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Abstract 
The paper uses Item Response Theory (IRT) for modeling and hypothesis testing children’s cogni-
tive age-acceleration function – within calibration and standardization of some intelligence test. For 
this, basically Fischer’s Linear logistic test model (LLTM; Fischer, 1973, 2005) is applied. How-
ever, instead of originally decomposing the item difficulty parameters of the Rasch model into 
certain hypothesized elementary parameters, we now suggest to decompose the person parameter 
alike. That is, there is a decomposition into a testee’s basic ability parameter and an age-leveled 
effect due to the developmental stage of the age-group in question. For convenience, we only 
interchange testees and items in order to facilitate parameter estimation and model test – of course, 
the Rasch model is totally symmetric as concerns testees and items. By doing so, all findings in the 
context of LLTM apply; in particular, pertinent program packages are at our disposal. In order to 
examine the suggested approach’s feasibility, an empirical example is given. An Analogy test with 
eight items administered to more than 300 testees aged between 6 and 16, was analyzed. As a 
matter of fact, the logistic acceleration function proved to fit the data well and best.  
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Introduction 

These days, psychological test calibration very often applies models of Item Response 
Theory (IRT). Above all, the Rasch model, or to say the 1-PL model, is one of the most 
used ones. However, the psychological test construction as a whole concerns classical 
test theory as well, that is in particular the test standardization. If for instance age-based 
differences in test scores occur, a specific standardization is carried out for every age-
group. This is true for almost every developmental or intelligence test. However, in this 
manner, we cannot gain any hypothesis proven mathematical function of the given age-
acceleration. At most, as for instance recently done by Kubinger (2009a), we can smooth 
some curvilinear function to the gradient of test scores’ means in different age-groups. 
However it would be preferable to estimate the age-accelerating function by means of a 
specified model. 
In the framework of IRT, several models have been already developed for modeling 
developmental growth or learning processes in the latent variable. Very recently von 
Davier, Xu, and Carstensen (2011) gave an elaborated overview, comparison, and appli-
cation of latent growth models. Some of them rely on repeated measurements which is 
not appropriate for our setting of test calibration. For others (e.g the Saltus model by 
Wilson (1989)) no software implemention for incomplete data sets using CML (condi-
tional maximum likelihood)-based parameter estimation is actually available. Therefore 
starting from a very practical point of view, we attempt to test different hypotheses of 
children`s cognitive age-acceleration function by using Fischer`s Linear logistic test 
model (LLTM; Fischer, 1973, 2005). For this approach CML-based software implemen-
tation is already available even for incomplete data sets. 

Method 

The Linear logistic test model (LLTM) 

Recently, Kubinger (2008, 2009b) pointed out several LLTM applications which were 
not thought of for this model initially – bear in mind that originally (Fischer, 1973) some 
linear combination of certain hypothesized elementary parameters had been used to de-
compose the item parameter of the Rasch model (perhaps the most striking example is 
provided recently by Sonnleitner, 2008, where different item radicals have been dis-
closed, which more or less govern the difficulty of reading comprehension test items; see 
also Poinstingl, 2009, who established with the use of LLTM item generating rules for 
constructing a new type of reasoning items with difficulties determined by the examiner). 
LLTM’s other applications deal with: a) Rasch model item calibration using data sam-
pled consecutively in date but partly from the same testees; b) measuring position effects 
of item presentation, in particular, learning and fatigue effects – specific for each posi-
tion, as well as linear or non-linear; c) measuring content-specific learning effects; d) 
measuring warming-up effects; e) measuring effects of speeded item presentation; f) 
measuring effects of different item response formats. In particular, b) and f) have been 
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applied several times since then (e.g. Hohensinn, Kubinger, Reif, Holocher-Ertl, Khor-
ramdel, & Frebort, 2008; Hohensinn & Kubinger, 2011).  
We will illustrate a new approach of using LLTM. That is, we swap testees and items 
within the Rasch model data design. This with the aim to decompose the person parame-
ter into at least two component parameters instead of decomposing the item parameters 
into some linear combination of operation parameters.  
Bear in mind, that the LLTM originally defines the probability of a testee v with the 
ability parameter ξv of solving item i with the Rasch model difficulty parameter σi as 
follows:  
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– the parameters ηj  (j = 1, 2, … p < k) are hypothesized elementary operation parame-
ters which constitute the item parameter σi, i = 1, 2, … k; the values qij are postulated as 
being fixed and known weights. However, if one is interested in individual ability pa-
rameters ξv(g) whereby v(g) indicates that testee v stems from age-group g, we might think 
of some decomposition as ξv(g) = ξ*

