misinterpretations and might evoke wrong associations. In the following, we refer to 
their method with the term Rasch model answer tree in order to stress the two compo-
nents of the model, namely the Rasch model and answer trees. Similar to the mixture 
item response models, the Rasch model answer tree tries to identify subgroups of test 
takers for which Rasch models with different item parameters hold. Contrary to the mix-
ture item response models, where subgroups are identified by means of the responses 
alone, the Rasch model answer tree uses covariates, which are supposed to be related to 
the differential functioning of the items. The subgroups are determined by recursive 
partitioning, whereby the sample is successively divided. The algorithm starts with the 
selection of one of the covariates, for which a cut point is determined. All subjects above 
the cut point are sorted into a first subgroup and all subjects below the cut point are 
assigned to a second. The covariate and the cut-point are selected with the intention to 
identify two subgroups that require different Rasch models for the test data. This step of 
variable selection and cut point specification is repeated for each subgroup, such that the 
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groups of earlier steps may be successively divided into further subgroups in later steps. 
As a result, the data set is partitioned into subgroups via a branch like series of splits 
defined by different cut points and different covariates; see Figure 1 as an illustration of 
the Rasch model answer tree in a test with ten items. In the first split the respondents are 
sorted on basis of the covariate T2 into two subgroups defined by T2≤−0.204 and 
T2>−0.204. To each subgroup a distinct Rasch model is fit whose item locations are 
indicated by dots in Figure 1. The values for the 10 items are plotted along the x-axis. 
The plot on the left side represents the item locations of the first subgroup (T2≤−0.204) 
and the plot on the right side represents the item locations of the second subgroup 
(T2>−0.204). Note that the item locations differ in the two subgroups. 

Each subdivision requires the choice of a covariate and the specification of a cut point. 
Covariate selection is based on the generalized M-fluctuation test of Zeileis and Hornik 
(2007). This test evaluates whether a particular split results into subgroups that require  

 

 
Figure 1: 

A Rasch model answer tree for a test of 10 items with two subroups defined by the response 
time in the second quarter of the test (T2) and the cut point −0.204. The item locations of the 

first group with 203 subjects are represented by dots on the left side. The item locations of the 
second group with 278 subjects are given on the right side. Note that testing for any 

differences in the item locations between the two groups yields a p-value of 0.074 when using 
the M-fluctuation test 
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different Rasch models. To choose a variable all covariates are tested and the one with 
the smallest p-value is selected. Having chosen a variable, the cut point is selected by 
determining the level that maximizes the partitioned log-likelihood function. Finally, the 
subjects are sorted into the corresponding subgroups. These steps are repeated until no 
more subgroups can be identified that differ systematically, that is, until all p-values are 
larger than some fixed Type-I error rate α. More details concerning the algorithm can be 
found in Strobl et al. (2015). The Rasch model answer tree (Rasch tree) is implemented 
in the package psychotree (Zeileis, Strobl, Wickelmaier, Kopf, & Abou El-Komboz, 
2014) of the statistical environment R (R Development Core Team, 2009). 

Although originally developed for differential item functioning, the Rasch model answer 
tree can be used for the detection and correction of careless responding as well. This is 
due to the fact that responses from compliant and non-compliant subjects cannot be 
modeled with the same item response model. Responses given without proper infor-
mation processing usually manifest in an item response model with high item difficulties 
and very low item discriminations. A good indicator for the renouncement of any mental 
effort should be the time needed to respond. Very fast responses are only possible for 
subjects with an irregular mode of information processing. Hence, by using the response 
times as the covariates, the Rasch model answer tree should be able to subdivide the 
subjects into a group of regular and irregular responders. Only the item parameters of the 
first group should be considered for psychological assessment. Response times in single 
test items are not very reliable. Therefore it might be better to use the average response 
time needed by an individual to solve the items in the first, second, third and last quarter 
of the test. In case individuals systematically employ different response modes and these 
response modes go along with substantial response time differences, there is no loss in 
using aggregated response time measures. It however is recommendable to standardize 
the response times first to remove systematic item effects. Note that the usage of re-
sponse times to classify individuals into two subgroups with different item response 
models is similar to the analysis of Partchev and De Boeck (2012). However, these au-
thors did a median split to form the subgroups while the Rasch model answer tree identi-
fies the optimal cut point below which responses should be considered as invalid. 

The Rasch model answer tree has several advantages. First, the model is implemented in 
standard software and therefore easy to use. Second, the approach includes the response 
times but does not require a fully specified response time model. This makes the ap-
proach less susceptible to model misspecification. Third, the Rasch model answer tree is 
very flexible as no assumption about the number of subgroups has to be made. Different 
groups of subjects can be formed, like a group which is careless from the start and a 
group that gets careless later etc. Fourth, it is easy to include further information about 
the motivation of the test takers like test scores from additional motivation question-
naires. Fifth, the approach automatically provides cut points below which responses 
should be regarded as invalid. Hence, the Rasch model answer tree seems to be an attrac-
tive solution for the problem of careless responding. 
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3 Multi-group Rasch models defined by hierarchical data splits 

