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On the revival of the Rasch model-based LLTM: From constructing tests
using item generating rules to measuring item administration effects

K1LAUS D. KUBINGER'

Abstract

The “linear logistic test model” (LLTM) breaks down the item parameter of the Rasch model into a
linear combination of certain hypothesized elementary parameters. Apart from the originally intended
primary application of generating an indefinite number of items composed of whichever item difficul-
ties the examiner chooses, there are many other potential applications. They all deal with measuring
certain item administration effects. This paper illustrates several of these approaches as well as how to
design data sampling using the respective LLTM’s structure matrix. These approaches deal with:
a) Rasch model item calibration using data sampled consecutively in time but partly from the same
examinees; b) measuring position effects of item presentation, in particular, learning and fatigue effects
— specific for each position, as well as linear or non-linear; ¢) measuring content-specific learning
effects; d) measuring warming-up effects; e) measuring effects of speeded item presentation; f) measur-
ing effects of different item response formats. It is pointed out that the given LLTM approaches have
the advantage of “elegance,” as a hierarchical system of concurrent (alternative) hypotheses can be
tested.
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1. Introduction

Originally, Scheiblechner (1972) — not yet calling his approach “linear logistic test
model” — suggested predicting the Rasch model item parameter estimations of a psychologi-
cal test by means of a (multiple) regression analysis and some cognitive operations which
were hypothesized to be responsible for solving items. Fischer (1972, 1973) picked up this
suggestion, but used parameter decomposition directly within the Rasch model formula
instead of the multiple linear regression model. That is, he used a linear combination of some
hypothesized elementary operation parameters 7; (j = 1, 2, ... p < k) in order to explain

P
every Rasch model item parameter o;, i = 1, 2, ... k: 6; = Z%jﬂ ; — qy are postulated as
J

being fixed and known weights, whose actual values are part of the hypothesis as well.

In detail: Whereas the well-known Rasch model (1-PL model) defines the probability of
an examinee v with the ability parameter &, of solving item i with the difficulty parameter o;
as follows:
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the “linear logistic test model” (LLTM) specializes
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Just as a conditional maximum likelihood estimation of the parameters o; in the Rasch
model is possible, the same is true for the parameters 7; in the LLTM (cf. Fischer, 1995a).
As a consequence, model checks according to Andersen’s Likelihood-Ratio test are available
as well. This means that in the first instance, the Rasch model must hold for the data under
question. Given that the Rasch model holds, in particular according to Andersen’s Likeli-
hood-Ratio test (for state-of-the-art model checks of the Rasch model, see Kubinger, 2005),
then a goodness-of-fit test is applied by using another Likelihood-Ratio test: The data’s
likelihood in the LLTM, L;; 1y, is opposed to its likelihood in the Rasch model, Lgy, so that
2In(Lgys / Liimy) is asymptotically z’-distributed with df = k — p (or to say more precisely:
the degrees of freedom are the number of estimated parameters in the Rasch model minus the
number of estimated parameters in the LLTM).

However, while the Rasch model has spread particularly in the last two decades because
of pertinent not “specifically objective” parameter estimations (i.e. some non-conditional-
maximum-likelihood-based estimation approaches) and different generalizations (i.e. the
mixed Rasch model by Rost, 1990, and the multidimensional Rasch model by Adams, Wil-
son & Wang, 1997), the LLTM has almost vanished from scientific research work (a most
important exception is the book of De Boeck & Wilson, 2004, which contains even some
generalizations of the LLTM, and of course the generalization of Embretson, 1997). For this
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reason, the following paper serves to remind researchers of the LLTM’s original feasibility
within psychological test construction and furthermore suggest that the LLTM may serve as
a proper means for fundamental research concerning different item administration effects
within psychological testing.

