
Psychological Test and Assessment Modeling, Volume 60, 2018 (4), 393-401 

Reliability and interpretation of total scores 
from multidimensional cognitive measures – 
evaluating the GIK 4-6 using bifactor 
analysis 
Tobias Debatin1, Abdullah Aljughaiman2, Mariam AlGhawi3,  
Heidrun Stoeger4, Albert Ziegler1 

Abstract 
It is often not trivial to interpret total scores from test batteries of cognitive ability, as the underly-
ing set of items or subscales is typically not unidimensional. Additionally, in such cases, the relia-
bility is not accurately estimated by coefficient alpha. The rarely addressed problem and possible 
solutions via bifactor analysis are presented without mathematical details. Applying this technique, 
factor structure and model-based reliability of the cognitive ability part of the Gifted Identification 
Kit 4–6 (GIK 4–6), a newly developed test battery to identify gifted students in the United Arab 
Emirates, were evaluated using confirmatory bifactor analyses. Results revealed that the total score 
is reliable (coefficient omega = .89) and primarily measures a general intelligence factor (g). The 
total score should best be interpreted as a blend of g, a reading factor, and a mathematics and sci-
ence factor. 
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In research, latent variable modeling and item response modeling are often used to assess 
psychological constructs. Nonetheless, especially in practice, when applying a test bat-
tery or questionnaire it is common to assess a construct of interest by summing all item 
scores or subscale scores to form a total score. However, the appropriateness of this 
procedure depends on several factors. Focusing on the domain of cognitive ability tests, 
this article will outline how to interpret total scores and assess their reliabilities when the 
underlying set of items is not unidimensional. The approach based on bifactor analysis 
(Green & Yang, 2015; Reise, 2012) will then be applied to evaluate the cognitive ability 
section of the Gifted Identification Kit 4–6 (GIK 4–6; Ziegler & Stoeger, 2016), a newly 
developed test battery of the Hamdan bin Rashid Al Maktoum Foundation for Distin-
guished Academic Performance to identify gifted students in the United Arab Emirates. 
In addition to evaluating factor structure and reliability of the GIK 4–6, the article has 
two other goals. First, we would like to clarify reliability estimation and interpretation of 
total scores from multidimensional measures without using formulas or mathematical 
details. Second, we want to highlight why the problem is ubiquitous in cognitive ability 
testing and why bifactor analysis is particularly well suited to address the problem for 
cognitive ability tests. 
Currently, the Cattell-Horn-Carroll theory (CHC theory) is the most widely accepted 
model describing the structure of human cognitive abilities (McGrew, 2009). The model 
is based on hundreds of factor analyses of cognitive ability tests. Several correlated 
group factors were found to characterize the broad scope of human cognitive abilities. 
Usually, a second-order g is also postulated, as the group factors are correlated. Accord-
ingly, cognitive ability test batteries typically consist of different subscales that either 
correspond to group factors of the CHC theory or are a blend of some of these factors. 
The subscales are normally summed to a total score; therefore, assuming correlated sub-
scales, a certain percentage of reliable variance of the total score should be due to group 
factors and another due to g (Brunner & Süß, 2005). When using cognitive ability test 
batteries, the focus is often on the total score, which is then transformed into an IQ score. 
This raises two problems: First, how to calculate reliability for such a total score and 
second, how to interpret the total score? 
The most common, but not well understood by many users, reliability coefficient is 
coefficient alpha (Cortina, 1993; Dunn, Baguley, & Brunsden, 2014; Slocum-Gori & 
Zumbo, 2011). For coefficient alpha to properly assess reliability essential tau equiva-
lence has to be given, which includes the assumption of unidimensionality (Green & 
Yang, 2015; Slocum-Gori & Zumbo, 2011). Even though unidimensionality is normally 
clearly not given in cognitive test batteries as discussed before, coefficient alpha is 
commonly reported. A much better option to assess reliability when unidimensionality is 
not given is coefficient omega (McDonald, 1999). Using a factor-analytic framework 
coefficient omega estimates the proportion of the true score variance of the total score to 
the total score variance. Depending on which model fits the data best, the true score 
variance estimate is based either on a single factor or on several factors. It is the propor-
tion of variance of the total score due to all reliable factors (Green & Yang, 2015). 