In the Rasch model answer tree of Strobl et al. (2015) the resulting tree structure is data 
driven as the number of splits depends on the results of the M-fluctuation tests. In the 
present context the assumed form of irregular responding however implies a specific 
configuration of splits. Therefore we deviated from the Rasch model answer tree and 
took a different, more hypothesis driven approach. Instead of having the data determine 
the tree structure we enforced a configuration of splits beforehand, namely a configura-
tion with no split, with one split and with two splits. Only the variable and the specifica-
tion of the cut points underlying the splits were determined via the data by using the 
values that maximize the partitioned log-likelihood function. Among the rivaling config-
urations we chose the configuration that resulted in the best approximation of the data 
structure via means of the Bayes information criterion (BIC; Schwarz, 1978). Using the 
response times for splitting as suggested above, the approach resulted in a multi-group 
Rasch model where the groups were defined by distinct response time patterns. As this 
practice deviates from the Rasch model answer tree, we will refer to our approach as 
multi-group Rasch model in order to stress the difference between the two approaches. 

Although our approach was inspired by the Rasch model answer tree of Strobl et al. 
(2015), the decision to fix the configuration of splits beforehand and to replace hypothe-
sis testing with model selection is in conflict with standard partition tree analysis that 
seeks flexible models for complex relations. Nevertheless, we considered our multi-
group approach more adequate for several reasons. A first motivation for this decision 
was the intention to compare different approaches to handle careless responding and this 
requires that the way to select the optimal model is comparable. Model selection with 
information criteria is universally applicable. A second motivation for the decision 
against hypothesis testing was the fact that we considered the problem of irregular re-
sponding more to be a question of model selection than to be a question of hypothesis 
testing. The models are used to reduce the effects of irregular responding and not to draw 
valid conclusions about the true number of groups. Falsely detecting two subgroups is 
not a mistake in case the larger subgroup provides correct parameter estimates. Truly 
detecting two subgroups is meaningless in case the subgroup differences are irrelevant. 
Hence, there is only a weak correspondence between hypothesis testing and the research 
question. The research question at present consists in selecting the optimal model that is 
complex enough to yield parameters with little bias, but not too complex, such that the 
item parameters can still be estimated precisely. Such a problem can be addressed with 
information criteria like the BIC index. The usage of the BIC index in this context might 
not be fully justified as fitting a model with a fixed configuration of splits is different to 
standard maximum likelihood estimation. In theory, one should account for the selection 
of the covariates and the split points in the penalty term. However, the BIC index has 
proven promising for the selection of the number of classes in latent class analysis 
(Nylund, Asparouhov, & Muthen, 2007) and in mixture item response models (Li, Co-
hen, Kim, & Cho, 2006) and might perform well in the present context also. 
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4 Alternative approaches to the detection of careless responding 

From the approaches to careless responding reviewed in the introduction we selected two 
as a standard of comparison for the proposed multi-group approach. The two alternatives 
were the latent class model of Meyer (2010) and an approach in line with Schnipke and 
Scrams (1997). Both approaches are sophisticated representatives of a specific strategy 
to handle the problem of careless responding. 

The model of Meyer (2010) assumes 1,...,g G=  latent classes that differ with respect to 

the distribution of the responses and the response times. The distribution of the responses 
in each latent class is supposed to conform to the Rasch model with different item loca-
tions in the different latent classes. The response times are assumed to be distributed 
according to a log-normal distribution with class specific parameters. More specifically, 
the density of the response time of subject i in item j is 
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on the latent class membership, the response times are assumed to be independent. Note 
that the response time model does not include a continuous, subject specific random 
effect such that the latent class membership is the only systematic cause for individual 
differences. Contrary to our approach the model of Meyer (2010) makes strong assump-
tions about the response time distribution that have to be met when applying the model. 
This is definitely not wanted as the focus is on careless responding and not on response 
time modeling, which is a nontrivial topic. 

The second approach was based on the mixture model of Schnipke and Scrams (1997). 
The model assumes a finite mixture distribution for the response times and can also be 
interpreted as a latent class model. The model postulates the existence of 1,...,g G=  

latent classes that represent different modes of responding. In each latent class, the loga-
rithmized response times are assumed to follow a multivariate normal distribution with 
class specific mean vector gμ  and class specific variance covariance matrix gΣ . Note 

that there are no restrictions on the class specific covariance matrices. Hence, the log 
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This finite mixture model has been implemented in the package mclust of the statisti-
cal software R where several constraints concerning the class specific variance covari-
ance matrix gΣ  can be imposed; see Fraley and Raftery (2007) for more details. With 

the finite mixture model subgroups of responders can be identified and specific item 
response models can be used for each subgroup by considering the predicted class mem-
bership as the true one. 

5 Simulation study 

In order to assess the capability of the three methods to correct the effects of irregular 
responding a simulation study was conducted. The focus of the simulation study was on 
the performance of the three methods to reduce the estimation error and to detect the 
irregular responders. In doing so we especially wanted to explore the performance of the 
methods under less optimal conditions, for example in case of small effects and small 
subgroups. This complements previous simulation studies about rapid guessing that 
always considered rather favorable conditions. It is hardly surprising that the methods 
work very well in case the response time distributions of the two groups are bimodal and 
have little overlap such that the two groups can already be separated visually. In our 
experience, this is seldom the case, as individuals do not simply guess rapidly without 
any information processing but use short cut strategies with reduced mental effort, that 
is, respond carelessly. Additionally, we wanted to explore the performance under differ-
ent forms of distortions like different motivational effects or test speededness. 