2. Constructing tests using item generating rules

In constructing a psychological test, a researcher is always faced with the problem of va-
lidity. However, within psychological test theory there is also the concept of content validity,
or the idea that a test is valid by definition. This is true, for instance, when solving the items
requires exactly that competence by definition which a researcher aims to measure. If some
cognitive rules must be applied in order to solve an item, and the solution is obtainable in no
other way, then a high test score may be validly interpreted as a high level of competence in
mastering these rules. This means that psychological test constructors may look for such
cognitive rules with which to construct test items, and which are of practical relevance for
diagnosing an examinee (given a certain psychological problem).

The LLTM can be used to this purpose. The first historic application of the LLTM gives
an illustrative example. Based on a doctoral thesis, the Viennese Matrices (Formann &
Piswanger, 1979) reasoning test contains items with difficulties that were hypothesized at
test construction and have been proven to depend only on the kind and number of elementary
operations (logical rules) necessary to reach the solution. For the sample item in Figure 1,
these elementary operations are the rules: “increase the number step-wise” (with regard to
the dots in the left bar), “vary the number” (with regard to the bars), and ,,apply a rule hori-
zontally as well as vertically” (with regard to both the previous rules). Hence, what the test
actually measures is known: the ability to master those well-defined rules. Admittedly, this
disregards the question of whether that competence is of any ecological validity, but we are
confident that it is.

Though not actually implemented within the Viennese Matrices or in another test being
used for public counseling, the elementary operations parameters, once established, enable
the test constructor principally to compose an almost infinite number of new items with any
given item difficulty — an extremely useful possibility. This means that there are not only
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Figure 1:

Item 6 from the Viennese Matrices — the solution is “h”.
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item generating rules based on elementary (cognitive) operations but the difficulties of those
operations are also known. Fischer and Pendl (1980) illustrated in detail using a non-
empirical but arbitrarily numerical example, how item construction could work, and a few
researchers followed — in particular very recently — with practical applications (cf. Gorin &
Embretson, 2006; Newstead et al., 2006). This is of great importance, in particular for adap-
tive testing. As this requires having exactly that item at the examiner’s (or computer’s) dis-
posal which best fits the currently estimated ability parameter for every examinee (cf. Kub-
inger, 2003), the optimal item could immediately be constructed by a respective combination
of elementary operations.

In order to illustrate these first considerations, the so-called structure matrix ((q;)) of the
item difficulties’ linear combination of elementary operation parameters is sketched for the
Viennese Matrices in Figure 2.

Although composing tests using item generating rules has not yet been realized very of-
ten, LLTM’s original feasibility led to its occasional application as a means of testing a
psychological theory or of establishing psychological effects on rational decision-making
models.

First of all, Kubinger (1979, 1980) investigated the problem-solving behavior of students
taking a course in statistics. Of course, in this topic there is strict reglimentation, for instance
as concerns testing the null-hypothesis that all means of several interesting populations are
equal. That is, given the data of a certain study, the theory of statistics demands specific
decisions following a (more or less) specific sequence in order to find the correct and best
statistical test. Like the logical rules of the Viennese Matrices, these decisions can be inter-

elementary
operation 1 2 3 4 5 6 P
J
item increase vary the | apply a rule
i the number | horizontally
number as well as
step-wise vertically
1 1 1
2 1 1
3 1 1 1
4 1 1 1
5 1
6 1 1 2
2
2 1
1 1 2
k 2 1 1
Figure 2:

The structure matrix ((q;)) of the item difficulties’ linear combination of elementary operation
parameters, abstractly reconstructed for the Viennese Matrices — only the weights q¢; for Item 6
are original; all the other items, elementary operations, and weights are fictitious (an empty cell