However, the proportion of reliable variance of a total score alone does not inform us as 
to how it should be interpreted. Although the set of items or subtests underlying a total 
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score of a cognitive ability test is rarely unidimensional, this is not automatically a prob-
lem for a meaningful interpretation. For an easy interpretation, it is sufficient that a total 
score primarily measures the target construct (Reise, Moore, & Haviland, 2010). A set of 
items fulfilling this condition is called essentially unidimensional (e.g., Slocum-Gori & 
Zumbo, 2011). There are several methods to estimate the degree of unidimensionality. 
Davenport, Davison Liou, and Love (2015) advocated the proportion of variance ac-
counted for by the first principle component as an indicator, and Ten Berge and Sočan  
(2004) proposed the explained common variance (ECV) as an index, which is the per-
centage of common variance explained by the first common factor. There are good rea-
sons to use these methods in certain circumstances, but when it comes to interpreting 
total scores, omega hierarchical (ωH; e.g., Zinbarg, Revelle, Yovel, & Li, 2005) based on 
bifactor analysis, sometimes also called direct hierarchical model, seems to be the best 
option available (Green & Yang, 2015; Reise, 2012). Omega hierarchical assesses the 
proportion of variance of a total score due to the general factor that all items have in 
common. The judgment that ωH based on bifactor analysis is the preferred method to 
assess the degree of unidimensionality assumes that a bifactor model fits the data well 
and corresponds to theory. This is why the method seems especially suitable to evaluate 
cognitive ability tests. In recent years, it has been shown repeatedly that a bifactor model 
suits data from cognitive ability tests very well and additionally corresponds nicely to 
CHC theory (Morgan, Hodge, Wells, & Watkins, 2015; Murray & Johnson, 2013). 
A bifactor model assumes a general factor that directly influences scores on all items and 
several less general group factors that only influence the scores on some items. For ex-
ample, the items of a verbal intelligence subtest could be influenced by g and a verbal 
factor but not by a factor representing numeric skills. All factors in a bifactor model are 
uncorrelated. Concerning the representation of human cognitive abilities, it competes 
with higher-order models that assume correlated group factors and a second-order gen-
eral factor, which results from a second factor analysis of the group factors (Beaujean, 
2015). The main difference is that in higher-order models the influence of the general 
factor on the items is indirect through the group factors, whereas in bifactor models, a 
direct influence is assumed. Thereby, bifactor models emphasize the general factor, 
whereas higher-order models prioritize group factors. 
Remember that coefficient omega calculates the proportion of variance of the total score 
due to all reliable factors to estimate the amount of true score variance of a scale. The 
advantage of uncorrelated factors as in the bifactor model is that the variance due to all 
reliable factors can easily be calculated by simply summing the variances of all factors. 
Thereby, bifactor analysis can be used to calculate coefficient omega as well as ωH 
(Green & Yang, 2015). Additionally, how much each factor of the model contributes to 
the variance of the total score can be directly compared. Not only ωH, which assesses the 
contribution of the general factor, but also omega coefficients for the group factors, 
which quantify the amount of variance each group factor contributes, can be computed. 
In the case where ωH is rather low, making an unidimensional interpretation of the total 
score questionable, the omega coefficients of the group factors can be very helpful in 
interpreting what the total score measures and to which degree. 
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Two previous bifactor analyses of cognitive test batteries revealed very different satura-
tions with g assessed by ωH. Gignac and Watkins (2013) found ωH of the total score from 
the Wechsler Adult Intelligence Scale–Fourth Edition (WAIS-IV; Wechsler, 2008) to 
range from .84 to .88, depending on the age group. Brunner and Süß (2005) found ωH of 
the total score from the Berlin Intelligence Structure test (BIS test; Jäger, Süß, & 
Beauducel, 1997; for an English description, see Süß, Oberauer, Wittmann, Wilhelm, & 
Schulze, 2002) to be .68. While the analysis of the WAIS-IV clearly justifies an interpre-
tation of the total score as measuring mainly g, the total score of the BIS should rather be 
interpreted as a blend of g and several group factors. However, despite having a lower ωH 
than the WAIS-IV, the saturation with g in the BIS is still high and most of the reliable 
total score variance is due to g. 