In the simulation study we employed two different strategies of data analysis. In the first 
strategy each approach was implemented as a two group version. The item parameters of 
the Rasch model in the larger subgroup were considered as the true item parameters and 
the test takers were classified as regular and irregular responders. The first strategy 
served mainly for an assessment of the method’s capability to identify the irregular re-
sponders. Additionally we wanted to assess the costs of using the three methods mechan-
ically as a routine tool for data analysis in case there is no irregular responding. Some of 
the earlier simulation studies seem to imply that using a model for rapid guessing is 
always beneficial, although sometimes superfluous. These findings could stimulate prac-
titioners to use an overly complex model just to be on the safe side. Such a strategy is not 
optimal as using a more complex model necessarily comes at the price of increased 
standard errors. The size of this increase was also investigated by means of the first 
strategy of data analysis. In the second strategy of data analysis the number of groups 
was not fixed to two, but determined empirically. Therefore, each of the three models 
was fit to the data in a version for one group, two groups and three groups. Then the 
version was chosen that corresponded to the lowest BIC index. For this version the larg-
est group was identified and the item parameters in that group were considered as the 
correct estimates. The second strategy of data analysis is probably more common as one 
usually does not assume the existence of irregular responders a priori. 

In the simulation study the data in a test of 10 items was considered. The simulation 
study consisted of four different simulation scenarios that were characterized by a dis-
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tinct form of irregular responding. In the first simulation scenario all test takers respond-
ed regularly. The first simulation scenario therefore allowed for an assessment of the 
costs of using one of the methods in question. The second and third scenario dealt with 
the effects of demotivated test takers. In the fourth scenario we analysed the effects of 
test speededness. In addition to the four forms of irregular responding several other fac-
tors were varied. For each simulation scenario different simulation conditions were de-
fined by crossing three effect sizes with two mixing proportions and two sample sizes. 

5.1 Simulation scenario I 

In the first simulation scenario, all individuals responded regularly. Hence, the mixing 
proportion of the subjects responding carelessly was zero and no distortion had to be 
accounted for. The first scenario permits the assessment of the costs of using the models 
without need. Data sets were generated according to the hierarchical model of van der 
Linden (2007). This model assumes a unidimensional factor model for the log response 
times and a standard item response model for the responses. Both submodels depend on 
distinct latent traits that are distributed according to a bivariate normal distribution. Con-
trary to van der Linden (2007) a Rasch model was used for the responses instead of the 
three parameter logistic model. The data sets were generated in three steps. In the first 
step, the latent abilities and latent speeds of the fictitious test takers were independently 
drawn from the bivariate standard normal distribution. In the second step, the responses 
of each test taker to the ten items of an imaginary test were generated according to the 
Rasch model with item locations equally spread from −1 to 1. In the third step the re-
sponse times were simulated. For each test taker and each item a linear combination of 
the latent speed and a normally distributed residual term was formed. The linear combi-
nation was then exponentiated to render it positive. The intercept term of the linear com-
bination was 2.0, the weight of the latent speed was 0.25 and the variance of the residual 
term was 0.25 in all items. In this way altogether 250 simulation samples with 500 and 
1000 test takers were simulated. The simulation setting implied marginal solution proba-
bilities ranging from 0.71 to 0.28. The response times had an expectation of 7.64 and a 
standard deviation of 1.93. More details concerning the simulation study (the item pa-
rameters, the R scripts etc) can be obtained from the authors on request. 

The data sets were analyzed with the three methods described above. For the multi-group 
Rasch model the item response times were summarized to simplify the analysis. First, the 
response times were logarithmized and standardized to remove item effects. Then, the 
test was divided into four parts consisting of the items {1,2}, {3,4}, {5,6,7} and 
{8,9,10}. The response times of each part were summed. This proceeding generated four 
variables that summarized the total time spent on each quarter of the test. A fifth variable 
was created for the total testing time. The five variables were used for the determination 
of the subgroups. Data analysis was based on the package raschtree (Zeileis et al., 
2014) of the statistical environment R. Although this package fits the original Rasch 
model answer tree of Strobl et al. (2015), it can also be used for the present application 
by enforcing a specific structure of the splits in the following way. In a first analysis, the 
α level of the M-fluctuation test that determines the splits was set to a level that guaran-
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teed at least one split. Then a Rasch model was fit to the two subgroups defined by the 
first split. The original Rasch model answer tree relies on conditional maximum likeli-
hood estimation, but we decided to reestimate the item parameters by marginal maxi-
mum likelihood estimation via the package ltm (Rizopoulos, 2006). The common slope 
was thereby estimated freely in each subgroup. Conditional maximum likelihood estima-
tion does not require distributional assumptions about the latent trait, but is less efficient 
than marginal maximum likelihood estimation, that is, yields larger standard error of 
estimation. This impairs the comparability to the other models that are based on marginal 
maximum likelihood estimation. We therefore changed the estimation approach to make 
the comparison as fair as possible. In general however, the way the item parameters were 
estimated was of little importance because the results were virtually identical. Having 
estimated the item parameters in the two subgroups, the estimates from the larger one 
were considered as the true values. We also classified the test takers as regular and irreg-
ular responders. In a second analysis, we enforced configurations with no split/one 
group, one split/two groups and two splits/three groups. This was again achieved by 
manipulating the α level of the M-fluctuation test and using just the first splits. For each 
version the BIC index was determined. This was accomplished by penalizing the log-
likelihood function with a term depending on the number of parameters and the sample 
size. The model with the lowest BIC index was chosen as the best version of the model. 
The item parameters in the largest group of the best version were again considered as the 
correct estimates. 