means q; = 0).
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preted as those elementary operations necessary for the solution of the items of a university
statistics exam. For instance, the elementary operations and decisions are, respectively: “the
variable in question is neither nominally scaled nor ordinally scaled but interval (or ratio)
scaled”, “there is the need to test or to rationally explain whether the variable is normally
distributed”, “the given samples delivers matched (paired) data”, “there is the need to test the
populations’” homogeneity of variances”, etc. So the structure matrix ((q;)) is similar to that
of Figure 2. The aim of the studies was to discover which of the decisions are more difficult
for the students to make in a correct way and which are less difficult — and to accordingly
revise the didactic measures. However, analyses proved that the examination items’ difficul-
ties were not explained by the elementary operations’ (decisions’) difficulties; the goodness-
of-fit test — the data’s likelihood in the LLTM opposed to its likelihood in the Rasch model —
resulted in significance. As a consequence, it was concluded that students’ problem-solving
behavior does not fit the requirements of statistical theory. There must be characteristics of
the items which determine their difficulties beyond the theory. As a matter of fact, taking
some additional formal condition (elementary operation) parameters into account resulted in
a non-significant goodness-of-fit test. Such formal condition parameters were in particular
the position of the item within the examination booklet and the length of the item text (short
vs. long). In other words, specific psychological effects on rational decision-making models
have been established. Nevertheless, the analyses served their intended purpose, as the diffi-
culties of the theory-based decisions could be quantified separately from the formal condi-
tion difficulties.

Secondly, Sonnleitner (2008) used the LLTM for testing specific cognitive models of
reading comprehension. Again, some formal condition (elementary operation) parameters
proved to be of great importance when testing reading comprehension, in particular the
number of offered answer options of a multiple choice response format. And thirdly,
Poinstingl (2008) analyzed a certain (lexical) reasoning test in order to determine to which
extent the logical rules (elementary operations) necessary for a solution indeed exhaustively
determined the items’ difficulties. Once more, certain formal parameters established dra-
matic effects, due above all to the amount of irrelevant information given in the item. Fi-
nally, Wilson and De Boeck (2004) even tried to explain verbal aggression behavior through
certain typical theory-based components (elementary operations); though they did not
achieve a non-significant goodness-of-fit test, their results lead to a slightly better under-
standing of the theoretical background of the phenomenon of aggression.

3. Measuring item administration effects

As reviewed, Kubinger (1979, 1980) already used the LLTM for analyzing position ef-
fects of item presentation, and Sonnleitner (2008) established psychological effects of the
design of a multiple choice response format using LLTM. That is to say, LLTM offers an
appropriate method for fundamental research on different item administration effects within
psychological testing. We will deal with various such approaches in the following sections.



316 K. D. Kubinger

3.1. Taking learning effects into account because of testing at different sessions

First of all, it was again Kubinger (1979, 1980) who was also compelled to take certain
learning effects into account, because in order to have a sufficient sample size of examinees
as well as of items at his disposal, he had to use the data from different examination sessions.
The fact that several examinees took the examination (with different items) up to four times
because of failing the test, raised the following problems: a) not every examinee is adminis-
tered all the items of a given item pool but different groups of examinees are administered
different subsets of items, b) one and the same examinee who is tested at two or more ses-
sions in time is identical as concerns the actual personal identity but may differ with respect
to the degree of the (intended) measured ability — that is, it is likely that the ability of an
individual has changed between exams because of some learning effects. As concerns a), the
consequence was to apply a software for Rasch model and LLTM parameter estimation that
masters such data; nowadays we speak of having “missing values” (instead of having differ-
ent subgroups of examinees administered different subsets of items) and preferably use the
program package eRm (Mair & Hatzinger, 2006; cf. also Poinstingl, Mair & Hatzinger,
2007). Of course, parameter estimation is possible only if the item subsets of different ex-
aminee groups overlap in some manner through so-called linking items — we will deal with
this topic in detail later.

As concerns b), Kubinger (1979) initially generalized the linear combination of the

P
hypothesized elementary operation parameters in the expression & —o,=¢&, —Zqﬁn ;as
j

p
E,—o, =, +1,)— Zqﬁn ;> A # 0 if examinee v is tested the second, third, or forth time. Of
j

course, this model is no longer a LLTM because now the ability parameter is also decom-
posed so that Fischer’s entire algorithm of parameter estimation does not apply. However, if
it is assumed that the learning (or repetition or re-administration) effect A, is constant for all
examinees with the same combination of drawn sessions x and y (y =x+1, x+2, ... x+4 < 4; x
=0,1, ..., 4), that is A, = A7, then Fischer’s linear combination only needs to be redefined.