v  + λg, that is a decomposition into a testee’s basic 
ability parameter ξ*

v  and an age-leveled effect λg due to the developmental stage of the 
age-group in question. Formula (1) then changes to 

 ( )
*

*
*

( ) ;
1

v g i

v g i
v g v g i

eP
e

ξ λ σ

ξ λ σ
ξ ξ λ σ

+ −

+ −
+ = + =

+
 (2) 

Now we could derive conditional parameter estimation functions for the person parame-
ters ξv(g) as Rasch (1960/1980) did for item parameters σi and for the person component 
parameters ξ*

v  and λg as Fischer (1973) did for the elementary operation parameters ηj, 
respectively. And we could program some software for the respective parameter estima-
tion as in particular the program package eRm (Mair, Hatzinger, & Maier, 2010; cf. also 
Poinstingl, Mair & Hatzinger, 2007) offers. Moreover, we would have to adapt Ander-
sen’s Likelihood ratio test in order to check whether the Rasch model holds and then to 
adapt the goodness-of-fit test to see whether the data’s likelihood according to model (2), 
L*, fits the data’s likelihood according to the Rasch model – with regard to LLTM it is 
well-known that the data’s likelihood according to model (1), LLLTM, is to oppose to the 
data’s likelihood according to the Rasch model,  LRM,  whereby  -2ln(LLLTM /LRM) is as-
ymptotically χ2-distributed with df = k – p – 1. 
However, we will not do so. Instead, we only interchange testees and items. Indeed, the 
Rasch model is completely symmetric regarding testees and items (cf. Rasch, 
1960/1980). Though, in the first instant, the decomposition of persons’ or items’ parame-
ters is not symmetric; that is true as long as conditional parameter estimation with respect 
to the item parameters is aimed for, which is the case in LLTM. But in the second in-
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stant, if we actually interchange testees and items for the application of LLTM as well, 
decomposition of the person parameters works.  

That is, from now on we define the person parameters of k testees as σi, i = 1, 2, … k. 
Then we define the item parameters of n items as ξv , v = 1, 2, … n. The only unusual 
thing is that we then have a larger number of items n than testees k. Rasch model analysis 
might apply in a state of the art manner. The same is true concerning Andersen’s Likeli-
hood ratio test and graphical model checks. For the former the asymptotic property might 
be examined, at most. Regarding LLTM, formula (2) now turns into formula (3); thereby 
decomposing the individual ability parameters σi(g) (i.e. testee i stems from age-group g) 
into σi(g) = σ*

i  + λg:   
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However, in order to apply model (3) the data have to be re-arranged, or to say, the 
obligatory LLTM structure matrix has to be well defined. Given the application of the 
Rasch model, the structure matrix in terms of formula (1) with testees and items inter-
changed appears as shown in Figure 1. For each testee i a specific person parameter σi is 
to be estimated. 
For formula (3) however the structure matrix appears as shown in Figure 2. Given the 
Rasch model holds, there are different score groups, that is groups of testees having the 
same number of solved items and as a consequence of which, they have the same person 
parameter (estimation). As the number of solved items varies between r = 1 and r = n – 1 
(r = 0 and r = n deliver no information), these parameters are σ(r). However, as the same 
number of solved items might occur for testees being of age g as well as being of age h, 
these parameters have to be decomposed, as already indicated into a basic parameter σ*(r)