Present study 

The current study assessed the factor structure and omega coefficients of the cognitive 
ability section of the GIK 4–6 consisting of five subtests: Verbal Ability I, Preknowledge 
in Science, Verbal Ability II, Preknowledge in Mathematics, and Nonverbal Ability 
(Ziegler & Stoeger, 2016). Following is a short description of the five subtests.  
In Test 1: Verbal Ability I, students are presented with short sentences. Each sentence 
contains a word pair in parentheses. Working as quickly as possible, students decide 
which of these two words completes each sentence in a meaningful way by crossing out 
the incorrect word. In Test 2: Preknowledge in Science, students are presented with a 
series of words in which the first letter of each word has been moved to the end of the 
word. Working as quickly as possible, students judge whether the word is related to a 
given topic from the United Arab Emirates science curriculum. In Test 3: Verbal Ability 
II, students read two texts that have been specifically developed for the United Arab 
Emirates. For each text, students answer a series of questions in a multiple true–false 
format. In Test 4: Preknowledge in Mathematics, students are presented with four pages 
containing 16 circles each. Each circle contains an arithmetic problem. Working as 
quickly as possible, students connect the circles in the order of increasing results. Once 
they have completed a page, they immediately start with the next one. In Test 5: Nonver-
bal Ability, students are presented with a series of composite figures. Each figure con-
tains three rows of figural elements. The progression of the figural elements depicted 
across each row follows a certain construction rule. Students identify the construction 
rule by examining the first two rows and then apply the rule to correctly complete the 
final row (by choosing one out of four options). 
According to the application manual of the GIK 4–6, Verbal Ability I and II are com-
bined to assess verbal ability, Preknowledge in Science and Preknowledge in Mathemat-
ics are combined to assess preknowledge in science and mathematics and Nonverbal 
Ability stands alone. Based on this, we tested the following factor structure with con-
firmatory bifactor analyses: We assumed a g factor to influence all five subtests directly, 
a reading factor to influence Verbal Ability I and II, and a science and mathematics 
factor to influence Preknowledge in Science and Preknowledge in Mathematics. Similar 
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to previous bifactor analyses of cognitive test batteries, we assumed the majority of the 
total score variance to be attributable to g, meaning an ωH of higher than .6. 

Method 

Sample 

Our sample consisted of 1,142 students from grades four to six from the United Arab 
Emirates. The mean age of the sample was 9.74 years (SD = 0.95) and the percentage of 
females was 59%. 

Data analysis 

Confirmatory bifactor analyses were performed to analyze factor structure and reliability 
of the cognitive ability section of the GIK 4–6. The reliability coefficients of the five 
subtests Verbal Ability I, Preknowledge in Science, Verbal Ability II, Preknowledge in 
Mathematics, and Nonverbal Ability ranged from .74 to .90.  
We started the analysis by testing the following factor structure: A g factor was assumed 
to influence all five subtests directly, a reading factor to influence Verbal Ability I and II, 
and a science and mathematics factor to influence Preknowledge in Science and Pre-
knowledge in Mathematics. All factors were constrained to be uncorrelated and the two 
loadings of each group factor were constrained to be equal, as recommended for latent 
factors with only two indicators. Variances of all factors were set to 1. The maximum 
likelihood (ML) estimator was used for all analyses. All analyses were calculated using 
Mplus 6.0.04 (Muthén & Muthén, 1998-2010). Missing values were handled by using 
the full information maximum likelihood method. Next to the chi-square value, model fit 
was assessed following the criteria of Hu and Bentler (1999). Accordingly, a value close 
to .95 for the Comparative Fit Index (CFI), a value close to .06 for the root mean square 
error of approximation (RMSEA), and a value close to .08 for the standardized root 
mean squared residual (SRMR) were the cutoff criteria for good model fit. 

Results 

The initial model showed good CFI and SRMR values but a highly significant chi-square 
value, and the value concerning RMSEA was far away from our cutoff criterion for good 
model fit (see Table 1). There was also a problem with the assumed reading factor as the 
loadings to its indicators were estimated to be 0. Modification indices, especially the 
standardized expected parameter change (SEPC), indicated influential covariance be-
tween Verbal Ability I and Preknowledge in Science, which was not captured by the 
model. Verbal Ability I is designed to assess mainly reading speed, whereas the main 
intention of Preknowledge in Science is to assess familiarity with concepts of the science 
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curriculum. Nonetheless, it seems very plausible that a strong reading speed component 
is also present in Preknowledge in Science, as both tests are severely time-limited and 
language-based. Accordingly, we decided to change the model by adding Preknowledge 
in Science as a third indicator of the reading factor. Again, a g factor was assumed to 
influence all five subtests directly; the reading factor was now specified to influence 
Verbal Ability I and II as well as Preknowledge in Science, and a science and mathemat-
ics factor to influence Preknowledge in Science and Preknowledge in Mathematics. All 
factors were constrained to be uncorrelated and we constrained the two loadings of the 
science and mathematics factor to be equal. Variances of all factors were set to 1. This 
model fit the data extremely well, as indicated uniformly by all model fit values (see 
Table 1) and fit the data significantly better than the first model (χ2

diff (2) = 42.96, p < 
.001). All standardized loadings can be found in Table 2. 
Concerning the factor structure, these results provide strong evidence for a g factor and 
two reliable group factors, interpreted as a reading factor and a mathematics and science 
factor. This final model was used to calculate the omega coefficients in the next step. 
Coefficient omega, which is the proportion of variance of the total score due to all relia-
ble factors, was .89, 95% CI [.87, .91]. The proportion of variance of the total score due 
to the g factor, ωH, was .64, 95% CI [.58, .69]. The proportion of variance of the total 
score due to the reading factor was .20, 95% CI [.15, .26] and for the mathematics and 
science factor it was .06, 95% CI [.05, .06]. As can be seen, ωH and the coefficients for 
the group factors sum to the value for coefficient omega.  
 