P
Givenx and y, then&, -0, =&, + (47 —qujnj). Now ¢;is also a function of x and y; that is,
J

an item’s difficulty also depends on the combination of sessions at which examinee v has
been tested, so o; must be specified as o;”. For this the labeling “virtual item” was found:
one and the same problem i is represented in at least two different virtual items, one of them
presented to any examinee tested the first time and another presented to any examinee tested
the second (or third or forth) time. So not the actual problem i changes but its difficulty does:
initially its difficulty is o, then it is ;” = o; + A”. In the most simple case — if there is no
linear combination of elementary operation parameters to explain o; — then the LLTM re-
duces to: &, —o¥ =& —(0,—g¥A"), ¢¥ =1 if examinee v is administered item 7 at session

y after having already been tested at session x; otherwise, g = 0. Of course, (o, —¢”'1") is

a linear combination as well, so this is just a special LLTM. To illustrate: think of k = 15
problems i, i =1, 2, ... 5 administered at sessionx = 1,7 =6, 7, ... 10 administered at session
x=y=2,andi=11, 12, ... k=15 administered at session y = 3. There are five subgroups of
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examinees, subgroup 1/0/0 with examinees v, v =1, 2, ... n,, tested only at session x = 1,
subgroup 1/1/0 with examinees v, v = n,t+1, ny0012, ... Bipetniue also tested at session x
= 1 and additionally at session y = 2, subgroup 1/0/1 with examinees v, v = npptn,,5t+1,
oot net2, .. Nygetngetngg, tested at session x = 1 and y = 3, subgroup 0/1/0 with
examinees v, v = o0t 0t ont L, Mot iaet i rt2, - Rttt tested
only at session x = 2, and finally subgroup 0/1/1 with examinees v, v =
1ot 0 o oty et e et 2, . Rttt tested at
session x =2 and y = 3. Then we have 15 problems but 20 virtual items, as the problems 6 to
10 are administered both to examinees without any respective examination routine and to
examinees with a certain examination routine or general learning effect. Figure 3 demon-
strates the interrelation of sessions, problems, virtual items, subgroups of examinees, and
item difficulties. Obviously, not every examinee is administered all the virtual items of a
given pool of virtual items. But Rasch model (virtual) item parameter estimation is possible
(for 20 virtual items), as is LLTM parameter estimation (for 15 problems and the learning
effect).

session

L[ [ e[ e]1]2[2]2]2][2]2]2][2[2]2]3[3]3]3]3]
problem
1 1 1

subgroup 1/0/0

subgroup 1/1/0

subgroup 1/0/1

subgroup 0/1/0

subgroup 0/1/1

item difficulty

O |02 |03 |04 |05 |Op |07 |08 |09 (010|06 |O7 |Os |09 (010 (0110121013014 (015
“AA A A A | AFA A RA A

Figure 3:

An example of the interrelation of sessions, problems, virtual items, subgroups of examinees, and
item difficulties of a data design to be analyzed by a special LLTM (gray shaded boxes
symbolize that the respective virtual item is administered to the respective subgroup). In this case,
different subgroups of examinees are tested at different terms and by different items. Hence,
some learning parameter A has to be taken into account, as a consequence of which not the
original items (problems), but virtual items are analyzed using the Rasch model. If the LLTM
holds, the learning parameter can indeed be separated and the problems can be calibrated
according to the Rasch model.
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Of course, this assumes that the learning effect is the same for every examinee — this pre-
supposition can be tested by splitting the sample of examinees as Andersen’s Likelihood-
Ratio test does.

To summarize: the described method makes it possible to calibrate an item pool accord-
ing to the Rasch model even if subgroups of examinees are tested repeatedly at different
times using different items. This may be particularly relevant for large scale assessments
where data sampling for the item calibration occurs consecutively in time but partially using
the same examinees.