   
 
 

 testee i 1 2 3 4 5 6 … k 
person 

parameter 
i 

  
σ1 

 
σ2 

 
σ2 

 
σ4 

 
σ5 

 
σ6 

 
σi 

 
σk 

1  1        
2   1       
3    1      
4     1     
5      1    
6       1   
…        1  
k         1 

 
Figure 1:  

The structure matrix ((qij)) of the Rasch model (an empty cell means qij = 0) 
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 testee 
i(r, g) 

1(1, 0) … i’(1, 1) … i’’(1, g) … … i’’’(5, g) … k(r, g) 

component 
parameter 

           

1 σ*(1) 1  1  1      
2 σ*(2)           
3 σ*(3)           
4 σ*(4)           
5 σ*(5)        1   
…            
r σ*(r)          1 

…            
n-1 σ*(n-1)           
… λ0 1          
 λ1   1        
 …           
 λg     1   1  1 
 …           

 
Figure 2: 

The structure matrix ((qij)) of model (3a) (an empty cell means qij = 0)     

 

and an age-leveled effect λg due to the developmental stage of the age-group g. That is 
formula (3) has to be specified as follows, because testee i is to index according to the 
score group – in terms of the formula (1) ηj  = σ*(r)

  (j = r = 1, 2, … n – 1 < k), ηn-1+g = λg 
(g = 0, 1, 2, …); qij = qi(r)j+g is either one or zero:  
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Of course, the data matrix is as usual, again just testees and items were interchanged (cf. 
Figure 3). 
As in the original LLTM the structure matrix has to be standardized to an “anchor”, for 
instance this is set to σ*(n-1) = λ0 = 0 here; otherwise the matrix would not have full rank 
and the estimations would not be indeterminate. 
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 testee 
i(r, g) 

1(1, 0) … i’(1, 1) … i’’(1, g) … … i’’’(5, g) … k(r, g) 

items            
1  0  1  0   1   
2  1  0  0   0   
3  0  0  1   1   
4  0  0  0   1   
5  0  0  0   1   
…  0  0  0   0   
n  0  0  0   1   

 
Figure 3: 

The data matrix for Rasch model and LLTM analyses, given testees and items were interchanged 
(in the given example testee 1 has solved only the second item, testee i’ only the first, and testee 

i’’ only the third. Testee i’’’ has solved 5 items in total, number 1, 3, 4, 5, and n).  

An empirical example 

The data of a Rasch model-calibrated test were at our disposal, that is a new subtest, 
Analogies, of the next generation of the intelligence test-battery for children AID 2 
(Adaptive Intelligence Diagnosticum; Kubinger, 2009a). There are n = 8 items which 
were administered to each of 348 testees, aged between 6 and 16. After the deletion of all 
testees with either r = 0 or r = n = 8 solved items k = 308 testees remained. 
First of all, the subset of the 8 items in question was to be tested as to whether they fit the 
Rasch model. Andersen’s Likelihood ratio test according to the partition of the items 
which were solved rather often and those solved rather seldom, resulted in a non-
significant test-statistic of χ2 = 4.17 < χ2

0.05 = 14.07, df = 7. Hence the application of our 
suggested approach is justified.  
Applying the LLTM as worked out above for the determination of children’s cognitive 
age-acceleration function, we aimed to test three hypotheses: 1) There is only a need for 
a single parameter λ which is, due to the age-groups 6, 7, … 15, weighted by 0, 1, 2, 3, 4, 
and so forth – that is, a linear acceleration function is supposed. 2) Again, there is only a 
need of a single parameter λ which is, due to the age-groups 6, 7, … 15, weighted by .50, 
.73, .88, .95, .98, .99, 1.00, 1.00, 1.00, 1.00 – that is a logistic acceleration function is 
supposed. 3) There are age-specific parameters λg as given in Figure 2 – that is no certain 
mathematical function is supposed. 