Table 1: 
Model Fit of Confirmatory Bifactor Analyses of the GIK 4–6 

Model Description χ2 df p CFI RMSEA SRMR 
1 Initial model 44.23 3 .000 .98 .11 .03 
2 Final model 1.27 1 .259 1.00 .02 .01 

 
 

Table 2: 
Standardized Loadings of the Final Bifactor Model  

Subtest g Reading Math & Science 
Verbal Ability I .70 .53  
Verbal Ability II .49 .25  
Preknowledge in Science .65 .60 .28 
Preknowledge in Mathematics .61  .41 
Nonverbal Ability .58   
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Discussion 

The aims of the recent study were to highlight the rarely discussed problem of reliability 
estimation and interpretation of total scores from multidimensional cognitive measures 
and to evaluate the cognitive ability section of the GIK 4–6, a newly developed test 
battery to identify gifted students in the United Arab Emirates, using confirmatory bifac-
tor analyses.  
Concerning the factor structure, we found g, a reading factor, and a mathematics and 
science factor to influence the performance in the subtests. This model fit the data ex-
tremely well. Coefficient omega of the total score was .89, 95% CI [.87, .91], which 
means that 89% of the total score variance is due to these factors. It should be noted that 
the value of .89 most likely underestimates reliability since the test battery includes a 
single nonverbal ability test for which we could not estimate another group factor, as the 
nonverbal ability test would have been the only indicator. The reliability of the total 
score is sufficiently high to use it for selecting students based on the total scores. The 
proportion of variance of the total score due to the g factor, ωH, was .64, 95% CI [.58, 
.69]. Regarding interpretation of the total score, this means that the total score is predom-
inantly measuring g, although it is not high enough to interpret the total score as essen-
tially unidimensional. The proportion of variance of the total score due to the reading 
factor was .20, 95% CI [.15, .26] and the corresponding proportion due to the mathemat-
ics and science factor was .06, 95% CI [.05, .06]. As can be seen, especially the relative-
ly strong influence of the reading factor, which is uncorrelated with g, may not be ne-
glected in interpreting the total score. Therefore, the total score should best be interpreted 
as a blend of g, a rather strong reading factor, and a mathematics and science factor. The 
reading factor is most likely assessing reading speed since Verbal Ability I and Pre-
knowledge in Science clearly showed the highest loadings – the two subtests for which 
reading speed seems very important. 
Concerning the psychometric evaluation of cognitive ability test batteries in general, we 
want to highlight the following considerations (for a similar discussion see Brunner & 
Süß, 2005). The prominent CHC theory explicitly postulates a multidimensional struc-
ture of human cognitive abilities, classified by several correlated group factors that 
summarize subsets of similar abilities. Nonetheless, usually a total score is formed to 
assess the general intelligence factor g, justified by the ubiquitous finding that all kinds 
of cognitive ability tests (and the group factors) are correlated. However, as there are 
considerable differences between test batteries, we consider it important for interpreta-
tion and reliability estimation to know to what degree the total score of a certain test 
battery is measuring g, and to what degree it is measuring which group factors. In our 
opinion, confirmatory bifactor analyses should more regularly be used to evaluate test 
batteries of cognitive ability regarding interpretation and reliability. Additionally, the 
procedure can also provide valuable information about the appropriateness of subscales 
and to assess the suitability of a set of items for scaling according to item response theo-
ry (Reise et al., 2010). 
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Limitations 

Compared to previous bifactor analyses of cognitive ability test batteries, which analyzed 
the factor structure based on 45 (Brunner & Süß, 2005), respectively 15 subtests (Gignac 
& Watkins, 2013), we had a rather low number of indicators, as the cognitive ability 
section of the GIK 4–6 consists of only five subtests. This limits the possibilities when 
evaluating the underlying factor structure. For example, according to CHC theory, it 
seems likely that the subtest Nonverbal Ability, which uses composite figures, is influ-
enced by a visual processing factor (Gv). As the subtest Nonverbal Ability is most likely 
the only indicator influenced by Gv, it was not possible to test this assumption. Addi-
tionally, interpretation of the factor we labeled mathematics and science is rather unclear. 
Interpreted within CHC theory, it seems to fit best the category labeled by Carroll as 
“Abilities in the domain of knowledge and achievement” (McGrew, 2009). 
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