3.2. Analyzing position effects of item presentation

The fundamental considerations described above can be used to deal with the problem of
position effects of item presentation. Again, applying the LLTM requires some transforma-
tion of the original items (problems) into virtual items and a data design with different sub-
groups of examinees. Examinees must be administered different sequences of (partly) the
same items — at least one item must have different positions within two different versions of
a given psychological test. For example, the most extreme case would be if the sequence of
item presentation is completely reversed in two test versions.

The LLTM may then be conceptualized as follows.

From now on, we will call the content of an item (problem) / the “item root” 4 (h =1, 2,
... r) and distinguish between such an item root (%) administered at position i, which has the
item difficulty parameter o;; = o; , and the same item root (%) administered at position /,
which has the item difficulty parameter o, = ;. That is to say, o; quantifies the difficulty of
the virtual item i, o; quantifies the difficulty of the virtual item /. We now define the diffi-
culty of the item root / as o, (irrespective of any position, or assuming that it is at some
abstract standardized position “*” within the test). Hence, the first » LLTM elementary pa-
rameters 7, are redefined so that 77, = o ;. In addition, a specific elementary parameter is
hypothesized according to the position at which the given item root is administered. Like the
learning parameter 4¥ in the section above, the interpretation of such a position parameter
7.+« (x 1s the respective position) is that its magnitude increases or decreases the probability
of solving an item root, depending solely on the given position. So the expression

P
E—o0,=¢, —Zq,.jn/ is simplified to & —o, =&, (0, +7,,,) . As an illustration, think of
J

r =4 item roots and four different sequences of presentation. While the first two sequences
might use a completely reversed item presentation, the third and the forth differ from both
rather arbitrarily. Then we have 4x4 =k = 16 virtual items, and we will hypothesize 4 = p —
r position parameters. The resulting structure matrix ((q;)) is shown in Figure 4.

It is of principle importance to test certain hypotheses. Given that the Rasch model holds
for the k virtual items, the null-hypothesis is

Ho: 77.=0, for everyx =1, 2, ... p — r — this is equivalent to
Hy: 6, = o, for everyi=h+r(x-1);(=1,2,...k,h=1,2,...1),x=1,2,...p—r).
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elementary
operation 1 2 3 4 5 6 7 8
J
virtual item | item | item | item | position | position | position | position
item root root root root | 1 within | 2 within | 3 within | 4 within
i A B C D test test test test
1 1 1
2 1 1
3 1 1
4 1 1
5 1 1
6 1 1
7 1 1
8 1 1
9 1 1
10 1 1
11 1 1
12 1 1
13 1 1
14 1 1
15 1 1
16 1 1
Figure 4:

The LLTM’s matrix of weights ((q;)) for the case: 4 item roots and four different sequences of

presentation — each position within item presentation is hypothesized as having its own special

effect.

Obviously, H;: 7., # 0. If Hy is rejected, then position effects are corroborated. Of
course, any special hypotheses (H;®) are possible, where a certain few position parameters
are set 77, # 0. Furthermore, a number of alternative hypotheses H," in addition to H; and
H,® exist: To start with, one could hypothesize a linear position effect. That is to say, a con-
stant gradual increase or decrease of difficulty is assumed for the order of item presentation.
This case would result in the structure matrix ((q;)) shown in Figure 5. Here the number of
parameters of the LLTM is reduced to p = 5 and the weights q;; are all either 1, 2, 3 or 4.
This is therefore a very strong hypothesis. A non-linear function of position and difficulty
seems a more likely alternative and feasible hypothesis; for instance the weights q;; could be
fixed according to a logistic function: instead of 1, 2, 3 and 4, the weights would then be
0.73, 0.88, 0.95, and 0.98 or likewise. Bear in mind that the latter has never been applied so

far.
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elementary
operation 1 2 3 4 5
J
virtual item root A | itemrootB | itemrootC | item root D position
item within test
i
1 1 1
2 1 2
3 1 3
4 1 4
5 1 4
6 1 3
7 1 2
8 1 1
9 1 2
10 1 4
11 1 1
12 1 3
13 1 3
14 1 1
15 1 4
16 1 1
Figure 5:

The LLTM’s matrix of weights ((q;)) for the case: 4 item roots and four different sequences of
presentation — a linear position effect is hypothesized.