The time variables were also used for a segmentation of the sample with the finite mix-
ture model given in Equation 2. Thereby, we analyzed the four variables measuring the 
time spent on each quarter of the test with the package mclust (Fraley, Raftery, & 
Scrucca, 2014). The total testing time was excluded from the analysis to avoid linear 
dependencies. Altogether, three different versions of the finite mixture model were fit by 
requesting one, two or three latent classes. The BIC index was determined for each of the 
fitted versions. The fitted versions were then used to classify the subjects by an assign-
ment to the most probable class. The data set was then split into the identified classes and 
to each class a separate Rasch model was fit. The item parameters were estimated by 
marginal maximum likelihood estimation as described above. The estimates in the larg-
est class were considered as the true values. Finally, the latent class model of Meyer 
(2010) was calibrated with marginal maximum likelihood estimation. The model was 
implemented for one, two and three latent classes. Models with more latent classes were 
not considered as already in the version with three latent classes the estimator had diffi-
culties to converge. The BIC index was calculated for the three versions of the model 
and the best version of the model was identified. The estimates in the largest latent class 
were considered as the true estimates. In addition to parameter estimation the subjects 
were classified into the most probable class and labeled as regular or irregular respond-
ers. This was accomplished with the version for two latent classes. 

Results concerning item parameter recovery for the three models and the two strategies 
of data analysis can be found in Table 1. The first strategy of data analysis refers to the 
two group version of the models while the second strategy of data analysis to the version 
with the lowest BIC index. Parameter 0β  denotes the item locations of the Rasch model 
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and parameter 1β  the slope parameter. This parameter reflects the variance of the latent 

ability in marginal maximum likelihood estimation. Table 1 contains the bias, average 
absolute bias and the relative efficiency of the parameter estimates. The average absolute 
bias is reported for the item locations in order to prevent that positive bias in some items 
compensates negative bias in other items. The relative efficiency reflects the ratio of the 
mean squared error of estimation achieved by one of the methods to the mean squared 
error of estimation that results from fitting a standard Rasch model to the whole data set. 
The relative efficiency allows for an evaluation of the methods’ estimation performances 
in comparison to the performance of a standard Rasch model. A value smaller than 1 
implies an error reduction by using the more sophisticated model while a value larger 
than or equal to 1 signifies that using the more sophisticated model does not pay off or 
even worsens estimation. 

Table 1 corroborates that the first strategy of data analyses, that is, the automatic and 
inconsiderate application of one of the three models in a two group version, has high 
costs in case all respondents are responding regularly. Although the unnecessary usage of 
one of the three models does not bias the parameter estimates, it increases the mean 
squared error of estimation. This finding cautions against the routine application of cor-
rective measures without assessing their empirical justification. The performance of the 
methods improves in case the best version of the model is determined with the BIC in-
dex. No price has to be paid when the multi-group Rasch model or the mixture model is 
used. Both methods were able to detect the correct number of groups in all data sets and 
performed as well as the standard Rasch model. The latent class model of Meyer (2010) 
however overestimated the number of groups and tended to prefer an overly complex 
model with three latent classes. This tendency was combined with rather poor parameter 
estimates. The poor performance was due to the fact that the latent class model was 
misspecified in the first simulation scenario. While the log response times were generat- 

 
Table 1: 

Bias, average absolute bias and relative efficiency of parameter estimates for different models 
and two strategies of data analysis in the two simulation conditions of the first simulation 

scenario. 

Strategy N 1β  0β  

Bias Rel. Eff. Ave. Abs. Bias Rel. Eff. 

MG LC MM MG LC MM MG LC MM MG LC MM 

1 
1000 0.01 0.00 0.00 1.31 1.92 1.50 0.01 0.01 0.00 1.69 2.21 1.54 

500 0.00 0.00 0.00 1.40 2.32 1.68 0.01 0.01 0.01 1.64 2.01 1.57 

2 
1000 0.00 0.00 0.00 1.00 2.05 1.00 0.01 0.00 0.01 1.00 2.44 1.00 

500 0.00 0.00 0.00 1.00 2.40 1.00 0.01 0.01 0.01 1.00 2.50 1.00 
Note: Results based on 250 simulation samples. Results for parameter 0β  are averaged over different 
items. Strategy 1: Results concerning the two group solution, Analysis 2: Results concerning the best BIC 
solution. MG: Multi-group Rasch model, LC: Latent class model of Meyer (2010), MM: Finite mixture 
model. 0β : Item location, 1β : Common item discrimination 
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ed via a standard factor model, the model of Meyer (2010) is a latent class model that 
assumes a more restricted dependency structure of the response times. The only way to 
account for the more complex covariance matrix was to increase the number of latent 
classes. 