Results 

The Likelihood ratio tests according to the three hypotheses, that is -2ln(LLLTM /LRM) with 
df = k – [(n – 2) + 1] – 1 =  k – n = 300 in both the first cases and df = k – [(n – 2) + (10 – 
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1)] – 1 =  k – n – 8 = 292 in the third case, resulted in: χ2 = 6.30 < χ2
0.05 = 341.40, χ2 = 

0.72 < χ2
0.05, and χ2 = 16.07 < χ2

0.05 = 332.85. Descriptively speaken, hypothesis 1), the 
linear age-acceleration model, fits the data well, though hypothesis 2), the logistic age-
acceleration model does fit better – as both hypotheses have the same number of degrees 
of freedom we cannot apply a significance test, in order to compare these models. How-
ever, we actually can apply a significance test, as it concerns a comparison of both the 
models according to hypothesis 2) and 3), which hold as well. As a result we obtain χ2 = 
15.34 < χ2

0.05 = 16.92 (df = 9). That is, there is, at least, no need for age-specific parame-
ters λg. Furthermore, we now have to examine, whether there is a significant age-
acceleration effect at all. In order to do this, there are two possible approaches. A rather 
convenient one is to examine only the confidence interval which is based on the esti-
mated parameter λ̂ ; regarding hypothesis and model 2), respectively, λ̂  amounts to 
0.510 and the 95%-confidence interval to [–0.914; 1.934]; because 0 lies within this 
interval, the acceleration effect λ can even be 0 – the same is true with regard to hy-
pothesis and model 1), respectively: λ̂  = 0.416, [–0.156; 0.988]). Some IRT-based ap-
proach is however to hypothesize a fourth model: 4) There is no need for a parameter λ. 
The respective likelihood is to be compared with that of hypothesis and model 2). As a 
matter of fact, that likelihood ratio test results in χ2 = 18.80 > χ2

0.05 = 3.84 (df = 1). In this 
way, hence, the logistic age-acceleration effect λ has proven to be significant – though it 
is still, as indicated, rather small. At any rate, we have at least established a logistic trend 
of cognitive age-acceleration. Given the estimates of the basic parameter σ*(r)

  for testees 
with r = 1, 2, … 7 solved items as –2.790; –1.732; –.830; –.002; 0.816; 1.725; 2.812, 
then there occurs a bonus effect by age, that is for instance with 8-year old children –
2.790 + .88⋅0.510 = –2.341 and so on. 

Discussion 

From the point of view of users, we are of the opinion that our approach is currently the 
most convenient for the standardization of a Rasch model-calibrated psychological test. 
That is, we remain within the frame of reference of CML-based IRT but do not have to 
use classical test theory methods or MML (marginal maximum likelihood)-based meth-
ods, which, incidentally, always depend on the actual selected sample – bear in mind that 
in our approach, in a certain age-group eventually over- or underrepresented testees with 
a score of r = 0 and r = n are not taken into account. Moreover, applying our approach 
enables the researcher to plan forthcoming standardization studies more economically, 
that is, instead of sampling each of all age-groups, just a few of them would suffice; 
standardization for the missing age-groups could be done according to the established 
acceleration function.  
Indeed, we have here experienced with the suggested approach for a single example only. 
All above, simulations studies are needed in order to analyze the Likelihood ratio tests’ 
degree of accuracy concerning their χ2-distribution approximation – recently Hohensinn 
et al. (2008) showed that the traditional tests of LLTM sometimes do not detect relevant 
effects because of a type-II-risk being too high. In particular, there is hardly any knowl-
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edge of problems regarding parameter estimation, given respective disproportions of the 
number of items and the number of testees. Hence, especially further research on this 
topic is required.2  
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