Also bear in mind that if effects of the position of item presentation do exist, then adap-
tive testing is absolutely unwarranted. This is because there are always at least two exami-
nees being administered the same item but at different positions. This means that position
effects alter the difficulty of the (original) item and therefore one examinee is advantaged
and another handicapped, depending on when they were administered the item — this is true
as long as that position effect parameter is not taken into account.

In fact, using the LLTM in that way, Gittler and Wild (1989) have established for the
first time significant position effects; they investigated a test of spatial ability. More recently,
Hahne (2008) similarly analyzed the Viennese Matrices, but no significant effects were
found. But Hohensinn et al. (2008) disclosed such an effect for a mathematics test for large
scale assessment by the application of that LLTM’s approach.

The position effects considered up until now are not characterized by any specific con-
tent, but are rather general, test-immanent learning or fatigue effects. To be more concrete,
however, a specific fatigue effect H,* could be tested — though this has not yet been at-
tempted. For instance, we could hypothesize that there is no fatigue effect up to a certain
number of administered items, but after this point a fatigue effect occurs. In other words, up
to the position / = k; all the weights of any position parameter amount to q; = 0, but from / =
ky+1,itis q; # 0, e.g. q; = 1 (compare the structure matrix ((q;)) in Fig. 5 and substitute for
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instance all q;; < 4 with q;; = 0, and all q;5 = 4 with g;5 = 1). Once again, it is of course possi-
ble to hypothesize a linear or even a non-linear function starting from position &;.

Another specific effect might be a certain content-specific learning effect. For instance,
Kubinger, Formann and Farkas (1991) disclosed that for the well-known Standard Progres-
sive Matrices, pairs of items with the same content in terms of applied logical rules but in-
corporating different material components differ in difficulty depending on which item of the
pair was administered first. For an illustration, see the structure matrix ((q;)) in Figure 6;
item 1 and item 2 are such a pair, item 3 and item 4 another one — all the items, 1 to 4, are
administered in the same sequence for every examinee.

elementary
operation 1 2 3 4
J
item item root item root learning learning
i 1 2 effect item | effect item
typ 1 typ 3
1 1
2 1 1
3 1
4 1 1
Figure 6:

The LLTM’s matrix of weights ((g;)) as an example of content-specific learning effects: 2 pairs
of items; the first item of each pair produces an effect on the second.

Given that the Rasch model holds for the k items (now there is no need for virtual items),
the null-hypothesis is Hy: 7, = 0, for every x = 1, 2, ... r (r being the number of pairs).
Obviously, Hy: 774, # 0. If Hy is to be accepted, then the pairs of items not only have the
same logical rationale, but their difficulties have been empirically proven equal.

There are further item administration effects which can be analyzed by the LLTM: the
warming-up effect and the effect of speeded item presentation. The warming-up effect oc-
curs when an examinee is not familiar with the test’s instructions or principle, but becomes
acquainted with them after completing a few items. For this reason, so-called training items
are usually given. Yet sometimes warming-up effects occur even when carefully constructed
training items are administered. For instance, such effects are likely on the first and second
administered items. Again, analyzing different subgroups of examinees who were tested with
different sequences of items allows those effects to be tested. Figure 7 shows a structure
matrix ((qy)) for the case of r = 4 item roots, administered in two different sequences.