5.2 Simulation scenario II 

In the second simulation scenario, the data sets were generated according to the model of 
Meyer (2010). The model was implemented by assuming two latent classes. The first 
latent class contained the regular responders and was characterized by long response 
times and low item difficulties. The second latent class comprised the careless respond-
ers with fast response times and high item difficulties. Twelve simulation conditions 
were defined by systematically combining three effect sizes with two mixing proportions 
and two sample sizes. The effect size was defined as the separation of the response time 
distributions in regular and careless responders. In the small effect condition the mean of 
the log response times was 2.0 for the regular responders versus 1.9 for the careless 
responders in all items. In the moderate effect condition, the respective means were 2.1 
and 1.8. In the large effect condition the means were 2.5 and 1.5. The standard deviation 
was always 0.25. The subgroup specific components of the response time distribution as 
well as the resulting marginal densities are plotted in Figure 2 for the three effect sizes 
and a mixing proportion of 0.25. 

The responses of the regular responders were generated as in the first simulation scenario 
by using a Rasch model with item locations equally spread from −1 and 1. The responses 
of the careless responders were simulated according to a Rasch model whose item loca-
tions were increased by the constant amount of 0.5 and whose slope parameter was at-
tenuated from 1.0 to 0.8. The size of the non-complying class, that is, the mixing propor- 
 

 

 
Figure 2:  

Marginal density (solid line) as well as subgroup specific components (dotted/dashed line) of 
the response time distribution in the second simulation scenario for the three effect sizes. Note 

that the proportion of careless responders (Noncomplier) is 0.25 
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tion, was 0.25 or 0.15 depending on the simulation condition. Two sample sizes of 500 
and 1000 subjects were considered. The second simulation scenario was supposed to 
mimic the effects of poor motivation combined with some partial effort to solve the 
items. Note that carelessly responding affected all items as it is the case when individuals 
have little motivation to take the test from the start. The data sets were analysed as in the 
first simulation scenario. The three models were fit to the data and each model was im-
plemented in a version for two groups first. This version was used to classify the test 
takers as regular or careless responders. Then the best version of each model was deter-
mined according to the BIC index, and the item parameters in the largest group were 
considered as the true estimates. The results are reported in Table 2. Here, the bias, aver-
age absolute bias and the relative efficiency of the parameter estimates are given for the 
best BIC version of each model. Results concerning parameter recovery with the forced 
two group version (first strategy of data analysis) are not reported anymore. Table 2 
additionally contains the average rate by which the test takers were correctly identified as 
regular or careless responders for each of the three methods. Note that the simple strate-
gy of always predicting the larger class identifies the correct class with a rate of 0.75 in 
the large class condition and with a rate of 0.85 in the small class condition. 

In the case that low motivation causes a slight shift of the item locations, the utility of the 
corrective measures depends on the size of the response time effect and the number of 
affected individuals. A large reduction of the bias and the standard error of estimations 
can be noted for the latent class model of Meyer (2010) and the mixture model for the 
response times in case the two groups are well separated and the proportion of careless 
responders is high. The multi-group Rasch model is not capable of improving parameter 
estimation. This is a consequence of its tendency to prefer the one group solution. Note 
that contrary to the model of Meyer (2010) and the mixture model the response times are 
used as predictors in the multi-group Rasch model. As inference is conditional on the 
response times and no fully specified response time model is set up, the results depend 
mainly on the responses for which the group differences are small. Differences in the 
response time distribution do not contribute to the separation of the classes directly. This 
explains the suboptimal performance of the multi-group Rasch model in the second 
simulation scenario. The results concerning the classification performance parallel the 
results for parameter recovery. In case the groups are well separated the latent class 
model of Meyer (2010) and the mixture model are capable of classifying the subjects 
correctly. The multi-group Rasch model is more error prone. 

5.3 Simulation scenario III 

In the third simulation scenario, the data sets were again generated according to the mod-
el of Meyer (2010) with two latent classes. The members of the first latent class respond-
ed regularly. The members of the second latent class responded irregularly by rapid 
guessing, choosing the correct response on chance level. Rapid guesses were generated 
by random draws from the binomial distribution with success probability of 0.2. As the 
rapid guessers responded on a random basis, the Rasch model was not valid any more in   
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the second latent class. This was the only change to the second simulation scenario. The 
response times were generated as before. Similar to the second simulation scenario 
twelve simulation conditions were considered. These conditions paralleled the conditions 
of the second scenario with respect to effect size, mixing proportion and sample size. 
The third scenario mimicked the (probably rare) situation that some individuals do not 
even make the slightest effort to solve the items. The data was analysed as before. All 
models were fit in a two group version to classify the subjects as regular and careless 
responders. Then each model’s version with the lowest BIC index was determined. The 
item parameters in the largest group were considered as the true estimates. The results 
are reported in Table 3. 

As long as the effect of rapid guessing on the response time distribution is at least mod-
erate, all methods are able to detect rapid guessing and to counteract its effects. The three 
methods manage to reduce the bias of the parameter estimates effectively and achieve a 
lower standard error of estimation than the simple Rasch model. Differences between the 
three methods are small. The methods are also capable of identifying the rapid guessers 
with high probability. The rate of correct classification is near 1.00 in case the effect is 
moderate or larger. 

5.4 Simulation scenario IV 

The fourth simulation scenario dealt with the effects of test speededness. The generation 
of the responses and response times was based on the model of van der Linden (2007) as 
in the first simulation scenario. However, this time a fixed time limit was set for the 
whole test and as soon as the test takers ran out of time they responded to the remaining 
items rapidly, by choosing the correct response on chance level. Contrary to the second 
and third simulation scenario the data sets were not generated via a standard latent class 
model with a fixed mixing proportion. To vary the amount of irregular responding the 
time limit was varied. This also affected the proportion of rapid guessing in the test. In 
the large effect condition, a time limit of 75 was imposed. With this severe time limit 
about 50 % of the test takers were running out of time. The proportions of the test takers 
responding regularly were about 0.98, 0.92, 0.74 and 0.49 in the last four items. In the 
moderate effect condition the time limit was set to 85 such that the proportion of the test 
takers responding regularly was 0.98, 0.92 and 0.77 in the last three items. Hence, in the 
last item about 25 % of the subjects guessed rapidly. In the small effect condition the 
time limit was set to 90. The rates of rapid guessing were 0.99, 0.96 and 0.86 in the last 
three items. So in this condition about 15 % of the test takers were forced to guess rapid-
ly. Note that rapid guessing affected only the last items that were also the most difficult; 
see the first simulation scenario for the values of the item locations. As in the last item 
the marginal solution probability of 0.30 was similar to the guessing probability of 0.20, 
the simulation setting is rather difficult. Again, two sample sizes of 500 and 1000 sub-
jects were considered. The combination of the three time limits with the two sample sizes 
defined six simulation conditions, for which 250 data sets were simulated. The data sets 
were analysed as described above. The three methods were first estimated in a version  
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for two groups, which was used to classify the test takers as regular and irregular re-
sponders. Then the best BIC version of each method was determined. The item parame-
ters in the largest group were considered as the true estimates. Results concerning pa-
rameter recovery by the best BIC version and the rate of correct classification can be 
found in Table 4. 

Findings are less promising. The BIC always preferred the multi-group Rasch model in 
its one group version. Consequently, the results were not different from fitting a standard 
Rasch model to the whole sample. With respect to the latent class model of Meyer 
(2010) and the finite mixture model for the response times, the three group version was 
chosen most often. This capability for detecting the presence of test takers responding 
differently however did not have a positive effect on parameter recovery. In some condi-
tions the standard error of estimation almost tripled. This is somewhat surprising as the 
two methods are capable of identifying the rapid guessers with high probability. Al- 
though this is positive it also enforces model versions with a large number of groups, 
which are difficult to estimate. Estimation is additionally affected by the fact that the 
mixing proportion of the target group, that is, the group of subjects responding regularly 
in all items, becomes smaller with increasing effect size. Note that in the large effect 
condition only half of the test takers responded regularly in all items. 

6 Empirical application 

In addition to the simulation study the three methods were used for the analysis of a real 
data set. This data set consisted of the responses and the response times in a test for chess 
playing proficiency; for a detailed description of the test and the data see van der Maas 
and Wagenmakers (2005). Here, the items of the ’Choose a move’-scale were used. This 
scale consists of 40 items, each displaying a chess position, for which the subjects have 
to indicate the best move. The response format is free and responses are scored as either 
true or false. The test is time-constrained with a time limit of 30 s per item. The scale can 
be divided into three subscales, the first assessing endgame knowledge (EndMove), the 
second assessing positional knowledge (PosMove) and the last one assessing tactical 
knowledge (TacMove). Overall, 259 subjects completed the test. The data were collected 
during a chess tournament in Dieren. Participation was voluntary and no reward was 
given for participation. 

Each subscale was analysed separately. First, all subjects with missing data were re-
moved. Then, the response times in the single items were logarithmized and standard-
ized. Each subscale was divided into four parts, for which the response times were 
summed. The total testing time, or to be more precise, the total log time was determined 
as well. The multi-group Rasch model was fit to the data, using the five generated varia-
bles as the covariates when subdividing the data set. A structure with one, two and three 
groups was fit and the best solution with respect to the BIC index was determined. In 
addition, the latent class model of Meyer (2010) was fit to the data with one, two and 
three latent classes. Again, the best model was chosen with respect to the BIC index.  
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Table 5: 
Optimal number of classes in the three subscales of the chess test as suggested by the different 

models when using the BIC index as decision criterion for the optimal number of classes. 

Scale MG LC MM 

EndMove 1 2 1 

PosMove 2 3 4 

TacMove 1 3 2 
Note. MG: Multi-group Rasch model, LC: Latent class model 
of Meyer (2010), MM: Finite mixture model. 

 
And finally, different versions of the finite mixture model for the response times were 
estimated and the best one was chosen. The suggested number of latent classes for the 
three subscales and the three models can be found in Table 5. 