Given that the Rasch model holds for the £ virtual items, then the null-hypothesis is Hy:
=0 for every x =1, 2, ... p — r (» being the number of item roots, p —  the number of
warming-up effect parameters). Again, H: 7., # 0. If H, is rejected, then warming-up ef-
fects take place.
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elementary
operation 1 2 3 4 5 6
J
virtual item root | itemroot | itemroot | itemroot | position 1 | position 2
item A B C D within within

i test test
1 1 1
2 1 1
3 1
4 1
5 1
6 1
7 1 1
8 1 1

Figure 7:
The LLTM’s matrix of weights ((q;)) for the case: 4 item roots and two different presentation
sequences — a warming-up effect for the first and second administered item is hypothesized.

The effect of speeded item presentation occurs within a group testing situation when
there is a maximum time limit to work on the given & items. As a consequence, some exami-
nees only manage to finish £, items, so that the last & - k; items are not finished. Given again
that different subgroups of examinees are tested with different sequences of item presenta-
tion, then such an effect can also be analyzed using the LLTM. Take for instance £ = 9 items
and let us hypothesize that an important number of examinees work on a maximum of 24/3.
Figure 8 shows the corresponding structure matrix ((q;)), given exactly two different se-
quences of item presentation. Within the first sequence, the item roots G, H, and I are admin-
istered last so that a speed effect is assumed for them; this holds for the item roots D, E, and
F within the second sequence.

Given that the Rasch model holds for the £ virtual items, the null-hypothesis is Hy: 77+ =
0, and Hy: 74, # 0. If Hy is rejected, then a speed effect takes place. A numerical example of
such an application of LLTM is given by Kubinger (in print).

3.3. Analyzing effects of the item response format

In particular because of guessing effects, which happen to occur if a multiple choice re-
sponse format is used, it might be of fundamental research interest to analyze the psychomet-
ric difference of different kinds of multiple choice designs. Bear in mind that the well-known
3-PL model (and specifically the “difficulty plus guessing PL model”, Kubinger & Draxler,
2006) takes an item-specific guessing parameter into account in order to estimate an exami-
nee’s ability parameter in a fair manner, but it does not show the general extent of guessing
effects in dependence on a given kind of multiple choice response format. For instance, free
response format vs. multiple choice response format would be of interest.
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elementary
operation 1 2 3 4 5 6 7 8 9 10
J
item root
virtual A B C D E F G H I speed
item effect
i
1 1
2 1
3 1
4 1
5 1
6 1
7 1 1
8 1 1
9 1 1
10 1 1
11 1 1
12 1 1
Figure 8:

The LLTM’s matrix of weights ((q;)) for the case: » = 9 item roots and two different sequences of
presentation, yielding & = 12 virtual items, because an effect of speeded item presentation is
hypothesized for the last three administered items (these being item roots G, H, and I in the first
sequence, D, E, and F in the second).

The LLTM applies if the same item root has different response formats. Again different
subgroups must be tested using the same item roots but different response formats so that
none of the examinees has to work on the same item root twice. For example, suppose that
there are 5 item roots, all of which are administered with three different response formats: a
free response format (“F”), a multiple choice response format with 4 distractors (“4”), and a
multiple choice response format with 3 distractors (“3”). The respective structure matrix
((qy)) is given in Figure 9. Of course, any variation is possible; one could, particularly, not
use triples of virtual items based on the same item root, but pairs.

Given that the Rasch model holds for the & virtual items, the null-hypothesis is Hy: 77+, =
0, for every x =1, 2, ... p — r (p — r is the number of response format effect parameters).
Evidently, H;: 7,..# 0. If H is rejected, then the response formats differ with respect to their
difficulty. This is most plausible to interprete, that in one case more lucky guessing takes
place than in another case; the ratios of the respective parameter estimations indicate how
many times guessing is (on average) more lucky using the one response format than using
the other. A numerical example of such an application of LLTM is given by Kubinger (in
print).
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elementary
operation 1 2 3 4 5 6 7 8
J
response format
item root effect
virtual Z|Y | X|W|[V]“F|“4 |“3
item
i
4 1 1
> 1] 1
6 1 1
7 1 1
8 1 1
9 1 1
10 1 1
11 1 1
12 1 1
13 1 1
14 1 1
15 1 1
Figure 9:

The LLTM’s matrix of weights ((q;)) for the case: 7 = 5 item roots yielding k = 15 virtual items
administered to at least three different subgroups of examinees — three different response format
effects are hypothesized.