According to Table 5 there is little consensus with respect to the optimal number of 
classes. For the PosMove scale the multi-group Rasch model suggested two classes 
defined by the total log time and the cut point −0.88. For the other scales the multi-group 
model managed with just one class. The latent class model of Meyer (2010) pointed to 
two and three classes. However, as the model of Meyer (2010) tends to overestimate the 
number of classes in case of individual differences in work pace, these results should be 
considered with care. The finite mixture model, which does not assume a strict form of 
conditional independence between the response times but is based on the multivariate 
normal distribution, coincides sometimes with the multi-group Rasch model (EndMove 
scale), sometimes tends more to the latent class model’s solution (PosMove) and some-
times lies between the two (TacMove). Again, one has to be careful when interpreting 
these findings as the model overestimates the number of classes in case the response time 
distribution is misspecified. Overall, there is little guidance which solution is best. The 
kernel density estimates of the total response time distribution given in Figure 3 support 
slightly the solution of the multi-group Rasch model. Except for the PosMove scale the 
distributions seem to be unimodal. The absence of strong forms of careless responding 
might be due to the fact that participation was voluntary. Unmotivated individuals also 
might prefer to abort the test than to hurry through it. Note that only subjects with com-
plete data were selected. This might have made the motivation of the subjects more ho-
mogenous than it usually is in typical low-stakes tests. 

The data from the PosMove scale was analyzed further. This time all models were re-
stricted to a two class solution. Having calibrated the respective models the membership 
of the subjects was estimated. The models differed with respect to the class sizes. The 
multi-group Rasch model divided the subjects into two classes with sizes of 174 and 39, 
the latent class model of Meyer (2010) into classes of size 141 and 72 and the finite 
mixture model into two classes of size 134 and 79. The larger class was the class with 
the longer response times in all three models. Altogether, there was good agreement with 
respect to the class membership. The multi-group and the latent class model coincided in  
 



Detecting unmotivated individuals with a new model-selection approach for Rasch models 

 

289

 
 Figure 3: 

Kernel density estimate of the distribution of the sum of the logarithmized standardized 
response times in the single items for the three subscales. The dotted line illustrates the cut 

point suggested by multi-group Rasch model for the PosMove scale 

 

81 %, the multi-group and the finite mixture model in 81 % and the latent class model 
and the finite mixture model in 83 % of the cases. 

Somewhat counter to intuition, the item location parameters of the Rasch model were 
lower in the smaller class with shorter response times – a finding that seems to contradict 
the claim that this class consisted of the test takers with poorer motivation on first sight. 
However, the marginal maximum likelihood estimates of the Rasch parameters are con-
founded with the scale and location of the latent traits and therefore can not be interpret-
ed arbitrarily. The smaller class also contained the subjects with the higher chess playing 
proficiencies (as assessed by an external criterion) and a part of the increase in the inter-
cepts might be due to the higher ability level in this group. Besides, the small sample size 
in the second class induces large standard errors of estimation such that these results 
should not be over-interpreted. 

To assess the meaningfulness of the identified classes their moderator effect on the ex-
ternal validity of the test was assessed. As an external criterion of the chess playing 
proficiency the elo-score of each subject was used. The elo-score is an index that aggre-
gates the past chess playing performance of a subject. It subsumes the number of wins 
and losses of a chess player and determines his/her position in the world ranking. It can 
therefore be considered as an excellent proxy for the actual chess playing proficiency of 
an individual. We hypothesized that in case the classes really differed with respect to 
their commitment to the test, the predictive power of the test should be lower in the class 
with the shorter response times. This hypothesis was tested as follows. The latent traits 
of all test takers were estimated with the Rasch model using the parameter estimates 
from the larger class. The estimated traits were then used to predict the elo-score of the 
individuals with a linear regression model. Separate linear regression models were fit to 
the data of the two classes. The regression coefficients as well as the coefficients of 
determination were regarded as a measure of the predictive validity and are reported in  
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Table 6:  
Predictive validity of the latent traits from the PosMove scale in the two classes identified by 

the three models: Regression coefficient (b) and coefficient of determination ( )2R  when 
predicting the elo-score via a linear regression model.   

Model Slow Class Fast Class 
2R  b 2R  b 

MG 0.37 207.44 0.18 107.51 

LC 0.32 181.48 0.34 174.42 

MM 0.35 201.81 0.30 174.69 
Note. MG: Multi-group Rasch model, LC: Latent class model of Meyer (2010), 
MM: Finite mixture model for response times.  

 
Table 6. Note that the coefficient of determination depends on the range of the predictor 
and therefore might not be comparable in case the two classes differ with respect to the 
distribution of the latent traits. 

The results for the larger class with longer response times (slow class) are similar for the 
three approaches. The coefficient of determination is moderate suggesting considerable 
validity of the test. There is also a strong relation between the trait and the elo-score as 
reflected by the regression coefficient b. For the small class with fast response times (fast 
class) the results depend on the chosen method. In the class identified by the multi-group 
Rasch model, the coefficient of determination drops and the regression coefficient 
halves. This implies that the test has less predictive validity for the subjects that were 
identified as slow responders. Somewhat surprisingly, the same does not occur in the 
classes identified by the two other methods. Only the multi-group Rasch model succeeds 
in identifying subjects whose trait estimates appear to be of little use. 

7 Discussion 

Low-stakes tests are tests with few personal consequences for the test takers. Conse-
quently, as there is little to be gained from making full effort, some test takers hurry 
through the test without properly thinking about the items. The consequences of this 
careless response behavior are threefold. On the subject level, the real ability level is 
underestimated, as long as the real ability level is defined as the ability level under max-
imal motivation. On the level of the institution the subjects are from, the average ability 
level of all subjects attending the institution is underestimated as well. And on the level 
of the test, the test is miscalibrated as the item parameter estimates are biased. All these 
effects can have serious consequences in practice. 

In the present manuscript we have compared three different methods that can be used to 
counteract the effects of careless responding, one of which was new. The focus of the 
manuscript was on the methods’ capability to recover the true values of the item parame-
ters and to identify the test takers that responded carelessly. The problem of estimation 
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bias due to data contamination is a general problem in statistics and has stimulated re-
search into robust estimation. Robust estimation is still an underdeveloped field in item 
response theory although for generalized linear mixed models such estimators exist 
(Moustaki & Victoria-Feser, 2006, Sinha, 2004, Yau & Kuk, 2002). From this perspec-
tive, the three models could also be interpreted as tools for robust estimation. 

The simulation study revealed that bias reduction works well with all three methods, at 
least as long as the effects of careless responding on the responses and the response times 
are not too small. Under less optimal conditions, that is, few careless responders and 
small differences, the methods differ. The approaches with a precise specification of the 
response and response time distribution such as the latent class model of Meyer (2010) 
perform better in case all assumptions are met. This is hardly surprising as by fully speci-
fying the distribution, the information of the responses and response times can be used 
most efficiently (Altham, 1984). However, in case the response time distribution is mis-
specified or the model assumes the wrong form of dependency between the data, the 
results can even change for the worse. An example is the poor performance of the latent 
class model of Meyer (2010) in the first and fourth simulation scenario. This illustrates 
the advantage of a statistical model that makes as little assumptions as possible. The 
multi-group Rasch model is good in this respect as it avoids any assumption about the 
response time distribution. Although it does not perform as good as the two alternative 
models with respect to bias reduction, the model never performs worse than the standard 
Rasch model. Besides, the multi-group Rasch model is simple to use and provides a cut-
off that distinguishes regular from careless responders. 

The identification of individuals with aberrant mode of responding is treated in item 
response theory under the label of person fit analysis. Several approaches exist for the 
detection of person misfit by means of their responses; see Meijer (1996), Meijer and 
Sijtsma (2001) and Artner (2016). Unfortunately, these standard tests of person fit have 
low power in short tests (Ranger & Kuhn, 2015). This might be due to the fact that the 
responses alone give little insight into the solution process. Low scores can be due to 
careless responding or to low ability. Contrary to the classical approaches to person 
misfit the three methods are able to detect the irregular responders in the simulation 
study well, as long as the regular and careless responders differ with respect to the re-
sponse time distribution moderately. This illustrates the value of the response times for 
drawing inferences about the response process. 

Although we tried to consider the most relevant factors in the simulation study, its scope 
was necessarily limited as it is always the case with simulation studies. First, we used a 
rather short test with just ten items. We repeated parts of the study with a longer test but 
the results were virtually the same. Second, we did not use the single response times on 
the item level, but average response times in parts of the test for the multi-group Rasch 
model. This was motivated by our experience that in data analysis it usually is not a good 
strategy to feed dozens of variables into a statistical model in the hope that the model 
identifies the good predictors. In order to facilitate variable selection we chose to limit 
the analysis to a small number of aggregated response time measures that we thought to 
be more indicative for rapid guessing than a single response time. Nevertheless, we ad-
mit that one also could have used the single response times or alternative measures like 
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the intraindividual variance. Note that response times of automatic guesses should be 
rather uniform. Third, the conditions considered in the simulation scenarios might have 
favored the mixture models. Data were usually generated according to a latent class 
model. The log response times were normally distributed. With non-normal data the 
mixture models might have tended to overestimate the number of classes to approximate 
the true distribution; note that mixture models are also used for density estimation (Fra-
ley et al., 2014). So the results for the model of Meyer (2010) and the finite mixture 
model for the response times might be too optimistic. A replication of the simulation 
study with different response time distributions and different forms of demotivation (e.g. 
a gradual change from regular to careless responding) might be interesting. Fourth, we 
assumed the conditional independence between the responses and the response times in 
the simulation study. This assumption is common practice in response time modeling and 
there is evidence that supports this claim (van der Linden & Glas, 2009). The multi-
group Rasch model might however perform less well in case of a more complex relation 
between the responses and the response times. This problem could be addressed from the 
perspective of sample selection as the formation of subgroups might be conceived as 
such. 

The manuscript was written from the perspective of careless responding. Careless re-
sponding was identified by means of response time data. Although response times are 
probably the first choice for this purpose, the multi-group Rasch model is a flexible 
approach that is capable of considering additional indicators of careless responding. As 
an anonymous reviewer pointed out one could also include scores from a motivational 
scale. All one had to do is to include another covariate, the motivational score, in addi-
tion to the response time measures. One could also test the hypothesis that specific test 
takers respond differently by defining an indicator variable, which is then entered as a 
regular covariate into the Rasch model answer tree. Response time was considered here 
as indicative of careless responding. This however is not the only application of the 
Rasch model answer tree or the modified multi-group Rasch model with response time 
covariates. The method should be able to detect different response strategies in general. 
Different response strategies are omnipresent in attitudinal scales, where individuals can 
take a rapid peripheral route of information processing or a more time intensive central 
one (Mayerl, 2013, Böckenholt, 2012). Responding in a social desirable way might also 
be associated with a distinct form of response time pattern. So there might be much more 
uses of the approach than just bias correction in low stakes testing. This however is a 
field for future research. 
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