4. Technical presuppositions

In order to estimate the LLTM’s parameters, each given structure matrix ((q;)) has to be
standardized to some “anchor”, this is routinely ’; = 0 and (given p — > 1) 7,.; = 0; other-
wise the matrix would have full rank and the estimations would become not unequivocal.
Hence, in the last example (Fig. 9) the first column has to be removed as well as the one
before both the last columns. Then the effects of response formats “4” and “3” are simply
interpreted in relation to the free response format, and the difficulty of any item root is sim-
ply interpreted in relation to item root 1.

As already indicated in Chapter 2, some of the suggestions for an application of the
LLTM given in this paper are based on the existence of at least two different subgroups of
examinees. In this case, none of the examinees is administered every virtual item, but rather
every examinee has missing data with respect to a large proportion of the virtual items. That
is to say, there is a data structure like the one in Figure 3. There the gray shaded boxes sym-
bolize which of the virtual items has been administered to which subgroup of examinees. As
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shown in this example, it is absolutely necessary that the virtual items are linked to each
other. In other words, described statistically (cf. Rasch & Kubinger, 2006), a connected,
though incomplete, balanced block design of virtual items and subgroups of examinees must
be given: There always has to be a path crossing the subgroups, in the sense that an item is
administered starting from each specific virtual item i and ending at all the other virtual
items /=i (in Fig. 3, this happens if the columns of the virtual items as well as the rows of
the subgroups are properly interchanged; see Fig. 10).

As also already indicated in Chapter 2, this requires software which can handle different
subgroups of examinees who are administered different groups of items. Though it has not
long been at a researcher’s disposal, eRm stood the test even in this respect. Above all, it is
open source software and thus free of charge.

virtual item
Iy1f1(1f1 1y1y1f(1)2 1
112(3(4(5[1]2{3|4|5|6|7/8[9[0[6]7|8]9]|0

subgroup 1/1/0
subgroup 1/0/0
subgroup 1/0/1
subgroup 0/1/1
subgroup 0/1/0

Figure 10:
Rearrangement of columns and rows of the data design given in Figure 3 (gray shaded boxes
symbolize that the respective virtual item is administered to the respective subgroup).

5. Discussion

The question arises as to whether or not the LLTM is in actual fact necessary for the in-
vestigation of the aspects that have been discussed. Of course, some structure matrices ((q;))
conform to incomplete analysis of variance designs so that conventional statistical ap-
proaches would also seem to serve this purpose: Given that the Rasch model holds for the
(virtual) items, the respective interval-scaled (person or item) parameter might be used for
testing some null-hypotheses — bear in mind that one of the most important characteristics of
the Rasch model is that the ordinal-scaled numbers of solved items are transformed into
interval-scaled parameters (cf. Fischer, 1995b).

Nevertheless, the given LLTM approaches have the advantage of “elegance.” They con-
secutively test a system of hypotheses. This system refers to a hierarchy of alternative hy-
potheses which result from the degree to which the structure matrices ((q;)) in question come
close to the saturated model. This hierarchy may, for instance, concern a particular sequence
as follows: 1) specific position effects vs. 2) a linear position effect vs. 3) a logistic position
effect. In a similar way, although only exploratively and not inference-statistically, one could
look for the point on the trace line where a speed effect first occurs. With regard to the ef-
fects of different response formats, one could, for instance, test whether the effect of using 3
or 4 or 5 or 7 distractors on a multiple choice response format proceeds in a linear manner or
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not; additionally, the hypothesis could be tested as to whether the effect of such a number of
distractors disappears for any number larger than 7 but ultimately equals the effect of the
free response format. Moreover, many other hypotheses may be tested in this way.
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